Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Design of Solid-contact Ion-selective Electrode with Multiwall-carbon Nanotubes for Assay of Sulfacetamide in Rabbit Aqueous Humour

Author(s): Said A. Hassan, Amr M. Mahmoud*, Mona A. Kamel*, Samah S. Abbas and Adel M. Michael

Volume 19, Issue 4, 2023

Published on: 27 March, 2023

Page: [320 - 329] Pages: 10

DOI: 10.2174/1573411019666230213105056

Price: $65

Abstract

Background: Inclusion of multiwall-carbon nanotubes (MWCNTs) as ion-to-electron transducers within the ionophore-doped PVC membrane has a great impact on the stability and robustness of the produced sensor performance compared to conventional liquid-based ISEs.

Objective: Solid-contact ion selective electrodes (SC-ISEs) were fabricated and optimized for the assay of sulfacetamide sodium in both ophthalmic eye drops and in rabbit aqueous humor.

Methods: 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD) was selected as an ionophore to dope the ionselective membrane to enhance its selectivity towards sulfacetamide. The performance of multiwall-CNTs as ion-to-electron transducer was evaluated by comparing MWCNT-based SC-ISE with control sensor which does not include the MWCNTs. The electrochemical performance characteristics of the proposed sensors were assessed in accordance with the IUPAC recommendations. A green profile assessment of the proposed method was performed using Eco-Scale and AGREES metrics.

Results: Inclusion of MWCNT into the sensing membrane improved the performance of the developed sensor. The linearity range was (2.5 x 10-4 M - 1.0 x 10-2 M) for both sensors and the LOD was estimated to be 5.6 x 10-5 M for GCE/ISM(CNT) and 1.5x 10-4 M for control sensor GCE/ISM. The results of green assessment for both the developed and the official method showed an excellent greenness of the proposed method.

Conclusion: The proposed sensor can be applied successfully for the determination of sulfacetamide in eye drops and rabbit aqueous humour.

Graphical Abstract

[1]
Elhassan, M.M.; Mahmoud, A.M.; Hegazy, M.A.; Mowaka, S. In-line monitoring of sitagliptin dissolution profile from tablets utilizing an eco-friendly potentiometric sensor. Chem. Pap., 2021, 75(8), 4165-4176.
[http://dx.doi.org/10.1007/s11696-021-01646-3]
[2]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Dolatabad, M. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[3]
Foroughi, M.M.; Jahani, S. Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem. J., 2022, 179, 107546.
[http://dx.doi.org/10.1016/j.microc.2022.107546]
[4]
Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors. Chem. Rev., 2008, 108(2), 329-351.
[http://dx.doi.org/10.1021/cr068100w] [PMID: 18189426]
[5]
Hulanicki, A.; Trojanowicz, M. Calcium-selective electrodes with pvc membranes and solid internal contacts. Anal. Chim. Acta, 1976, 87(2), 411-417.
[http://dx.doi.org/10.1016/S0003-2670(01)82269-8] [PMID: 962166]
[6]
El-Sayed, G.M.; El Mously, D.A.; Mostafa, N.M.; Hassan, N.Y.; Mahmoud, A.M. Design of copper microfabricated potentiometric sensor for in-line monitoring of neostigmine degradation kinetics. Electroanalysis, 2021, 33(5), 1215-1224.
[http://dx.doi.org/10.1002/elan.202060536]
[7]
Mahmoud, A.M.; Abd El-Rahman, M.K.; Elghobashy, M.R.; Rezk, M.R. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J. Electroanal. Chem., 2015, 755, 122-126.
[http://dx.doi.org/10.1016/j.jelechem.2015.07.045]
[8]
Mahmoud, A.M.; Ragab, M.T.; Ramadan, N.K.; El-Ragehy, N.A.; El-Zeany, B.A. Design of solid-contact ion-selective electrode with graphene transducer layer for the determination of flavoxate hydrochloride in dosage form and in spiked human plasma. Electroanalysis, 2020, 32(12), 2803-2811.
[http://dx.doi.org/10.1002/elan.202060377]
[9]
Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta, 2015, 887, 17-37.
[http://dx.doi.org/10.1016/j.aca.2015.05.049] [PMID: 26320782]
[10]
Sharma, R.; Geranpayehvaghei, M.; Ejeian, F.; Razmjou, A.; Asadnia, M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta, 2021, 235, 122815.
[http://dx.doi.org/10.1016/j.talanta.2021.122815] [PMID: 34517671]
[11]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[12]
Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. Trends Analyt. Chem., 2018, 105, 37-51.
[http://dx.doi.org/10.1016/j.trac.2018.04.012]
[13]
Liang, R.; Yin, T.; Qin, W. A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Anal. Chim. Acta, 2015, 853, 291-296.
[http://dx.doi.org/10.1016/j.aca.2014.10.033] [PMID: 25467471]
[14]
Niu, X.; Mo, Z.; Yang, X.; Sun, M.; Zhao, P.; Li, Z.; Ouyang, M.; Liu, Z.; Gao, H.; Guo, R.; Liu, N. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochim. Acta, 2018, 185(7), 328.
[http://dx.doi.org/10.1007/s00604-018-2859-6] [PMID: 29907886]
[15]
Saha, S.; Roy, A.; Roy, M.N. Mechanistic investigation of inclusion complexes of a sulfa drug with α- and β-cyclodextrins. Ind. Eng. Chem. Res., 2017, 56(41), 11672-11683.
[http://dx.doi.org/10.1021/acs.iecr.7b02619]
[16]
Cramer, J.; Sager, C.P.; Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: A perspective on a common functional group. J. Med. Chem., 2019, 62(20), 8915-8930.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00179] [PMID: 31083946]
[17]
Ahmed, S.; Anwar, N.; Sheraz, M.A.; Ahmad, I. Validation of a stability-indicating spectrometric method for the determination of sulfacetamide sodium in pure form and ophthalmic preparations. J. Pharm. Bioallied Sci., 2017, 9(2), 126-134.
[PMID: 28717336]
[18]
Al-Uzri, W.A.; Fadil, G. Spectrophotometric determination of sulfacetamide sodium in pharmaceutical preparation using 8-hydroxy-7-iodoquinoline-5-sulfonic acid as chromogenic reagent. Asian J. Chem., 2017, 29(4), 782-786.
[http://dx.doi.org/10.14233/ajchem.2017.20301]
[19]
Errayess, S.A.; Lahcen, A.A.; Idrissi, L.; Marcoaldi, C.; Chiavarini, S.; Amine, A. A sensitive method for the determination of sulfonamides in seawater samples by solid phase extraction and UV-visible spectrophotometry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 181, 276-285.
[http://dx.doi.org/10.1016/j.saa.2017.03.061] [PMID: 28388524]
[20]
Darweesh, S.A.; Al-Haidari, I.M.A.; Mohammed, A.K.; Dikran, S.B. Spectrophotometric determinations of sulfacetamide following simple diazotization and coupling with chromotropic acid. Appl. Sci., 2017, 26(3), 281-295.
[21]
Borràs, S. Companyَ, R.; Guiteras, J. Analysis of sulfonamides in animal feeds by liquid chromatography with fluorescence detection. J. Agric. Food Chem., 2011, 59(10), 5240-5247.
[http://dx.doi.org/10.1021/jf2005595] [PMID: 21491951]
[22]
Shaaban, H. Gَrecki, T. Optimization and validation of a fast ultrahigh-pressure liquid chromatographic method for simultaneous determination of selected sulphonamides in water samples using a fully porous sub-2 µm column at elevated temperature. J. Sep. Sci., 2012, 35(2), 216-224.
[http://dx.doi.org/10.1002/jssc.201100754] [PMID: 22162242]
[23]
El-Ragehy, N.A.; Hegazy, M.A. AbdElHamid, G.; Tawfik, S.A. Validated chromatographic methods for the simultaneous determination of sulfacetamide sodium and prednisolone acetate in their ophthalmic suspension. J. Chromatogr. Sci., 2017, 55(10), 1000-1005.
[http://dx.doi.org/10.1093/chromsci/bmx064] [PMID: 28985412]
[24]
Injac, R. Kočevar, N.; Štrukelj, B. Optimized method for determination of amoxicillin, ampicillin, sulfamethoxazole, and sulfacetamide in animal feed by micellar electrokinetic capillary chromatography and comparison with high-performance liquid chromatography. Croat. Chem. Acta, 2009, 82(3), 685-694.
[25]
Gallego, J.M.L.; Pérez Arroyo, J. Determination of prednisolone, naphazoline, and phenylephrine in local pharmaceutical preparations by micellar electrokinetic chromatography. J. Sep. Sci., 2003, 26(9-10), 947-952.
[http://dx.doi.org/10.1002/jssc.200301507]
[26]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[http://dx.doi.org/10.1016/j.talanta.2013.09.061] [PMID: 24274275]
[27]
El-Ragehy, N.A.; Hegazy, M.A. AbdElHamid, G.; Tawfik, S.A. Validated potentiometric method for the determination of sulfacetamide sodium; application to its pharmaceutical formulations and spiked rabbit aqueous humor. Bull. Fac. Pharm. Cairo Univ., 2018, 56(2), 207-212.
[http://dx.doi.org/10.1016/j.bfopcu.2018.08.002]
[28]
Schebeliski, A.H.; Lima, D.; Marchesi, L.F.Q.P.; Calixto, C.M.F.; Pessôa, C.A. Preparation and characterization of a carbon nanotube-based ceramic electrode and its potential application at detecting sulfonamide drugs. J. Appl. Electrochem., 2018, 48(4), 471-485.
[http://dx.doi.org/10.1007/s10800-018-1171-9]
[29]
The United States Pharmacopeia and National Formulary. 2020, NF 38, US Pharmacopeial Convention; Rockville MD, USA, 2020.
[30]
Buck, R.P.; Lindner, E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, 66(12), 2527-2536.
[http://dx.doi.org/10.1351/pac199466122527]
[31]
Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. chem. J., 2000, 72(6), 1127-1133.
[32]
Rezk, M.R.; Michael, A.M.; Lotfy, H.M.; Shehata, M.A. Validation of selective electrochemical method for determination of sumatriptan in combined dosage form. Anal. Bioanal. Electrochem., 2012, 4(6), 553-563.
[33]
Abdel-Haleem, F.M.; Saad, M.; Barhoum, A.; Bechelany, M.; Rizk, M.S. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids. Mater. Sci. Eng. C, 2018, 89, 140-148.
[http://dx.doi.org/10.1016/j.msec.2018.04.001] [PMID: 29752082]
[34]
Rezk, M.R.; Fayed, A.S.; Marzouk, H.M.; Abbas, S.S. Green ion selective electrode potentiometric application for the determination of cinchocaine hydrochloride in presence of its degradation products and betamethasone valerate: A comparative study of liquid and solid inner contact ion-selective electrode membranes. J. Electrochem. Soc., 2017, 164(9), H628-H634.
[http://dx.doi.org/10.1149/2.0921709jes]
[35]
Lotfy, H.M.; Awad, A.M.; Shehata, M.A. Novel ion selective electrode for the determination of pregabalin in pharmaceutical dosage form and plasma. Anal. Bioanal. Electrochem., 2012, 4(5), 507-517.
[36]
Shahgaldian, P.; Pieles, U. Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors, 2006, 6(6), 593-615.
[http://dx.doi.org/10.3390/s6060593]
[37]
Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R. Simal-Gلndara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll., 2009, 23(7), 1631-1640.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[38]
Hassan, S.A.; Nashat, N.W.; Elghobashy, M.R.; Abbas, S.S.; Moustafa, A.A.; Mahmoud, A.M. Novel microfabricated solid-contact potentiometric sensors doped with multiwall carbon-nanotubes for simultaneous determination of bisoprolol and perindopril in spiked human plasma. Microchem. J., 2022, 178, 107323.
[http://dx.doi.org/10.1016/j.microc.2022.107323]
[39]
Moffat, A.C.; Osselton, M.D.; Widdop, B.; Watts, J. Clarke’s analysis of drugs and poisons, 4th ed; Pharmaceutical press: London, UK, 2011, p. 3.
[40]
Ahn, S.J.; Hong, H.K.; Na, Y.M.; Park, S.J.; Ahn, J.; Oh, J.; Chung, J.Y.; Park, K.H.; Woo, S.J. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. J. Vis. Exp., 2016, (113), e53878.
[http://dx.doi.org/10.3791/53878] [PMID: 27500363]
[41]
Mahmoud, A.M.; Saad, M.N.; Elzanfaly, E.S.; Amer, S.M.; Essam, H.M. An electrochemical sensing platform to determine tetrahydrozoline HCl in pure form, pharmaceutical formulation, and rabbit aqueous humor. Anal. Methods, 2020, 12(22), 2903-2913.
[http://dx.doi.org/10.1039/D0AY00882F] [PMID: 32930213]
[42]
Moaaz, E.M.; Mahmoud, A.M.; Fayed, A.S.; Rezk, M.R.; Abdel-Moety, E.M. Determination of tedizolid phosphate using graphene nanocomposite based solid contact ion selective electrode; green profile assessment by eco-scale and GAPI approach. Electroanalysis, 2021, 33(8), 1895-1901.
[http://dx.doi.org/10.1002/elan.202100067]
[43]
Moaaz, E.M.; Abdel-Moety, E.M.; Rezk, M.R.; Fayed, A.S. Eco-friendly chromatographic methods for determination of acemetacin and indomethacin; greenness profile assessment. J. AOAC Int., 2021, 104(6), 1485-1491.
[http://dx.doi.org/10.1093/jaoacint/qsab085] [PMID: 34180980]
[44]
Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. Agree-analytical greenness metric approach and software. Anal. Chem., 2020, 92(14), 10076-10082.
[http://dx.doi.org/10.1021/acs.analchem.0c01887] [PMID: 32538619]
[45]
El Mously, D.A.; Mahmoud, A.M.; Abdel-Raoof, A.M.; Elgazzar, E. Synthesis of prussian blue analogue and its catalytic activity toward reduction of environmentally toxic nitroaromatic pollutants. ACS Omega, 2022, 7(47), 43139-43146.
[http://dx.doi.org/10.1021/acsomega.2c05694] [PMID: 36467928]
[46]
El-Dash, Y.S. Electrochemical synthesis of 5-benzylidenebarbiturate derivatives and their application as colorimetric cyanide probe. ChemElectroChem, 2022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy