Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Cardio-Metabolic Health and HRT in Menopause: Novel Insights in Mitochondrial Biogenesis and RAAS

Author(s): Guilherme Renke*, Elaine Kemen, Priscila Scalabrin, Cleibe Braz, Thomaz Baesso and Marcela Batista Pereira

Volume 19, Issue 4, 2023

Published on: 13 February, 2023

Article ID: e060223213459 Pages: 5

DOI: 10.2174/1573403X19666230206130205

Price: $65

Abstract

Recent evidence shows the cardiometabolic effects of estrogen administration in postmenopausal women. Women have a cardiometabolic advantage during their reproductive years, which is lost at menopause due to declining estradiol (E2). E2, also known as 17-beta-estradiol, has diverse effects in its target tissues, including the cardiovascular (CV) system, through genomic and non-genomic signaling. Metabolic changes characteristic of menopause include a worsening lipid profile, changes in body fat distribution, epicardial and pericardial fat deposition, increased susceptibility to weight gain, and increased blood pressure, resulting in an increased risk of accelerated cardiovascular disease (CVD) development. E2 mediates its cardioprotective actions by increasing mitochondrial biogenesis, angiogenesis, and vasodilation, decreasing reactive oxygen species (ROS) and oxidative stress, and modulating the renin-angiotensin-aldosterone system (RAAS). In this review, we assess whether it is prudent to develop an approach to managing postmenopausal women based on modifying the patient's CV risk that includes human-identical hormone replacement therapy (HRT), modulation of RAAS, and stimulating mitochondrial biogenesis. Further research is needed to assess the safety and benefit of HRT to reduce cardiometabolic risk.

[1]
WHO Global Health Estimates (GHE). 2019. Available from: https://www.who.int/data/global-health-estimates
[2]
Gersh FL, O’Keefe JH, Lavie CJ, Henry BM. The renin-angiotensin-aldosterone system in postmenopausal women: The promise of hormone therapy. Mayo Clin Proc 2021; 96(12): 3130-41.
[http://dx.doi.org/10.1016/j.mayocp.2021.08.009] [PMID: 34736778]
[3]
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 2017; 8(1): 33.
[http://dx.doi.org/10.1186/s13293-017-0152-8] [PMID: 29065927]
[4]
Prabakaran S, Schwartz A, Lundberg G. Cardiovascular risk in menopausal women and our evolving understanding of menopausal hormone therapy: Risks, benefits, and current guidelines for use. Ther Adv Endocrinol Metab 2021; 12: 0420188211013917.
[http://dx.doi.org/10.1177/20420188211013917] [PMID: 34104397] [PMCID: PMC8111523]
[5]
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protective effects of estrogen in cardiovascular disease mediated by oxidative stress. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/5523516] [PMID: 34257804]
[6]
Hashemzadeh M, Romo R, Arreguin JM, Movahed MR. The effects of estrogen and hormone replacement therapy on cardiovascular systems. Future Cardiol 2021; 17(2): 347-53.
[http://dx.doi.org/10.2217/fca-2020-0054] [PMID: 33191784]
[7]
Crescioli C. The role of estrogens and vitamin D in cardiomyocyte protection: A female perspective. Biomolecules 2021; 11(12): 1815.
[http://dx.doi.org/10.3390/biom11121815] [PMID: 34944459]
[8]
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen receptors: Therapeutic perspectives for the treatment of cardiac dysfunction after myocardial infarction. Int J Mol Sci 2021; 22(2): 525.
[http://dx.doi.org/10.3390/ijms22020525] [PMID: 33430254]
[9]
Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 2016; 431: 62-70.
[http://dx.doi.org/10.1016/j.mce.2016.05.004] [PMID: 27164442]
[10]
Klinge CM. Estrogens regulate life and death in mitochondria. J Bioenerg Biomembr 2017; 49(4): 307-24.
[http://dx.doi.org/10.1007/s10863-017-9704-1] [PMID: 28401437]
[11]
Zhou Z, Moore TM, Drew BG, et al. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020; 12(555): eaax8096.
[http://dx.doi.org/10.1126/scitranslmed.aax8096] [PMID: 32759275]
[12]
Mahmoodzadeh S, Dworatzek E. The Role of 17β-estradiol and estrogen receptors in regulation of Ca2+ channels and mitochondrial function in cardiomyocytes. Front Endocrinol 2019; 10: 310.
[http://dx.doi.org/10.3389/fendo.2019.00310] [PMID: 31156557]
[13]
Uddin MS, Rahman MM, Jakaria M, et al. Estrogen signaling in Alzheimer’s disease: Molecular insights and therapeutic targets for Alzheimer’s Dementia. Mol Neurobiol 2020; 57(6): 2654-70.
[http://dx.doi.org/10.1007/s12035-020-01911-8] [PMID: 32297302]
[14]
Rattanasopa C, Phungphong S, Wattanapermpool J, Bupha-Intr T. Significant role of estrogen in maintaining cardiac mitochondrial functions. J Steroid Biochem Mol Biol 2015; 147: 1-9.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.009] [PMID: 25448746]
[15]
Velarde MC. Mitochondrial and sex steroid hormone crosstalk during aging. Longev Healthspan 2014; 3(1): 2.
[http://dx.doi.org/10.1186/2046-2395-3-2] [PMID: 24495597]
[16]
Galmés-Pascual BM, Martínez-Cignoni MR, Morán-Costoya A, et al. 17β-estradiol ameliorates lipotoxicity-induced hepatic mitochondrial oxidative stress and insulin resistance. Free Radic Biol Med 2020; 150: 148-60.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.016] [PMID: 32105829]
[17]
Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 2008; 22(3): 609-22.
[http://dx.doi.org/10.1210/me.2007-0029] [PMID: 18048642]
[18]
Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97(4): 673-83.
[http://dx.doi.org/10.1002/jcb.20743] [PMID: 16329141]
[19]
Carbonel AAF, Simões RS, Girão MJBC, Soares Júnior JM, Baracat EC. Cardiovascular system and estrogen in menopause. Rev Assoc Med Bras 1992; 66(2): 97-8.
[20]
Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther 2012; 135(1): 54-70.
[http://dx.doi.org/10.1016/j.pharmthera.2012.03.007] [PMID: 22484805]
[21]
Yu Z, Yang J, Huang WJ, et al. Follicle stimulating hormone promotes production of renin through its receptor in juxtaglomerular cells of kidney. Diabetol Metab Syndr 2022; 14(1): 65.
[http://dx.doi.org/10.1186/s13098-022-00816-x] [PMID: 35501878]
[22]
Azizian H, Khaksari M, Asadikaram G, Esmailidehaj M, Shahrokhi N. Progesterone eliminates 17β-estradiol-Mediated cardioprotection against diabetic cardiovascular dysfunction in ovariectomized rats. Biomed J 2021; 44(4): 461-70.
[http://dx.doi.org/10.1016/j.bj.2020.03.002] [PMID: 34507919]
[23]
Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349(6): 523-34.
[http://dx.doi.org/10.1056/NEJMoa030808] [PMID: 12904517]
[24]
Langer RD, Hodis HN, Lobo RA, Allison MA. Hormone replacement therapy – where are we now? Climacteric 2021; 24(1): 3-10.
[http://dx.doi.org/10.1080/13697137.2020.1851183] [PMID: 33403881]
[25]
Hodis HN, Mack WJ, Henderson VW, et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 2016; 374(13): 1221-31.
[http://dx.doi.org/10.1056/NEJMoa1505241] [PMID: 27028912]
[26]
Harman SM, Brinton EA, Cedars M, et al. KEEPS: The kronos early estrogen prevention study. Climacteric 2005; 8(1): 3-12.
[http://dx.doi.org/10.1080/13697130500042417] [PMID: 15804727]
[27]
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, estrogen receptors effects on cardiac and skeletal muscle mitochondria. Front Endocrinol 2019; 10: 557.
[http://dx.doi.org/10.3389/fendo.2019.00557] [PMID: 31474941]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy