[1]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825. [http://dx.doi.org/10.1021/cr068123a]. [PMID: 18154363].
[2]
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron., 2005, 20(12), 2435-2453. [http://dx.doi.org/10.1016/j.bios.2004.11.012]. [PMID: 15854818].
[3]
Liu, Q.; Yang, Y.; Li, H.; Zhu, R.; Shao, Q.; Yang, S.; Xu, J. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron., 2015, 64, 147-153. [http://dx.doi.org/10.1016/j.bios.2014.08.062]. [PMID: 25212068].
[4]
Azimi, S.; Farahani, A.; Docoslis, A.; Vahdatifar, S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal. Bioanal. Chem., 2021, 413(5), 1441-1452. [http://dx.doi.org/10.1007/s00216-020-03108-3]. [PMID: 33388843].
[5]
Dong, L.; Li, R.; Wang, L.; Lan, X.; Sun, H.; Zhao, Y.; Wang, L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int. J. Biol. Macromol., 2021, 172, 289-298. [http://dx.doi.org/10.1016/j.ijbiomac.2021.01.049]. [PMID: 33450341].
[6]
Yee, Y.C.; Hashim, R.; Mohd Yahya, A.R.; Bustami, Y. Colorimetric Analysis of Glucose Oxidase-Magnetic Cellulose Nanocrystals (CNCs) for glucose detection. Sensors, 2019, 19(11), 2511. [http://dx.doi.org/10.3390/s19112511]. [PMID: 31159318].
[7]
Morikawa, M.; Kimizuka, N.; Yoshihara, M.; Endo, T. New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3-n(phen)n]n+ complexes triggered by electron transfer from glucose oxidase. Chemistry, 2002, 8(24), 5580-5584. [http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5580:AID-CHEM5580>3.0.CO;2-V]. [PMID: 12693039].
[8]
Lu, Q.; Huang, T.; Zhou, J.; Zeng, Y.; Wu, C.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244, 118893. [http://dx.doi.org/10.1016/j.saa.2020.118893]. [PMID: 32916589].
[9]
Wu, X.; Wu, P.; Gu, M.; Xue, J. Ratiometric fluorescent probe based on AuNCs induced AIE for quantification and visual sensing of glucose. Anal. Chim. Acta, 2020, 1104, 140-146. [http://dx.doi.org/10.1016/j.aca.2020.01.004]. [PMID: 32106945].
[10]
Wang, Y.; Jin, R.; Sojic, N.; Jiang, D.; Chen, H.Y. Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in a nanopipette. Angew. Chem. Int. Ed., 2020, 59(26), 10416-10420. [http://dx.doi.org/10.1002/anie.202002323]. [PMID: 32216004].
[11]
Gao, Y.; Zhang, C.; Yang, Y.; Yang, N.; Lu, S.; You, T.; Yin, P. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd., 2021, 863, 158758. [http://dx.doi.org/10.1016/j.jallcom.2021.158758].
[12]
Amin, K.M.; Muench, F.; Kunz, U.; Ensinger, W. 3D NiCo-Layered double Hydroxide@Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing. J. Colloid Interface Sci., 2021, 591, 384-395. [http://dx.doi.org/10.1016/j.jcis.2021.02.023]. [PMID: 33631526].
[13]
Meng, T.; Shang, N.; Zhao, J.; Su, M.; Wang, C.; Zhang, Y. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. J. Colloid Interface Sci., 2021, 589, 135-146. [http://dx.doi.org/10.1016/j.jcis.2020.12.119]. [PMID: 33450457].
[14]
Chen, D.; Wang, X.; Zhang, K.; Cao, Y.; Tu, J.; Xiao, D.; Wu, Q. Glucose photoelectrochemical enzyme sensor based on competitive reaction of ascorbic acid. Biosens. Bioelectron., 2020, 166, 112466. [http://dx.doi.org/10.1016/j.bios.2020.112466]. [PMID: 32777725].
[15]
Yang, Y.; Yang, J.; He, Y.; Li, Y. A dual-signal mode ratiometric photoelectrochemical sensor based on voltage-resolved strategy for glucose detection. Sens. Actuators B Chem., 2021, 330, 129302. [http://dx.doi.org/10.1016/j.snb.2020.129302].
[16]
Laidoudi, S.; Khelladi, M.R.; Lamiri, L.; Belgherbi, O.; Boudour, S.; Dehchar, C.; Boufnik, R. Non-enzymatic glucose detection based on cuprous oxide thin film synthesized via electrochemical deposition. Appl. Phys., A Mater. Sci. Process., 2021, 127(3), 160. [http://dx.doi.org/10.1007/s00339-021-04299-x].
[17]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80(6), 2250-2254. [http://dx.doi.org/10.1021/ac702203f]. [PMID: 18290671].
[18]
Kumar, R.; Chauhan, S. Nano/micro-scaled materials based optical biosensing of glucose. Ceram. Int., 2022, 48(3), 2913-2947. [http://dx.doi.org/10.1016/j.ceramint.2021.10.170].
[19]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076. [http://dx.doi.org/10.1039/C8CS00457A]. [PMID: 30534770].
[20]
Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq., 2019, 278, 130-144. [http://dx.doi.org/10.1016/j.molliq.2018.12.011].
[21]
Xing, Z.; Tian, J.; Asiri, A.M.; Qusti, A.H.; Al-Youbi, A.O.; Sun, X. Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: A highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens. Bioelectron., 2014, 52, 452-457. [http://dx.doi.org/10.1016/j.bios.2013.09.029]. [PMID: 24094524].
[22]
Jampaiah, D.; Srinivasa Reddy, T.; Kandjani, A.E.; Selvakannan, P.R.; Sabri, Y.M.; Coyle, V.E.; Shukla, R.; Bhargava, S.K. Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(22), 3874-3885. [http://dx.doi.org/10.1039/C6TB00422A]. [PMID: 32263086].
[23]
Qu, K.; Shi, P.; Ren, J.; Qu, X. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry, 2014, 20(24), 7501-7506. [http://dx.doi.org/10.1002/chem.201400309]. [PMID: 24825488].
[24]
Pandith, A.; Seo, Y.J. Label-free sensing platform for miRNA-146a based on chromo-fluorogenic pyrophosphate recognition. J. Inorg. Biochem., 2020, 203, 110867. [http://dx.doi.org/10.1016/j.jinorgbio.2019.110867]. [PMID: 31715376].
[25]
Pandith, A.; Bhattarai, K.R.; Guralamatta Siddappa, R.K.; Chae, H-J.; Seo, Y.J. Novel fluorescent C2-symmetric sequential on-off-on switch for Cu2+ and pyrophosphate and its application in monitoring of endogenous alkaline phosphatase activity. Sens. Actuators B Chem., 2019, 282, 730-742. [http://dx.doi.org/10.1016/j.snb.2018.11.111].
[26]
Pandith, A.; Choi, J-H.; Jung, O-S.; Kim, H-S. A simple and robust PET-based anthracene-appended O-N-O chelate for sequential recognition of Fe3+/CN– ions in aqueous media and its multimodal applications. Inorg. Chim. Acta, 2018, 482, 669-680. [http://dx.doi.org/10.1016/j.ica.2018.07.007].
[27]
Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed., 2004, 43(43), 5812-5815. [http://dx.doi.org/10.1002/anie.200460446]. [PMID: 15523721].
[28]
Beltrame, P.; Comotti, M.; Della Pina, C.; Rossi, M. Aerobic oxidation of glucose. Appl. Catal. A Gen., 2006, 297(1), 1-7. [http://dx.doi.org/10.1016/j.apcata.2005.08.029].
[29]
A, M.; J, M.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen., 2018, 555, 47-74. [http://dx.doi.org/10.1016/j.apcata.2018.02.010].
[30]
Kalanoor, B.S.; Seo, H.; Kalanur, S.S. Multiple ion doping in BiVO4 as an effective strategy of enhancing photoelectrochemical water splitting: A review. Mater. Sci. Energy Technol., 2021, 4, 317-328. [http://dx.doi.org/10.1016/j.mset.2021.08.010].
[31]
Yu, Z.; Lv, S.; Ren, R.; Cai, G.; Tang, D. Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Mikrochim. Acta, 2017, 184(3), 799-806. [http://dx.doi.org/10.1007/s00604-016-2071-5].
[32]
Xu, M.; Zhu, Y.; Yang, J.; Li, W.; Sun, C.; Cui, Y.; Liu, L.; Zhao, H.; Liang, B. Enhanced interfacial electronic transfer of BiVO4 coupled with 2D g-C3 N4 for visible-light photocatalytic performance. J. Am. Ceram. Soc., 2021, 104(7), 3004-3018. [http://dx.doi.org/10.1111/jace.17740].
[33]
Patil, S.S.; Lee, J.; Park, E.; Nagappagari, L.R.; Lee, K.; Interstitial, M.; Interstitial, M. M + = Li + or Sn 4+) Doping at Interfacial BiVO4/WO3 to Promote Photoelectrochemical Hydrogen Production. ACS Appl. Energy Mater., 2021, 4(12), 13636-13645. [http://dx.doi.org/10.1021/acsaem.1c02294].
[34]
Chen, L.; Miao, L.; Chen, Y.; Gao, Y.; Di, J. An enzyme-free photoelectrochemical glucose sensor based on coupling BiVO4 with gold nanoparticles. Mater. Sci. Semicond. Process., 2021, 125, 105632. [http://dx.doi.org/10.1016/j.mssp.2020.105632].
[35]
Gao, Y.; Wu, Y.; Di, J. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 207-212. [http://dx.doi.org/10.1016/j.saa.2016.09.023]. [PMID: 27664545].
[36]
Sujak, M.; Djuhana, D. The localized surface plasmon resonance on noble metal-semiconductor: Au nanosphere-ZnO nanorod. IOP Conf. Series Mater. Sci. Eng., 2020, 902(1), 012058. [http://dx.doi.org/10.1088/1757-899X/902/1/012058].
[37]
Feng, T.; Ding, L.; Chen, L.; Di, J. Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process. J. Exp. Nanosci., 2019, 14(1), 13-22. [http://dx.doi.org/10.1080/17458080.2018.1520399].
[38]
Wang, A.; Shen, X.; Ren, J.; Wang, Q.; Zhao, W.; Zhu, W.; Shang, D. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4. Dyes Pigments, 2021, 192, 109468. [http://dx.doi.org/10.1016/j.dyepig.2021.109468].
[39]
Geng, H.; Huang, S.; Kong, D.; Chubenko, E.; Bondarenko, V.; Ying, P.; Sui, Y.; Zhao, Y.; Gu, X. A novel synergy of Co/La co-doped porous BiVO4 photoanodes with enhanced photoelectrochemical solar water splitting performance. J. Alloys Compd., 2022, 925, 166667. [http://dx.doi.org/10.1016/j.jallcom.2022.166667].
[40]
Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed., 2014, 53(49), 13454-13459. [http://dx.doi.org/10.1002/anie.201407938]. [PMID: 25293501].
[41]
Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano, 2010, 4(12), 7451-7458. [http://dx.doi.org/10.1021/nn102592h]. [PMID: 21128689].
[42]
Qiu, Z.; Tang, D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(13), 2541-2561. [http://dx.doi.org/10.1039/C9TB02844G]. [PMID: 32162629].
[43]
Wu, N. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale, 2018, 10(6), 2679-2696. [http://dx.doi.org/10.1039/C7NR08487K]. [PMID: 29376162].
[44]
Bandi, R.; Alle, M.; Park, C.W.; Han, S.Y.; Kwon, G.J.; Kim, N.H.; Kim, J.C.; Lee, S.H. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators B Chem., 2021, 330, 129330. [http://dx.doi.org/10.1016/j.snb.2020.129330].
[45]
Ge, L.; Hou, R.; Cao, Y.; Tu, J.; Wu, Q. Photoelectrochemical enzymatic sensor for glucose based on Au@C/TiO2 nanorod arrays. RSC Advances, 2020, 10(72), 44225-44231. [http://dx.doi.org/10.1039/D0RA08920F]. [PMID: 35517172].