Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Forecasting of Permeate Conductivity using MLR and ANN Methods of Boujdour Seawater Reverse Osmosis Desalination Plant

Author(s): Siham Kherraf, Chaymae Bakkouche, Soukaina Barhmi, Jamal Mabrouki, Souad El Hajjaji*, Omkeltoum Elfatni, Driss Dhiba and Khlifa Maissine

Volume 19, Issue 4, 2023

Published on: 31 March, 2023

Page: [348 - 355] Pages: 8

DOI: 10.2174/1573411019666230221143245

Price: $65

Abstract

Background: For many years, seawater desalination technique has been operational to deal with water scarcity. In Boujdour region, located near the Atlantic Ocean southwest of Morocco, most water drinking is produced by a reverse osmosis seawater desalination plant. The permeate conductivity prediction is used to evaluate the performance of desalination plants.

Objective: The present paper focuses on the modeling and comparison of the Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) for the prediction of permeate conductivity for a one-year period.

Methods: Six input variables are considered, including turbidity, temperature, pH, feed conductivity, feed flow, and transmembrane pressure (TMP). Firstly, the MLR identifies the most important variables influencing the permeate conductivity with the aim of developing a regression model for the dependent and independent parameters. Secondly, the ANN method is examined to analyze the performance of desalination plant. A study of the effect of the number of neurons and the number of hidden layers on the efficiency of the neural network has been made.

Results and Conclusion: Results confirm that the MLR and ANN models forecast the permeate conductivity with a suitable coordination coefficient of the real and predicted values. ANN model has been successfully tested for reliability with a correlation coefficient R2 of 99.097% and a mean square error (MSE) of 0.002607.

« Previous
Graphical Abstract

[1]
Hussain, T.S.; Al-Fatlawi, A.H. Remove chemical contaminants from potable water by household water treatment system. Civ. Eng. J., 2020, 6(8), 1534-1546.
[http://dx.doi.org/10.28991/cej-2020-03091565]
[2]
Buaisha, M.; Balku, S. Yaman, Ş.Ö. Heavy metal removal investigation in conventional activated sludge systems. Civ. Eng. J., 2020, 6(3), 470-477.
[http://dx.doi.org/10.28991/cej-2020-03091484]
[3]
Yamini, O.A.; Movahedi, A.; Mousavi, S.H.; Kavianpour, M.R.; Kyriakopoulos, G.L. Hydraulic performance of seawater intake system using CFD modeling. J. Mar. Sci. Eng., 2022, 10(7), 988.
[http://dx.doi.org/10.3390/jmse10070988]
[4]
Xiao, W.; Nazario, G.; Wu, H.; Zhang, H.; Cheng, F. A neural network based computational model to predict the output power of different types of photovoltaic cells. PLoS One, 2017, 12(9), e0184561.
[http://dx.doi.org/10.1371/journal.pone.0184561] [PMID: 28898271]
[5]
Mabrouki, J.; Fattah, G.; Al-Jadabi, N.; Abrouki, Y.; Dhiba, D.; Azrour, M.; Hajjaji, S.E. Study, simulation and modulation of solar thermal domestic hot water production systems. Model. Earth Syst. Environ., 2022, 8(2), 2853-2862.
[http://dx.doi.org/10.1007/s40808-021-01200-w]
[6]
Qasim, M.; Badrelzaman, M. Reverse osmosis desalination: A state-of-the-art review. Desalination, 2018, 2019(459), 59-104.
[7]
Arribas, P. Novel and emerging membranes for water treatment by hydrostatic pressure and vapor pressure gradient membrane processes. In: Advances in Membrane Technologies for Water Treatment; Woodhead Publishing, 2015; pp. 239-285.
[8]
Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan groundwater resources and evolution with global climate changes. Geosciences, 2020, 10(2), 81.
[http://dx.doi.org/10.3390/geosciences10020081]
[9]
Mabrouki, J.; Benbouzid, M.; Dhiba, D.; El Hajjaji, S. Simulation of wastewater treatment processes with bioreactor membrane reactor (MBR) treatment versus conventional the adsorbent layer-based filtration system (LAFS). Int. J. Environ. Anal. Chem., 2020. 1-11. 2022, 102(19), 7458-7468.
[http://dx.doi.org/10.1080/03067319.2020.1828394]
[10]
Kingdom of Morocco: Moroccan regions 2010. 2017. Available from: http://www.hcp.ma/downloads/Maroc-enchiffres_t13053.html/
[11]
Hafsi, M. Analysis of Boujdour desalination plant performance. Desalination, 2001, 134(1-3), 93-104.
[http://dx.doi.org/10.1016/S0011-9164(01)00119-9]
[12]
Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw., 2000, 15(1), 101-124.
[http://dx.doi.org/10.1016/S1364-8152(99)00007-9]
[13]
Aish, A.M.; Zaqoot, H.A.; Abdeljawad, S.M. Artificial neural network approach for predicting reverse osmosis desalination plants performance in the Gaza Strip. Desalination, 2015, 367, 240-247.
[http://dx.doi.org/10.1016/j.desal.2015.04.008]
[14]
Jawad, J.; Hawari, A.H.; Zaidi, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination, 2020, 484, 114427.
[http://dx.doi.org/10.1016/j.desal.2020.114427]
[15]
Madaeni, S.S. Kurdian modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network. Chem. Eng. Commun., 2015, 202(1), 6-14.
[http://dx.doi.org/10.1080/00986445.2013.828606]
[16]
Choi, Y.; Lee, Y.; Shin, K.; Park, Y.; Lee, S. Analysis of long-term performance of full-scale reverse osmosis desalination plant using artificial neural network and tree model. Environ. Eng. Res., 2020, 25(5), 763-770.
[http://dx.doi.org/10.4491/eer.2019.324]
[17]
Tahri, K. Desalination experience in Morocco. Desalination, 2001, 136(1-3), 43-48.
[18]
Mabrouki, J.; Moufti, A.; Bencheikh, I.; Azoulay, K.; El Hamdouni, Y.; El Hajjaji, S. Optimization of the coagulant flocculation process for treatment of leachate of the controlled discharge of the city mohammedia (Morocco). International Conference on Advanced Intelligent Systems for Sustainable Development; Springer: Cham, 2019, pp. 200-212.
[19]
Abbas, A.; Al-Bastaki, N. Modeling of an RO water desalination unit using neural networks. Chem. Eng. J., 2005, 114(1-3), 139-143.
[http://dx.doi.org/10.1016/j.cej.2005.07.016]
[20]
Selvi, S.R.; Baskaran, R. Statistical study using multiple regression model in reverse osmosis. Int. J. Chemtech Res., 2015, 8(11), 211-220.
[21]
Mashaly, A.F.; Alazba, A.A. MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Comput. Electron. Agric., 2016, 122, 146-155.
[http://dx.doi.org/10.1016/j.compag.2016.01.030]
[22]
Schmitt, F.; Banu, R.; Yeom, I.T.; Do, K.U. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochem. Eng. J., 2018, 133, 47-58.
[http://dx.doi.org/10.1016/j.bej.2018.02.001]
[23]
Barhmi, S.; Elfatni, O.; Belhaj, I. Forecasting of wind speed using multiple linear regression and artificial neural networks. Energy Systems, 2020, 11(4), 935-946.
[http://dx.doi.org/10.1007/s12667-019-00338-y]
[24]
Charrouf, O.; Betka, A.; Abdeddaim, S.; Ghamri, A. Artificial neural network power manager for hybrid PV-wind desalination system. Math. Comput. Simul., 2020, 167, 443-460.
[http://dx.doi.org/10.1016/j.matcom.2019.09.005]
[25]
Bencheikh, I.; Azoulay, K.; Mabrouki, J.; El Hajjaji, S.; Dahchour, A.; Moufti, A.; Dhiba, D. The adsorptive removal of MB using chemically treated artichoke leaves: Parametric, kinetic, isotherm and thermodynamic study. Sci. Am., 2020, 9, e00509.
[26]
Mabrouki, J.; Azrour, M.; Hajjaji, S.E. Use of internet of things for monitoring and evaluating water’s quality: A comparative study. Int. J. Cloud Comput., 2021, 10(5/6), 633-644.
[http://dx.doi.org/10.1504/IJCC.2021.120399]
[27]
Nohair, M.; St-Hilaire, A.; Ouarda, T. B. Use of neural networks and bayesian regularization in river water temperature modeling The bayesian-regularized neural network approach to model daily water temperature in a small stream. Water Sci., 2008, 21(3)
[28]
Mabrouki, J.; El Yadini, A.; Bencheikh, I.; Azoulay, K.; Moufti, A.; El Hajjaji, S. Hydrogeological and hydrochemical study of underground waters of the tablecloth in the vicinity of the controlled city dump mohammedia (Morocco). In: International Conference on Advanced Intelligent Systems for Sustainable Development; Springer: Cham, 2018; pp. 22-33.
[29]
Xiao, W.; Dai, J.; Wu, H.; Nazario, G.; Cheng, F. Effect of meteorological factors on photovoltaic power forecast based on the neural network. RSC Advances, 2017, 7(88), 55846-55850.
[http://dx.doi.org/10.1039/C7RA10591F]
[30]
Mabrouki, J.; Bencheikh, I.; Azoulay, K.; Es-Soufy, M.; El Hajjaji, S. Smart monitoring system for the long-term control of aerobic leachate treatment: Dumping case Mohammedia (Morocco). In: International Conference on Big Data and Networks Technologies; Springer: Cham, 2019; pp. 220-230.
[31]
Zamaniyan, A.; Joda, F.; Behroozsarand, A.; Ebrahimi, H. Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant. Int. J. Hydrogen Energy, 2013, 38(15), 6289-6297.
[http://dx.doi.org/10.1016/j.ijhydene.2013.02.136]
[32]
Chellam, S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci., 2005, 258(1-2), 35-42.
[http://dx.doi.org/10.1016/j.memsci.2004.11.038]
[33]
Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res., 2010, 44(2), 373-384.
[http://dx.doi.org/10.1016/j.watres.2009.06.054]
[34]
Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser., 2019, 1168(2), 022022.
[http://dx.doi.org/10.1088/1742-6596/1168/2/022022]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy