Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

General Review Article

A Review on Green Synthesis of Biologically Active Compounds

Author(s): Smriti Kushwaha, Jyoti Baranwal, Swastika Singh and Archana Jyoti*

Volume 9, Issue 3, 2022

Published on: 29 December, 2022

Page: [174 - 195] Pages: 22

DOI: 10.2174/2213346110666221213092734

Price: $65

Abstract

In recent decades, green synthesis is increasingly being employed for more environmentally friendly processes and constitutes one central theme of research and development in both academic and industrial chemistry. “Green Chemistry” refers to the design of products and processes that imply the reduction or elimination of substances that are harmful to life or the environment. Due to the benefits of green synthesis, such as reduced waste and expense, not just pharmaceutical firms but also other chemical industries have begun to take steps towards it. Green synthesis techniques include using green solvents, catalysts, and other materials. This review article illustrates the utilization of sustainable methods in the synthesis of biologically active compounds via different green methodologies, such as green solvents, green catalyst, green media, etc. We hope that this chapter will provide a quick overview of the different aspects of green chemistry.

Graphical Abstract

[1]
(a) Sheldon, R.A. The E Factor: fifteen years on. Green Chem., 2007, 9(12), 1273-1283.
[http://dx.doi.org/10.1039/b713736m];
(b) Sheldon, R.A. Green chemistry and resource efficiency: towards a green economy. Green Chem., 2016, 18(11), 3180-3183.
[http://dx.doi.org/10.1039/C6GC90040B]
[2]
Yadav, A.K.; Yadav, L.D.S. Visible-light-mediated difunctionalization of styrenes: an unprecedented approach to 5-aryl-2-imino-1,3-oxathiolanes. Green Chem., 2015, 17(6), 3515-3520.
[http://dx.doi.org/10.1039/C5GC00642B]
[3]
Roschangar, F.; Zhou, Y.; Constable, D.J.C.; Colberg, J.; Dickson, D.P.; Dunn, P.J.; Eastgate, M.D.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; Kopach, M.E.; Leahy, D.K.; Mergelsberg, I.; Scholz, U.; Smith, A.G.; Henry, M.; Mulder, J.; Brandenburg, J.; Dehli, J.R.; Fandrick, D.R.; Fandrick, K.R.; Gnad-Badouin, F.; Zerban, G.; Groll, K.; Anastas, P.T.; Sheldon, R.A.; Senanayake, C.H. Inspiring process innovation via an improved green manufacturing metric: iGAL. Green Chem., 2018, 20(10), 2206-2211.
[http://dx.doi.org/10.1039/C8GC00616D]
[4]
Hassan, A.I.; Saleh, H.M. Principles of green chemistry. In: Green Organic Reactions; , 2021; pp. 15-32.
[5]
Mtibe, A.; Mokhothu, T.H.; John, M.J.; Mokhena, T.C.; Mochane, M.J. Fabrication and characterization of various engineered nanomaterials. In: Handbook of nanomaterials for industrial applications; Elsevier: Amsterdam, 2018; pp. 151-171.
[6]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[7]
Alvim, H.G.O.; da Silva Júnior, E.N.; Neto, B.A.D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, 2014, 4(97), 54282-54299.
[http://dx.doi.org/10.1039/C4RA10651B]
[8]
Li, C.J. Organic reactions in aqueous media with a focus on carbon- carbon bond Huddleston, J. G.; Rogers, R. D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media formations: a decade update. Chem. Rev., 2005, 105(8), 3095-3166.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[9]
Welton; Smith, P.J. Palladium catalyzed reactions in ionic liquids. Adv. Organomet. Chem., 2004, 51, 251-284.
[http://dx.doi.org/10.1016/S0065-3055(03)51006-1]
[10]
(a) Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry—theory and practice. Chem. Soc. Rev., 2010, 39(8), 2869-2878.
[http://dx.doi.org/10.1039/b926439f] [PMID: 20502819];
(b) Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2(6), 1113-1125.
[http://dx.doi.org/10.1039/c2cy00490a]
[11]
Anastas, P.T.; Warner, J.C. Principles of green chemistry. Green chemistry. Theory Pract., 1998, 29.
[12]
Bose, A.K.; Pednekar, S.; Ganguly, S.N.; Chakraborty, G.; Manhas, M.S. A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett., 2004, 45(45), 8351-8353.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.064]
[13]
Song, L.; Zheng, M.; Pang, J.; Sebastian, J.; Wang, W.; Qu, M.; Zhao, J.; Wang, X.; Zhang, T. One-pot synthesis of 2-hydroxymethyl-5-methylpyrazine from renewable 1,3-dihydroxyacetone. Green Chem., 2017, 19(15), 3515-3519.
[http://dx.doi.org/10.1039/C7GC00578D]
[14]
Settle, A.E.; Berstis, L.; Rorrer, N.A.; Roman-Leshkóv, Y.; Beckham, G.T.; Richards, R.M.; Vardon, D.R. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chem., 2017, 19(15), 3468-3492.
[http://dx.doi.org/10.1039/C7GC00992E]
[15]
Horváth, I.T.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107(6), 2169-2173.
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[16]
Tron, G.C.; Minassi, A.; Appendino, G. Pietro Biginelli: the man behind the reaction. Eur. J. Org. Chem., 2011, 2011(28), 5541-5550.
[http://dx.doi.org/10.1002/ejoc.201100661]
[17]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J.; Alvarez-Builla, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7(1), 44-53.
[18]
Ivanković, A.; Dronjic, A.; Bevanda, A.M.; Talic, S. Review of 12 principles of green chemistry in practice. Int. J. Sustain. Green Energy, 2017, 6(3), 39-48.
[http://dx.doi.org/10.11648/j.ijrse.20170603.12]
[19]
Lapkin, A.; Joyce, L.; Crittenden, B. Framework for evaluating the “greenness” of chemical processes: case studies for a novel VOC recovery technology. Environ. Sci. Technol., 2004, 38(21), 5815-5823.
[http://dx.doi.org/10.1021/es035414h] [PMID: 15575305]
[20]
Monteith, E.R.; Mampuys, P.; Summerton, L.; Clark, J.H.; Maes, B.U.W.; McElroy, C.R. Why we might be misusing Process Mass Intensity (PMI) and a methodology to apply it effectively as a discovery level metric. Green Chem., 2020, 22(1), 123-135.
[http://dx.doi.org/10.1039/C9GC01537J]
[21]
Constable, D.J.C.; Curzons, A.D.; Freitas dos Santos, L.M.; Geen, G.R.; Kitteringham, J.; Smith, P.; Hannah, R.E.; McGuire, M.A.; Webb, R.L.; Yu, M.; Hayler, J.D.; Richardson, J.E. Green chemistry measures for process research and development. Green Chem., 2001, 3(1), 7-9.
[http://dx.doi.org/10.1039/b007875l]
[22]
(a) Trost, B.M. The atom economy a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206];
(b) Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[23]
(a) Sheldon, R.A. Organic synthesis: Past, present and future. Chem. Ind., 1992, 23, 903-906.;
(b) Sheldon, R.A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem., 2017, 19(1), 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[24]
(a) Andraos, J. Unification of reaction metrics for green chemistry: Applications to reaction analysis. Org. Process Res. Dev., 2005, 9(2), 149-163.
[http://dx.doi.org/10.1021/op049803n];
(b) Hudson, R.; Leaman, D.; Kawamura, K.E.; Esdale, K.N.; Glaisher, S.; Bishop, A.; Katz, J.L. Exploring green chemistry metrics with interlocking building block molecular models. J. Chem. Educ., 2016, 93(4), 691-694.;
(c) Martinez-Guerra, E.; Gude, V.G. Assessment of sustainability indicators for biodiesel production. Applied Sciences, 2017, 7(9), 869.;
(d) Martinez, J.; Cortes, J.F.; Miranda, R. Green chemistry metrics, a review. Processes, 2022, 10(7), 1274.
[http://dx.doi.org/10.1021/acs.jchemed.5b00696]
[25]
Benison, C.H.; Payne, P.R. Manufacturing mass intensity: 15 years of Process Mass Intensity and development of the metric into plant cleaning and beyond. Curr. Res. Green. Sustain. Chem., 2022, 5, 100229.
[http://dx.doi.org/10.1016/j.crgsc.2021.100229]
[26]
(a) Kumar, S.; Lamba, M.S.; Makrandi, J.K. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions. Green Chem. Lett. Rev., 2008, 1(2), 123-125.
[http://dx.doi.org/10.1080/17518250802325993];
(b) Cvjetko Bubalo, M.; Vidović, S.; Radojčić; Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process., 2018, 109, 52-73.
[http://dx.doi.org/10.1016/j.fbp.2018.03.001];
(c) Mykhailenko, O.; Kovalyov, V.; Goryacha, O.; Ivanauskas, L.; Georgiyants, V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry, 2019, 162, 56-89.
[http://dx.doi.org/10.1016/j.phytochem.2019.02.004] [PMID: 30856530];
(d) Szajdak, L.W. Introduction: biologically active compounds. In: Bioactive compounds in agricultural soils; Springer: Cham, 2016; pp. 1-22.
[27]
(a) Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Dixit, P.; Singh, J.; Singh, J. A practical green approach to diversified spirochromene/spiropyran scaffolds via a glucose–water synergy driven organocatalytic system. New J. Chem., 2018, 42(21), 17279-17290.
[http://dx.doi.org/10.1039/C8NJ03028F];
(b) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47(21), 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844];
(c) Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. Catalyst‐Free, glycerol‐assisted facile approach to imidazole‐fused nitrogen‐bridgehead heterocycles. Chem. Select, 2017, 2(21), 6082-6089.
[http://dx.doi.org/10.1002/slct.201700557];
(d) Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J. Bioorganopromoted green Friedländer synthesis: a versatile new malic acid promoted solvent free approach to multisubstituted quinolines. New J. Chem., 2017, 41(4), 1618-1624.
[http://dx.doi.org/10.1039/C6NJ03907C];
(e) Singh, S.; Saquib, M.; Singh, M.; Tiwari, J.; Tufail, F.; Singh, J.; Singh, J. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J. Chem., 2016, 40(1), 63-67.
[http://dx.doi.org/10.1039/C5NJ01938A];
(f) Singh, M.; Saquib, M.; Singh, S.B.; Singh, S.; Ankit, P.; Fatma, S.; Singh, J. Organocatalysis in aqueous micellar medium: a new protocol for the synthesis of [1,2,4]-triazolyl-thiazolidinones. Tetrahedron Lett., 2014, 55(45), 6175-6179.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.030]
[28]
(a) Tiwari, J.; Singh, S.; Saquib, M.; Tufail, F.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Organocatalytic mediated green approach: A versatile new L -valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans. Synth. Commun., 2018, 48(2), 188-196.
[http://dx.doi.org/10.1080/00397911.2017.1393087];
(b) Singh, S.; Saquib, M.; Singh, S.B.; Singh, M.; Singh, J. Catalyst free, multicomponent-tandem synthesis of spirooxindoleindazolones and spirooxindole-pyrazolines: a glycerol mediated green approach. RSC Advances, 2015, 5(56), 45152-45157.
[http://dx.doi.org/10.1039/C5RA02794B];
(c) Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: An efficient multicomponent‐tandem green synthetic approach to biologically important 2, 4‐disubstituted thiazole derivatives. ChemistrySelect, 2018, 3(41), 11634-11642.
[http://dx.doi.org/10.1002/slct.201802511];
(d) Tiwari, J.; Singh, S.; Jaiswal, D.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. An efficient, convenient and one-pot synthesis of diversified benzochromenes using L-valine as an organocatalyst: A green protocol. Curr. Catal., 2018, 7(3), 202-208.
[http://dx.doi.org/10.2174/2211544707666180924102729];
(e) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H]
[29]
(a) Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chem., 2020, 22(2), 302-315.
[http://dx.doi.org/10.1039/C9GC03414E];
(b) Avila-Ortiz, C.G.; Juaristi, E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules, 2020, 25(16), 3579.
[http://dx.doi.org/10.3390/molecules25163579] [PMID: 32781678];
(c) Chen, J.; Guan, Z.; He, Y.H. Photoenzymatic approaches in organic synthesis. Asian J. Org. Chem., 2019, 8(10), 1775-1790.
[http://dx.doi.org/10.1002/ajoc.201900427];
(d) Vaccaro, L. Green shades in organic synthesis. Eur. J. Org. Chem., 2020, 2020(28), 4273-4283.
[http://dx.doi.org/10.1002/ejoc.202000131];
(e) Liu, J.; Lu, L.; Wood, D.; Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci., 2020, 6(8), 1317-1340.
[http://dx.doi.org/10.1021/acscentsci.0c00549] [PMID: 32875074];
(f) Costa e Silva, R.; Oliveira da Silva, L.; de Andrade Bartolomeu, A.; Brocksom, T.J.; de Oliveira, K.T. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J. Org. Chem., 2020, 16(1), 917-955.
[http://dx.doi.org/10.3762/bjoc.16.83] [PMID: 32461773];
(g) Singh, A.; Singh, K.; Singh, S. Green solvents for sustainable organic synthesis: An Overview; Green Chemistry for the Development of Eco-Friendly Products, 2022, pp. 104-128.
[http://dx.doi.org/10.4018/978-1-7998-9851-1.ch005]
[30]
(a) Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem., 2014, 7(5), 553-596.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013];
(b) Ligor, M.; Ratiu, I.A.; Kiełbasa, A.; Al-Suod, H.; Buszewski, B. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis, 2018, 39(15), 1860-1874.
[http://dx.doi.org/10.1002/elps.201700431] [PMID: 29603754];
(c) Liu, D.; Ding, L.; Sun, J.; Boussetta, N.; Vorobiev, E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. Innov. Food Sci. Emerg. Technol., 2016, 36, 181-192.
[http://dx.doi.org/10.1016/j.ifset.2016.06.017]
[31]
(a) Dash, B.; Karim, S. Pyrazoline heterocyclic: A Review. Int. J. Pharm. Sci. Res., 2021, 12(5), 2570-2588.;
(b) Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: pyrazoline – a review. RSC Advances, 2017, 7(74), 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[32]
(a) Tiwari, J.; Singh, S.; Jaiswal, D.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Supramolecular catalysis: An efficient and sustainable multicomponent approach to the synthesis of novel hexahydro-4H-indazol-4-one derivatives. Curr. Catal., 2021, 9(2), 92-101.
[http://dx.doi.org/10.2174/2211544709999200614165508];
(b) Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem., 2020, 205, 112666.
[http://dx.doi.org/10.1016/j.ejmech.2020.112666] [PMID: 32795767]
[33]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[34]
Shamsuzzaman, S.; Siddiqui, T.; Alam, M.G.; Dar, A.M. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives. J. Saudi Chem. Soc., 2015, 19(4), 387-391.
[http://dx.doi.org/10.1016/j.jscs.2012.04.009]
[35]
El-Moghazy, S.M.; Barsoum, F.F.; Abdel-Rahman, H.M.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res., 2012, 21(8), 1722-1733.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[36]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[37]
Sharma, A.K.; Tiwari, J.; Jaiswal, D.; Singh, S.; Singh, J.; Singh, J. Organophotoredox catalysis: visible-light-induced multicomponent synthesis of chromeno [4, 3-b] chromene and hexahydro-1H-xanthene derivatives. Curr. Organocatal., 2019, 6(3), 222-230.
[http://dx.doi.org/10.2174/2213337206666190306154327]
[38]
Patil, K.T.; Walekar, L.S.; Undare, S.S.; Kolekar, G.B.; Deshmukh, M.B.; Choudhari, P.B.; Anbhule, P.V. An Efficient one-pot synthesis of tetrahydro-chromeno [4,3-b] chromene-6,8-dione and tetrahydro-pyrano [4,3-b] chromene-1,9-Dione derivatives under solvent-free conditions. Indian J. Chem., 2016, 55B, 1151-1159.
[39]
Xu, Z.Q.; Hollingshead, M.G.; Borgel, S.; Elder, C.; Khilevich, A.; Flavin, M.T. In vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model. Bioorg. Med. Chem. Lett., 1999, 9(2), 133-138.
[http://dx.doi.org/10.1016/S0960-894X(98)00713-6] [PMID: 10021914]
[40]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[41]
Kaur, R.; Naaz, F.; Sharma, S.; Mehndiratta, S.; Gupta, M.K.; Bedi, P.M.S.; Nepali, K. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med. Chem. Res., 2015, 24(8), 3334-3349.
[http://dx.doi.org/10.1007/s00044-015-1382-0]
[42]
Khoobi, M.; Alipour, M.; Sakhteman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.038] [PMID: 23988409]
[43]
Emami, S.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N. Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch. Pharm., 2008, 341(1), 42-48.
[http://dx.doi.org/10.1002/ardp.200700090] [PMID: 18072241]
[44]
(a) Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. visible- light mediated synthesis of quinoxalines. Chem. Select, 2019, 4, 8713-8718.;
(b) Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25(6), 1789-1796.;
(c) Maleki, A.; Kari, T.; Aghaei, M. Fe3O4@SiO2@ TiO2-OSO3H: An efficient hierarchical nanocatalyst for the organic quinazolines syntheses. J. Porous Mater., 2017, 24(6), 1481-1496.;
(d) Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M.S. Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric hantzsch reaction. Mater. Sci. Eng., 2020, 109, 110502.
[45]
Bharagava, D.; Garg, G. Recent trends in synthesis of quinoxaline and its derivatives. J. Pharm. Res., 2012, 5(1), 130-134.
[46]
Potey, L.C.; Kosalge, S.B.; Hadke, M.A. Synthesis and antimicrobial activity of quinoxaline sulfonamide. Int. J. Adv. Sci. Technol, 2013, 2, 126-134.
[47]
Kadam, H.K.; Khan, S.; Kunkalkar, R.A.; Tilve, S.G. Graphite catalyzed green synthesis of quinoxalines. Tetrahedron Lett., 2013, 54(8), 1003-1007.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.041]
[48]
Shibinskaya, M.O.; Karpenko, A.S.; Lyakhov, S.A.; Andronati, S.A.; Zholobak, N.M.; Spivak, N.Y.; Samochina, N.A.; Shafran, L.M.; Zubritsky, M.J.; Bondarev, M.L. Synthesis and biological activity of 1, 2, 3, 4-tetrahydroindolo [2, 3-b] quinoxaline derivatives. J. Pharm. Sci. Pharmacol., 2015, 2(2), 140-147.
[http://dx.doi.org/10.1166/jpsp.2015.1048]
[49]
Broughton, H.B.; Watson, I.A. Selection of heterocycles for drug design. J. Mol. Graph. Model., 2004, 23(1), 51-58.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016] [PMID: 15331053]
[50]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm., 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[51]
Abd El-Salam, N.M.; Mostafa, M.S.; Ahmed, G.A.; Alothman, O.Y.; Alothman, O.Y. Synthesis and antimicrobial activities of some new heterocyclic compounds based on 6-chloropyridazine-3 (2H)-thione. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/890617]
[52]
Azab, M.; Youssef, M.; El-Bordany, E. Synthesis and antibacterial evaluation of novel heterocyclic compounds containing a sulfonamido moiety. Molecules, 2013, 18(1), 832-844.
[http://dx.doi.org/10.3390/molecules18010832] [PMID: 23344196]
[53]
El-Sawy, E.R.; Ebaid, M.S.; Abo-Salem, H.M.; Al-Sehemi, A.G.; Mandour, A.H. Synthesis, anti-inflammatory, analgesic and anticonvulsant activities of some new 4,6-dimethoxy-5-(heterocycles)benzofuran starting from naturally occurring visnagin. Arab. J. Chem., 2014, 7(6), 914-923.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.041]
[54]
Cao, X.; Sun, Z.; Cao, Y.; Wang, R.; Cai, T.; Chu, W.; Hu, W.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel fused heterocycles-linked triazoles with good activity and water solubility. J. Med. Chem., 2014, 57(9), 3687-3706.
[http://dx.doi.org/10.1021/jm4016284] [PMID: 24564525]
[55]
Chen, Y.; Yu, K.; Tan, N.Y.; Qiu, R.H.; Liu, W.; Luo, N.L.; Tong, L.; Au, C.T.; Luo, Z.Q.; Yin, S.F. Synthesis, characterization and anti-proliferative activity of heterocyclic hypervalent organoantimony compounds. Eur. J. Med. Chem., 2014, 79, 391-398.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.026] [PMID: 24747750]
[56]
El-Sawy, E.R.; Mandour, A.H.; El-Hallouty, S.M.; Shaker, K.H.; Abo-Salem, H.M. Synthesis, antimicrobial and anticancer activities of some new N-methylsulphonyl and N-benzenesulphonyl-3-indolyl heterocycles. Arab. J. Chem., 2013, 6(1), 67-78.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.003]
[57]
Mabkhot, Y.N.; Barakat, A.; Al-Majid, A.M.; Alshahrani, S.; Yousuf, S.; Choudhary, M.I. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom. Chem. Cent. J., 2013, 7(1), 112.
[http://dx.doi.org/10.1186/1752-153X-7-112] [PMID: 23829861]
[58]
(a) Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979];
(b) Gediya, L.K.; Njar, V.C.O. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431];
(c) Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980];
(d) Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J. Med. Chem., 2016, 113(113), 145-166.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.030] [PMID: 26922234]
[59]
Havrylyuk, D.; Zimenkovsky, B.; Lesyk, R. Synthesis, biological activity of thiazolidinones bearing indoline moiety and isatin based hybrids. Mini Rev. Org. Chem., 2014, 12(1), 66-87.
[http://dx.doi.org/10.2174/1570193X11666141028231910]
[60]
Singh, H.; Singh, J.V.; Bhagat, K.; Gulati, H.K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem., 2019, 27(16), 3477-3510.
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[61]
Lesyk, R.; Zimenkovsky, B. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem., 2004, 8(16), 1547-1577.
[http://dx.doi.org/10.2174/1385272043369773]
[62]
Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Lesyk, R. Synthesis of new 4-azolidinones with 3,5-diaryl-4,5-dihydropyrazole moiety and evaluation of their antitumor activity in vitro. Pharmacia, 2010, 23, 173-177.
[63]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[64]
Gilbert, A.M.; Bursavich, M.G.; Lombardi, S.; Georgiadis, K.E.; Reifenberg, E.; Flannery, C.R.; Morris, E.A. 5-((1H-Pyrazol-4-yl)methylene)-2-thioxothiazolidin-4-one inhibitors of ADAMTS-5. Bioorg. Med. Chem. Lett., 2007, 17(5), 1189-1192.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.020] [PMID: 17210252]
[65]
Atobe, M.; Maekawara, N.; Ishiguro, N.; Sogame, S.; Suenaga, Y.; Kawanishi, M.; Suzuki, H.; Jinno, N.; Tanaka, E.; Miyoshi, S. A series of thiazole derivatives bearing thiazolidin-4-one as non-competitive ADAMTS-5 (aggrecanase-2) inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2106-2110.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.121] [PMID: 23453070]
[66]
Hisar, B.C. Green methods for synthesis of various heterocycles: Sustainable approach. Int. J. Chem. Stud., 2017, 5(6), 479-485.
[67]
Savitskaya, T.; Kimlenka, I.; Lu, Y.; Hrynshpan, D.; Sarkisov, V.; Yu, J.; Wang, L. Green Chemistry: Process technology and sustainable development; Springer, 2021.
[http://dx.doi.org/10.1007/978-981-16-3746-9]
[68]
Malhotra, S.P.K.; Alghuthaymi, M.A. Biomolecule-assisted biogenic synthesis of metallic nanoparticles; Agri-Waste and Microbes for Production of Sustainable Nanomaterials; , 2022, pp. 139-163.;
(b) Khan, T.; Jalal, H.; Karam, K.; Khan, M.A. Biodegradable gum: A green source for silver nanoparticles. Green synthesis of silver nanomaterials; Elsevier sci, 2022, pp. 189-217.
[http://dx.doi.org/10.1016/B978-0-12-824508-8.00026-5];
(c) Kumari, S.C.; Dhand, V.; Padma, P.N. Green synthesis of metallic nanoparticles: a review. Nanomaterials, 2021, 259-281.
[69]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[70]
(a) Radwan, M.A.A.; Abbas, E.M.H. Synthesis of some pyridine, thiopyrimidine, and isoxazoline derivatives based on the pyrrole moiety. Monatsh. Chem., 2009, 140(2), 229-233.
[http://dx.doi.org/10.1007/s00706-008-0061-y];
(b) Safaei-Ghomi, J.; Ghasemzadeh, A. Synthesis of some 3,5-diarylisoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc., 2012, 77(6), 733-739.
[http://dx.doi.org/10.2298/JSC110831001S];
(c) Gautam, N.; Chourasia, O.P. Synthesis, characterization, antimicrobial, insecticidal and anthelmintic screening of some new s-triazine derivatives of pyrazoline, pyrimidine, isoxazoline and isothiazoline moiety. Indian J. Chem., 2012, 51(9), 1400-1410.;
(d) Nazari, S.; Shabanian, M. Novel heterocyclic semi-aromatic polyamides: synthesis and characterization. Des. Monomers Polym., 2014, 17(1), 33-39.
[http://dx.doi.org/10.1080/15685551.2013.771316]
[71]
(a) Chandra Sekhar, K.V.G.; Sasank, T.V.N.V.; Nagesh, H.N.; Suresh, N.; Naidu, K.M.; Suresh, A. Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate. Chin. Chem. Lett., 2013, 24(12), 1045-1048.
[http://dx.doi.org/10.1016/j.cclet.2013.07.022];
(b) Karthikeyan, P.; Kumar, S.S.; Jagadeesh, R.V.; Bhagat, P.R. Solvent-free synthesis of substituted-2-pyrazolines using imidazolium based ionic liquid as a solvent and catalyst: A green route approach. Asian J. Chem., 2012, 24, 1351-1353.;
(c) Siddiqui, Z.N.; Mohammed Musthafa, T.N.; Ahmad, A.; Khan, A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2860-2865.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.080] [PMID: 21507638];
(d) Sharma, S.; Sharma, A. Solvent-free synthesis of new-1-acetyl-3-(4- fluoronaphthyl)-5-substituted aryl pyrazolines as spermicides. J. Indian Chem. Soc., 2008, 85, 750-753.
[72]
(a) Calvino, V.; Picallo, M.; López-Peinado, A.J.; Martín-Aranda, R.M.; Durán-Valle, C. J. Ultrasound accelerated Claisen–Schmidt condensation: A green route to chalcones. Appl. Surf. Sci., 2006, 252(17), 6071-6074.
[http://dx.doi.org/10.1016/j.apsusc.2005.11.006];
(b) Adib, M.; Mahdavi, M.; Noghani, M.A.; Bijanzadeh, H.R. Reaction between isocyanides and chalcones: An efficient solvent-free synthesis of 5-hydroxy- 3, 5-diaryl-1, 5dihydro-2H-pyrrol-2-ones. Tetrahedron Lett., 2007, 48, 8056-8059.;
(c) Rao, J.N.; Sujith, K.V.; Kalluraya, B. An efficient microwave assisted synthesis of some pyrazolines and their biological activity. Indian J. Heterocycl. Chem., 2009, 18, 365-368.;
(d) Shafakat Ali, N.; Dar, B.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: a mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[73]
(a) Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.; de Ocáriz, C. Pharmacological properties of indazole derivatives: recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831];
(b) Gothwal, P.; Malhotra, G.; Srivastava, Y.K. Microwave assisted synthesisand antimicrobial activities of some 2-amino-4-aryl-3-cyano-6-(4′-hydroxyphenyl)-pyridines. Eur. J. Chem., 2011, 8, 119-122.;
(c) Kidwai, M.; Thakur, R.; Rastogi, S. Ecofriendly synthesis of substituted pyridine and pyrido[2,3-d]pyrimidine derivatives. Russ. Chem. Bull., 2005, 54(6), 1523-1526.
[http://dx.doi.org/10.1007/s11172-005-0440-z];
(d) Wani, R.R.; Chaudhari, H.K.; Takale, B.S. Solvent free synthesis of n-substituted pyrroles catalyzed by calcium nitrate. J. Heterocycl. Chem., 2019, 56(4), 1337-1340.
[http://dx.doi.org/10.1002/jhet.3507];
Anastas, P.; Heine, L.G.; Williamson, T.C. Green chemical synthesis and process; Oxford University Press, 2000.
[http://dx.doi.org/10.1021/bk-2000-0767]
[74]
(a) Lancaster, M. Green chemistry: an introductory text. Royal society of chemistry, 2020.;
Matlack, A.S. Introduction to Green Chemistry; CRC Press: New York, 2021. ;
(c) Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198];
Lancaster, M. Handbook of Green Chemistry and Technology; New York, 2002.
[75]
(a) Toda, F. Solid state organic reactions. Synlett, 1993, 1993(5), 303-312.
[http://dx.doi.org/10.1055/s-1993-22441];
(b) Obst, M.; König, B. Organic synthesis without conventional solvents. Eur. J. Org. Chem., 2018, 2018(31), 4213-4232.
[http://dx.doi.org/10.1002/ejoc.201800556];
(c) Tavakolian, M.; Vahdati-Khajeh, S.; Asgari, S. Recent advances in solvent-free asymmetric catalysis. ChemCatChem, 2019, 11(13), 2943-2977.
[http://dx.doi.org/10.1002/cctc.201900354]
[76]
Gui, Q.W.; He, X.; Wang, W.; Zhou, H.; Dong, Y.; Wang, N.; Tang, J.X.; Cao, Z.; He, W.M. The clean preparation of multisubstituted pyrroles under metal- and solvent-free conditions. Green Chem., 2020, 22(1), 118-122.
[http://dx.doi.org/10.1039/C9GC02657F]
[77]
Nguyen, H.T.; Thuy Nguyen, L.H.; Le Hoang Doan, T.; Tran, P.H. A mild and efficient method for the synthesis of pyrroles using MIL-53(Al) as a catalyst under solvent-free sonication. RSC Advances, 2019, 9(16), 9093-9098.
[http://dx.doi.org/10.1039/C9RA01071H] [PMID: 35517685]
[78]
Gu, Z.Z.; Guo, F.C.; Zhang, P.; Qin, Y.J.; Guo, Z.X. Solvent-free mechanochemical synthesis of diacylfuroxans. Tetrahedron Lett., 2019, 60(26), 1687-1690.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.024]
[79]
Lambat, T.L.; Abdala, A.A.; Mahmood, S.; Ledade, P.V.; Chaudhary, R.G.; Banerjee, S. Sulfamic acid promoted one-pot multicomponent reaction: a facile synthesis of 4-oxo-tetrahydroindoles under ball milling conditions. RSC Advances, 2019, 9(68), 39735-39742.
[http://dx.doi.org/10.1039/C9RA08478A] [PMID: 35541403]
[80]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
[http://dx.doi.org/10.1039/b617536h]
[81]
(a) Claude, S. Research of new outlets for glycerol‐recent developments in France; Lipid/Fett, 1999.
[http://dx.doi.org/10.1002/(SICI)1521-4133(199903)101:3<101::AID-LIPI101>3.0.CO;2-4];
(b) Díaz-Álvarez, A.E.; Francos, J.; Croche, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem., 2013, 1(1), 51-65.
[http://dx.doi.org/10.2174/221334610101131218094907]
[82]
Menges, N. The role of green solvents and catalysts at the future of drug design and of synthesis. Green Chem., 2017, 23(5), 254-257.
[83]
Safaei, H.R.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem., 2012, 14(6), 1696-1704.
[http://dx.doi.org/10.1039/c2gc35135h]
[84]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol–ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Advances, 2016, 6(9), 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[85]
Moussaoui, S.; Obinu, M.C.; Daniel, N.; Reibaud, M.; Blanchard, V.; Imperato, A. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson’s disease. Exp. Neurol., 2000, 166(2), 235-245.
[http://dx.doi.org/10.1006/exnr.2000.7516] [PMID: 11085889]
[86]
Trippier, P.C.; Jansen Labby, K.; Hawker, D.D.; Mataka, J.J.; Silverman, R.B. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J. Med. Chem., 2013, 56(8), 3121-3147.
[http://dx.doi.org/10.1021/jm3015926] [PMID: 23458846]
[87]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I.R. Catalyst‐free synthesis for pyrazole‐fused isocoumarins in recyclable and biodegradable reaction medium. ChemistrySelect, 2017, 2(27), 8320-8325.
[http://dx.doi.org/10.1002/slct.201700976]
[88]
Nazeef, M.; Saquib, M.; Tiwari, S.K.; Yadav, V.; Ansari, S.; Sagir, H.; Hussain, M.K.; Siddiqui, I.R. Catalyst free, multicomponent green approach to benzo [a] chromeno [2, 3‐c] phenazines using glycerol as a recyclable and biodegradable promoting medium. ChemistrySelect, 2020, 5(45), 14447-14454.
[http://dx.doi.org/10.1002/slct.202003732]
[89]
Tiwari, S.K.; Shivhare, K.N.; Patel, M.K.; Yadav, V.; Nazeef, M.; Siddiqui, I.R. A metal free, hantzsch synthesis for privileged scaffold 1, 4-dihydropyridines: A glycerol promoted sustainable protocol. Polycycl. Aromat. Compd., 2020, 42(4), 1-13.
[90]
Warner, J.C.; Cannon, A.S.; Dye, K.M. Green chemistry. Environ. Impact Assess. Rev., 2004, 24(7-8), 775-799.
[http://dx.doi.org/10.1016/j.eiar.2004.06.006]
[91]
Clary, J.J.; Feron, V.J.; van Velthuijsen, J.A. Safety assessment of lactate esters. Regul. Toxicol. Pharmacol., 1998, 27(2), 88-97.
[http://dx.doi.org/10.1006/rtph.1997.1175] [PMID: 9671563]
[92]
Chen, M.N.; Di, J.Q.; Li, J.M.; Mo, L.P.; Zhang, Z.H. Eosin Y-catalyzed one-pot synthesis of spiro[4H-pyran-oxindole] under visible light irradiation. Tetrahedron, 2020, 76(14), 131059.
[http://dx.doi.org/10.1016/j.tet.2020.131059]
[93]
Wan, J.P.; Cao, S.; Hu, C.; Wen, C. Iodine‐catalyzed, ethyl‐lactate‐mediated synthesis of 1, 4‐benzothiazines via metal‐free cascade enaminone transamination and C- H sulfenylation. Asian J. Org. Chem., 2018, 7(2), 328-331.
[http://dx.doi.org/10.1002/ajoc.201700680]
[94]
Yang, L.; Wan, J.P. Ethyl lactate-involved three-component dehydrogenative reactions: biomass feedstock in diversity-oriented quinoline synthesis. Green Chem., 2020, 22(10), 3074-3078.
[http://dx.doi.org/10.1039/D0GC00738B]
[95]
Rego, Y.F.; da Silva, C.M.; da Silva, D.L.; da Silva, J.G.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Fernandes, S.A.; de Fátima, Â. Phthalazine-triones: Calix[4]arene-assisted synthesis using green solvents and their anticancer activities against human cancer cells. Arab. J. Chem., 2019, 12(8), 4065-4073.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.007]
[96]
Gu, Y.; Jérôme, F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753]
[97]
Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J.J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C.E.; Caruso, F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed., 2014, 53(22), 5546-5551.
[http://dx.doi.org/10.1002/anie.201311136] [PMID: 24700671]
[98]
(a) Qi, L.; Mui, Y.F.; Lo, S.W.; Lui, M.Y.; Akien, G.R.; Horváth, I.T. Catalytic conversion of fructose, glucose, and sucrose to 5-(Hydroxymethyl)furfural and levulinic and formic acids in γ -valerolactone as a green solvent. ACS Catal., 2014, 4(5), 1470-1477.
[http://dx.doi.org/10.1021/cs401160y];
(b) Gürbüz, E.I.; Gallo, J.M.R.; Alonso, D.M.; Wettstein, S.G.; Lim, W.Y.; Dumesic, J.A. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chem. Int. Ed., 2013, 52(4), 1270-1274.
[http://dx.doi.org/10.1002/anie.201207334] [PMID: 23212945]
[99]
(a) Mellmer, M.A.; Martin Alonso, D.; Luterbacher, J.S.; Gallo, J.M.R.; Dumesic, J.A. Effects of γ -valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem., 2014, 16(11), 4659-4662.
[http://dx.doi.org/10.1039/C4GC01768D];
(b) Song, J.; Zhou, B.; Zhou, H.; Wu, L.; Meng, Q.; Liu, Z.; Han, B. Porous zirconium–phytic acid hybrid: a highly efficient catalyst for Meerwein–Ponndorf–Verley reductions. Angew. Chem. Int. Ed., 2015, 54(32), 9399-9403.
[http://dx.doi.org/10.1002/anie.201504001] [PMID: 26177726]
[100]
Morais, A.R.C.; Matuchaki, M.D.D.J.; Andreaus, J.; Bogel-Lukasik, R. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst. Green Chem., 2016, 18(10), 2985-2994.
[http://dx.doi.org/10.1039/C6GC00043F]
[101]
Luo, W.; Sankar, M.; Beale, A.M.; He, Q.; Kiely, C.J.; Bruijnincx, P.C.A.; Weckhuysen, B.M. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat. Commun., 2015, 6(1), 6540.
[http://dx.doi.org/10.1038/ncomms7540] [PMID: 25779385]
[102]
Ortiz-Cervantes, C.; Flores-Alamo, M.; García, J.J. Hydrogenation of biomass-derived levulinic acid into γ-valerolactone catalyzed by palladium complexes. ACS Catal., 2015, 5(3), 1424-1431.
[http://dx.doi.org/10.1021/cs5020095]
[103]
Alonso, D.M.; Wettstein, S.G.; Mellmer, M.A.; Gurbuz, E.I.; Dumesic, J.A. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ. Sci., 2013, 6(1), 76-80.
[http://dx.doi.org/10.1039/C2EE23617F]
[104]
Luterbacher, J.S.; Rand, J.M.; Alonso, D.M.; Han, J.; Youngquist, J.T.; Maravelias, C.T.; Pfleger, B.F.; Dumesic, J.A. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science, 2014, 343(6168), 277-280.
[http://dx.doi.org/10.1126/science.1246748] [PMID: 24436415]
[105]
(a) Ismalaj, E.; Strappaveccia, G.; Ballerini, E.; Elisei, F.; Piermatti, O.; Gelman, D.; Vaccaro, L. γ-Valerolactone as a renewable dipolar aprotic solvent deriving from biomass degradation for the hiyama reaction. ACS Sustain. Chem. Eng., 2014, 2(10), 2461-2464.
[http://dx.doi.org/10.1021/sc5004727];
(b) Strappaveccia, G.; Ismalaj, E.; Petrucci, C.; Lanari, D.; Marrocchi, A.; Drees, M.; Facchetti, A.; Vaccaro, L. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chem., 2015, 17(1), 365-372.
[http://dx.doi.org/10.1039/C4GC01677G]
[106]
Duan, Z.Q.; Hu, F. Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem., 2012, 14(6), 1581-1583.
[http://dx.doi.org/10.1039/c2gc35092k]
[107]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem., 2013, 15(3), 584-595.
[http://dx.doi.org/10.1039/c3gc37065h]
[108]
Zhang, Z. Synthesis of γ-valerolactone from carbohydrates and its applications. ChemSusChem, 2016, 9(2), 156-171.
[http://dx.doi.org/10.1002/cssc.201501089] [PMID: 26733161]
[109]
Rasina, D.; Kahler-Quesada, A.; Ziarelli, S.; Warratz, S.; Cao, H.; Santoro, S.; Ackermann, L.; Vaccaro, L. Heterogeneous palladium-catalysed Catellani reaction in biomass-derived γ-valerolactone. Green Chem., 2016, 18(18), 5025-5030.
[http://dx.doi.org/10.1039/C6GC01393G]
[110]
Strappaveccia, G.; Luciani, L.; Bartollini, E.; Marrocchi, A.; Pizzo, F.; Vaccaro, L. γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chem., 2015, 17(2), 1071-1076.
[http://dx.doi.org/10.1039/C4GC01728E]
[111]
Song, J.; Zhou, B.; Liu, H.; Xie, C.; Meng, Q.; Zhang, Z.; Han, B. Biomass-derived γ-valerolactone as an efficient solvent and catalyst for the transformation of CO2 to formamides. Green Chem., 2016, 18(14), 3956-3961.
[http://dx.doi.org/10.1039/C6GC01455K]
[112]
Fodor, D.; Kégl, T.; Tukacs, J.M.; Horváth, A.K.; Mika, L.T. Homogeneous Pd-Catalyzed Heck Coupling in γ-Valerolactone as a Green Reaction Medium: A Catalytic, Kinetic, and Computational Study. ACS Sustain. Chem. Eng., 2020, 8(26), 9926-9936.
[http://dx.doi.org/10.1021/acssuschemeng.0c03523]
[113]
(a) Tundo, P.; Anastas, P.; Black, D.S.; Breen, J.; Collins, T.J.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem., 2000, 72(7), 1207-1228.
[http://dx.doi.org/10.1351/pac200072071207];
(b) Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542];
(c) Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic reaction in water. Part 4. New synthesis of vicinal diamines using zinc powder-promoted carbon–carbon bond formation. Green Chem., 2000, 2(3), 117-119.
[http://dx.doi.org/10.1039/b001533o]
[114]
(a) Mannich, C.; Krösche, W. On a condensation product from formaldehyde, ammonia and antipyrine. Arch. Pharm. (Weinheim), 1912, 250(1), 647-667. [in German].
[http://dx.doi.org/10.1002/ardp.19122500151];
(b) Koszytkowska-Stawińska, M.; Buchowicz, W. Multicomponent reactions in nucleoside chemistry. Beilstein J. Org. Chem., 2014, 10, 1706-1732.
[http://dx.doi.org/10.3762/bjoc.10.179] [PMID: 25161730]
[115]
Grieco, P.A. Organic Synthesis in water; Blackie Academic and Professional: London, 1998.
[http://dx.doi.org/10.1007/978-94-011-4950-1];
(b) Hirai, Y.; Uozumi, Y. Clean synthesis of triarylamines: Buchwald–Hartwig reaction in water with amphiphilic resin-supported palladium complexes. Chem. Commun. (Camb.), 2010, 46(7), 1103-1105.
[http://dx.doi.org/10.1039/B918424D] [PMID: 20126727];
(c) Savant, M.M.; Pansuriya, A.M.; Bhuva, C.V.; Kapuriya, N.; Patel, A.S.; Audichya, V.B.; Pipaliya, P.V.; Naliapara, Y.T. Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals. J. Comb. Chem., 2010, 12(1), 176-180.
[http://dx.doi.org/10.1021/cc900148q] [PMID: 19950975];
(d) Carril, M.; SanMartin, R.; Tellitu, I.; Domínguez, E. On-water chemistry: copper-catalyzed straightforward synthesis of benzo[b]furan derivatives in neat water. Org. Lett., 2006, 8(7), 1467-1470.
[http://dx.doi.org/10.1021/ol060274c] [PMID: 16562918];
(e) Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 163656431]
[116]
Zhao, L.Q.; Zhou, B.; Li, Y.Q. An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition. Heteroatom Chem., 2011, 22(5), 673-677.
[http://dx.doi.org/10.1002/hc.20723]
[117]
Potewar, T.M.; Ingale, S.A.; Srinivasan, K.V. Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature. Tetrahedron, 2008, 64(22), 5019-5022.
[http://dx.doi.org/10.1016/j.tet.2008.03.082]
[118]
Dilauro, G.; Francesca Quivelli, A.; Vitale, P.; Capriati, V.; Perna, F.M. Water and Sodium Chloride: Essential ingredients for robust and fast Pd-catalysed cross-coupling reactions between organolithium reagents and (Hetero)aryl halides. Angew. Chem. Int. Ed., 2019, 58(6), 1799-1802.
[http://dx.doi.org/10.1002/anie.201812537] [PMID: 30516878]
[119]
Zhang, Y.; Luo, L.; Ge, J.; Yan, S.Q.; Peng, Y.X.; Liu, Y.R.; Liu, J.X.; Liu, C.; Ma, T.; Luo, H.Q. “On Water” direct organocatalytic cyanoarylmethylation of isatins for the diastereoselective synthesis of 3-Hydroxy-3-cyanomethyl oxindoles. J. Org. Chem., 2019, 84(7), 4000-4008.
[http://dx.doi.org/10.1021/acs.joc.8b03194] [PMID: 30864430]
[120]
Li, Q.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of propylene carbonate from urea and propylene glycol In: studies in surface science and catalysis; Elsevier, 2004; 153, pp. 573-576.
[121]
Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem., 2016, 18(13), 3879-3890.
[http://dx.doi.org/10.1039/C6GC00611F]
[122]
(a) Forero, J.S.B.; Munoz, J.A.H.; Junior, J.J.; da Silva, F.M. Propylene carbonate in organic synthesis: Exploring its potential as a green solvent. Curr. Org. Synth., 2016, 13, 834-846.
[http://dx.doi.org/10.2174/1570179413999160211094705];
(b) Schäffner, B.; Schäffner, F.; Verevkin, S.P.; Börner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev., 2010, 110(8), 4554-4581.
[http://dx.doi.org/10.1021/cr900393d] [PMID: 20345182]
[123]
Parker, H.L.; Sherwood, J.; Hunt, A.J.; Clark, J.H. Cyclic carbonates as green alternative solvents for the heck reaction. ACS Sustain. Chem.& Eng., 2014, 2(7), 1739-1742.
[http://dx.doi.org/10.1021/sc5002287]
[124]
(a) Elgharbawy, A.A.; Riyadi, F.A.; Alam, M.Z.; Moniruzzaman, M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq., 2018, 251, 150-166.
[http://dx.doi.org/10.1016/j.molliq.2017.12.050];
(b) Suveges, N.S.; Rodriguez, A.A.; Diederichs, C.C.; de Souza, S.P.; Leão, R.A.C.; Miranda, L.S.M.; Horta, B.A.C.; Pedraza, S.F.; de Carvalho, O.V.; Pais, K.C.; Terra, J.H.C.; de Souza, R.O.M.A. Continuous‐flow synthesis of (R)‐propylene carbonate: An important intermediate in the synthesis of tenofovir. Eur. J. Org. Chem., 2018, 2018(23), 2931-2938.
[http://dx.doi.org/10.1002/ejoc.201800345]
[125]
Gautam, P.; Gupta, R.; Bhanage, B.M. Pd/C in propylene carbonate: a sustainable catalyst–solvent system for the carbonylative Suzuki–Miyaura cross‐coupling using N‐formylsaccharin as a CO surrogate. Eur. J. Org. Chem., 2017, 2017(24), 3431-3437.
[http://dx.doi.org/10.1002/ejoc.201700543]
[126]
Czompa, A.; Pásztor, B.L.; Sahar, J.A.; Mucsi, Z.; Bogdán, D.; Ludányi, K.; Varga, Z.; Mándity, I.M. Scope and limitation of propylene carbonate as a sustainable solvent in the Suzuki–Miyaura reaction. RSC Advances, 2019, 9(65), 37818-37824.
[http://dx.doi.org/10.1039/C9RA07044C] [PMID: 35541805]
[127]
North, M.; Pizzato, F.; Villuendas, P. Organocatalytic, asymmetric aldol reactions with a sustainable catalyst in a green solvent. ChemSusChem, 2009, 2(9), 862-865.
[http://dx.doi.org/10.1002/cssc.200900144] [PMID: 19728344]
[128]
Azevedo, P.; Behenck, L.; Forero, J.; Munoz, J.; Cavalho, E.; Junior, J. Silva, A sustainable approach to then Bis-Indoles synthesis using propylene carbonate as an eco-friendly solvent. Curr. Org. Synth., 2014, 11(4), 605-611.
[http://dx.doi.org/10.2174/1570179411666140115225758]
[129]
Sun, Q.; Zhang, X.Q.; Wang, Y.; Lu, A.H. Recent progress on core-shell nanocatalysts. Chin. J. Catal., 2015, 36(5), 683-691.
[http://dx.doi.org/10.1016/S1872-2067(14)60298-9]
[130]
Huheey, J. E. Incorporating environmental issues into the inorganic curriculum, designing chemistry for the environment. ACS symposium series New York, 1996, 626, 251.
[131]
Chhangani, M.K. Catalytic green synthesis of chemicals for sustainable future. Int. Res. J. Manag. Sci. Technol, 2016, 7(3), 2250-1959.
[132]
Maltsev, O.V.; Chizhov, A.O.; Zlotin, S.G. Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts: deactivation pathways of Jørgensen-Hayashi-type catalysts in asymmetric Michael reactions. Chemistry, 2011, 17(22), 6109-6117.
[http://dx.doi.org/10.1002/chem.201100388] [PMID: 21557357]
[133]
Pair, E.; Cadart, T.; Levacher, V.; Brière, J.F. Meldrum’s acid: a useful platform in asymmetric organocatalysis. ChemCatChem, 2016, 8(11), 1882-1890.
[http://dx.doi.org/10.1002/cctc.201600247]
[134]
He, X.L.; Zhao, H.R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.C. Asymmetric barton–zard reaction to access 3-pyrrole-containing axially chiral skeletons. ACS Catal., 2019, 9(5), 4374-4381.
[http://dx.doi.org/10.1021/acscatal.9b00767]
[135]
Zhou, L.; An, X.D.; Yang, S.; Li, X.J.; Shao, C.L.; Liu, Q.; Xiao, J. Organocatalytic cascade β-functionalization/aromatization of pyrrolidines via double hydride transfer. Org. Lett., 2020, 22(3), 776-780.
[http://dx.doi.org/10.1021/acs.orglett.9b03918] [PMID: 31965804]
[136]
(a) Wieckowski, A.; Neurock, M. Contrast and synergy between electrocatalysis and heterogeneous catalysis. Adv. Phys. Chem., 2011, 2011, 1-18.
[http://dx.doi.org/10.1155/2011/907129];
(b) Watzele, S. A.; Garlyyev, B.; Gubanova, E.; Bandarenka, A. S. Structure-reactivity relations in electrocatalysis. Reference Module in Chemistry. Molecular Sci. Chem. Eng., 2021.
[137]
Novaes, L.F.T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J.M.; Lin, S. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev., 2021, 50(14), 7941-8002.
[http://dx.doi.org/10.1039/D1CS00223F] [PMID: 34060564]
[138]
(a) Liu, J.; Wang, C.; Song, Y.; Zhang, S.; Zhang, Z.; He, L.; Du, M. Two-dimensional triazine-based porous framework as a novel metal-free bifunctional electrocatalyst for zinc-air batty. J. Colloid Interface Sci., 2021, 591, 253-263.
[http://dx.doi.org/10.1016/j.jcis.2021.02.007] [PMID: 33611047];
(b) Cao, S.; Shang, W.; Li, G.L.; Lu, Z.F.; Wang, X.; Yan, Y.; Hao, C.; Wang, S.; Sun, G. Defect-rich and metal-free N, S co-doped 3D interconnected mesoporous carbon material as an advanced electrocatalyst towards oxygen reduction reaction. Carbon, 2021, 184, 127-135.
[http://dx.doi.org/10.1016/j.carbon.2021.08.003];
(c) Yu, H.; Zhang, H.; Zhang, Z. Study on the simple surface treatments of N, P dual‐doped carbon as metal‐free catalyst for metal‐air batteries. ChemCatChem, 2021, 13(1), 397-406.
[http://dx.doi.org/10.1002/cctc.202001319];
(d) Deng, J.; Wang, L.; Jin, F.; Hu, Y.H. Metal-free surface-microporous graphene electrocatalysts from CO2 for rechargeable all-solid-state zinc–air batteries. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(16), 10081-10087.
[http://dx.doi.org/10.1039/D1TA01001H];
(e) Wang, Y.; Xu, N.; He, R.; Peng, L.; Cai, D.; Qiao, J. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl. Catal. B, 2021, 285, 119811.
[http://dx.doi.org/10.1016/j.apcatb.2020.119811];
(f) Fan, H.; Wang, T.; Gong, H.; Jiang, C.; Sun, Z.; Zhao, M.; Song, L.; He, J. Heteroatom sulfur-induced defect engineering in carbon nanotubes: Enhanced electrocatalytic activity of oxygen reduction reaction. Carbon, 2021, 180, 31-40.
[http://dx.doi.org/10.1016/j.carbon.2021.04.072];
(g) Chen, L.; Chen, Y.; Xu, C.; Wang, W.; Fu, W.; Hu, W.; Zhou, M.; He, B.; Chen, Q.; Hou, Z.; Xu, W. Etching engineering on controllable synthesis of etched N-doped hierarchical porous carbon toward efficient oxygen reduction reaction in zinc–air batteries. Mater. Today Energy, 2021, 20, 100670.
[http://dx.doi.org/10.1016/j.mtener.2021.100670]
[139]
(a) Zhang, L.; Gu, T.; Lu, K.; Zhou, L.; Li, D.S.; Wang, R. Engineering synergistic edge‐N dipole in metal‐free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater., 2021, 31(42), 2103187.
[http://dx.doi.org/10.1002/adfm.202103187];
(b) Zan, Y.; Zhang, Z.; Zhu, B.; Dou, M.; Wang, F. Ultrathin two-dimensional phosphorus and nitrogen Co-doped carbon nanosheet as efficient oxygen reduction electrocatalyst. Carbon, 2021, 174, 404-412.
[http://dx.doi.org/10.1016/j.carbon.2020.12.058];
(c) Long, Y.; Ye, F.; Shi, L.; Lin, X.; Paul, R.; Liu, D.; Hu, C. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon, 2021, 179, 365-376.
[http://dx.doi.org/10.1016/j.carbon.2021.04.039]
[140]
(a) Nguyen, A.T.N.; Shim, J.H. All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction. RSC Advances, 2021, 11(21), 12520-12530.
[http://dx.doi.org/10.1039/D1RA01197A] [PMID: 35423825];
(b) Wang, X.; Raghupathy, R.K.M.; Querebillo, C.J.; Liao, Z.; Li, D.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B.; Zschech, E.; Weidinger, I.M.; Kühne, T.D.; Mirhosseini, H.; Yu, M.; Feng, X. Interfacial covalent bonds regulated electron‐deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater., 2021, 33(20), 2008752.
[http://dx.doi.org/10.1002/adma.202008752] [PMID: 33939200]
[141]
(a) Zhao, S.; Ban, L.; Zhang, J.; Yi, W.; Sun, W.; Zhu, Z. Cobalt and nitrogen co-doping of porous carbon nanosphere as highly effective catalysts for oxygen reduction reaction and Zn-air battery. Chem. Eng. J., 2021, 409, 128171.
[http://dx.doi.org/10.1016/j.cej.2020.128171];
(b) Lu, T.; Hu, X.; He, J.; Li, R.; Gao, J.; Lv, Q.; Yang, Z.; Cui, S.; Huang, C. Aqueous/solid state Zn-air batteries based on N doped graphdiyne as efficient metal-free bifunctional catalyst. Nano Energy, 2021, 85, 106024.
[http://dx.doi.org/10.1016/j.nanoen.2021.106024];
(c) Duan, Z.; Han, G.; Huo, H.; Lin, Z.; Ge, L.; Du, C.; Gao, Y.; Yin, G. Monovacancy coupled pyridinic N site enables surging oxygen reduction activity of metal-free CN x catalyst. ACS Sustain. Chem. & Eng., 2021, 9(3), 1264-1271.
[http://dx.doi.org/10.1021/acssuschemeng.0c07490]
[142]
Yu, Q.; Wang, J.; Li, H.; Li, R.; Zeng, S.; Li, R.; Yao, Q.; Chen, H.; Qu, K.; Zheng, Y. Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chem. Eng. J., 2022, 429, 132102.
[http://dx.doi.org/10.1016/j.cej.2021.132102]
[143]
Megarity, C.F.; Siritanaratkul, B.; Heath, R.S.; Wan, L.; Morello, G.; FitzPatrick, S.R.; Booth, R.L.; Sills, A.J.; Robertson, A.W.; Warner, J.H.; Turner, N.J.; Armstrong, F.A. Electrocatalytic volleyball: rapid nanoconfined nicotinamide cycling for organic synthesis in electrode pores. Angew. Chem. Int. Ed., 2019, 58(15), 4948-4952.
[http://dx.doi.org/10.1002/anie.201814370] [PMID: 30633837]
[144]
Holade, Y.; Servat, K.; Tingry, S.; Napporn, T.W.; Remita, H.; Cornu, D.; Kokoh, K.B. Advances in electrocatalysis for energy conversion and synthesis of organic molecules. ChemPhysChem, 2017, 18(19), 2573-2605.
[http://dx.doi.org/10.1002/cphc.201700447] [PMID: 28732139]
[145]
Zhou, L.; Lokman Hossain, M.; Xiao, T. Synthesis of N‐containing heterocyclic compounds using visible‐light photoredox catalysis. Chem. Rec., 2016, 16(1), 319-334.
[http://dx.doi.org/10.1002/tcr.201500228] [PMID: 26751828]
[146]
Shivhare, K.N.; Jaiswal, M.K.; Srivastava, A.; Tiwari, S.K.; Siddiqui, I.R. Visible-light-activated C–C and C–N bond formation in the synthesis of imidazo[1,2- a]pyridines and imidazo[2,1- b]thiazoles under catalyst and solvent-free conditions. New J. Chem., 2018, 42(20), 16591-16601.
[http://dx.doi.org/10.1039/C8NJ03339K]
[147]
Yadav, N.; Sagir, H.; Ansari, M.D.; Siddiqui, I.R. Visible-light-mediated synthesis of 4 H-benzo [1, 4] thiazin-2-amines and 3, 4-dihydroquinoxalin-2-amines: An efficient and metal free route to C–S, C–N bond formation. Catal. Lett., 2018, 148(6), 1676-1685.
[http://dx.doi.org/10.1007/s10562-018-2388-2]
[148]
Jaiswal, D.; Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A visible light-initiated, one-pot, multi-component synthesis of 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives under solvent- and catalyst-free conditions. Res. Chem. Intermed., 2018, 44(1), 231-246.
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[149]
Sahoo, M.K.; Balaraman, E. Room temperature catalytic dehydrogenation of cyclic amines with the liberation of H2 using water as a solvent. Green Chem., 2019, 21(8), 2119-2128.
[http://dx.doi.org/10.1039/C9GC00201D]
[150]
Zhang, Y.; Chen, W.; Jia, X.; Wang, L.; Li, P. A visible-light-induced oxidative cyclization of N -propargylanilines with sulfinic acids to 3-sulfonated quinoline derivatives without external photocatalysts. Chem. Commun. (Camb.), 2019, 55(19), 2785-2788.
[http://dx.doi.org/10.1039/C8CC10235J] [PMID: 30758355]
[151]
Li, J.; Yang, X.E.; Wang, S.L.; Zhang, L.L.; Zhou, X.Z.; Wang, S.Y.; Ji, S.J. Visible-light-promoted cross-coupling reactions of 4-alkyl-1, 4-dihydropyridines with thiosulfonate or selenium sulfonate: a unified approach to sulfides, selenides, and sulfoxides. Org. Lett., 2020, 22(12), 4908-4913.
[http://dx.doi.org/10.1021/acs.orglett.0c01776] [PMID: 32519870]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy