Abstract
In recent decades, green synthesis is increasingly being employed for more environmentally friendly processes and constitutes one central theme of research and development in both academic and industrial chemistry. “Green Chemistry” refers to the design of products and processes that imply the reduction or elimination of substances that are harmful to life or the environment. Due to the benefits of green synthesis, such as reduced waste and expense, not just pharmaceutical firms but also other chemical industries have begun to take steps towards it. Green synthesis techniques include using green solvents, catalysts, and other materials. This review article illustrates the utilization of sustainable methods in the synthesis of biologically active compounds via different green methodologies, such as green solvents, green catalyst, green media, etc. We hope that this chapter will provide a quick overview of the different aspects of green chemistry.
Graphical Abstract
[http://dx.doi.org/10.1039/b713736m];
(b) Sheldon, R.A. Green chemistry and resource efficiency: towards a green economy. Green Chem., 2016, 18(11), 3180-3183.
[http://dx.doi.org/10.1039/C6GC90040B]
[http://dx.doi.org/10.1039/C5GC00642B]
[http://dx.doi.org/10.1039/C8GC00616D]
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[http://dx.doi.org/10.1039/C4RA10651B]
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[http://dx.doi.org/10.1016/S0065-3055(03)51006-1]
[http://dx.doi.org/10.1039/b926439f] [PMID: 20502819];
(b) Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2(6), 1113-1125.
[http://dx.doi.org/10.1039/c2cy00490a]
[http://dx.doi.org/10.1016/j.tetlet.2004.09.064]
[http://dx.doi.org/10.1039/C7GC00578D]
[http://dx.doi.org/10.1039/C7GC00992E]
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[http://dx.doi.org/10.1002/ejoc.201100661]
[http://dx.doi.org/10.11648/j.ijrse.20170603.12]
[http://dx.doi.org/10.1021/es035414h] [PMID: 15575305]
[http://dx.doi.org/10.1039/C9GC01537J]
[http://dx.doi.org/10.1039/b007875l]
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206];
(b) Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
(b) Sheldon, R.A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem., 2017, 19(1), 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[http://dx.doi.org/10.1021/op049803n];
(b) Hudson, R.; Leaman, D.; Kawamura, K.E.; Esdale, K.N.; Glaisher, S.; Bishop, A.; Katz, J.L. Exploring green chemistry metrics with interlocking building block molecular models. J. Chem. Educ., 2016, 93(4), 691-694.;
(c) Martinez-Guerra, E.; Gude, V.G. Assessment of sustainability indicators for biodiesel production. Applied Sciences, 2017, 7(9), 869.;
(d) Martinez, J.; Cortes, J.F.; Miranda, R. Green chemistry metrics, a review. Processes, 2022, 10(7), 1274.
[http://dx.doi.org/10.1021/acs.jchemed.5b00696]
[http://dx.doi.org/10.1016/j.crgsc.2021.100229]
[http://dx.doi.org/10.1080/17518250802325993];
(b) Cvjetko Bubalo, M.; Vidović, S.; Radojčić; Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process., 2018, 109, 52-73.
[http://dx.doi.org/10.1016/j.fbp.2018.03.001];
(c) Mykhailenko, O.; Kovalyov, V.; Goryacha, O.; Ivanauskas, L.; Georgiyants, V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry, 2019, 162, 56-89.
[http://dx.doi.org/10.1016/j.phytochem.2019.02.004] [PMID: 30856530];
(d) Szajdak, L.W. Introduction: biologically active compounds. In: Bioactive compounds in agricultural soils; Springer: Cham, 2016; pp. 1-22.
[http://dx.doi.org/10.1039/C8NJ03028F];
(b) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47(21), 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844];
(c) Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. Catalyst‐Free, glycerol‐assisted facile approach to imidazole‐fused nitrogen‐bridgehead heterocycles. Chem. Select, 2017, 2(21), 6082-6089.
[http://dx.doi.org/10.1002/slct.201700557];
(d) Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J. Bioorganopromoted green Friedländer synthesis: a versatile new malic acid promoted solvent free approach to multisubstituted quinolines. New J. Chem., 2017, 41(4), 1618-1624.
[http://dx.doi.org/10.1039/C6NJ03907C];
(e) Singh, S.; Saquib, M.; Singh, M.; Tiwari, J.; Tufail, F.; Singh, J.; Singh, J. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J. Chem., 2016, 40(1), 63-67.
[http://dx.doi.org/10.1039/C5NJ01938A];
(f) Singh, M.; Saquib, M.; Singh, S.B.; Singh, S.; Ankit, P.; Fatma, S.; Singh, J. Organocatalysis in aqueous micellar medium: a new protocol for the synthesis of [1,2,4]-triazolyl-thiazolidinones. Tetrahedron Lett., 2014, 55(45), 6175-6179.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.030]
[http://dx.doi.org/10.1080/00397911.2017.1393087];
(b) Singh, S.; Saquib, M.; Singh, S.B.; Singh, M.; Singh, J. Catalyst free, multicomponent-tandem synthesis of spirooxindoleindazolones and spirooxindole-pyrazolines: a glycerol mediated green approach. RSC Advances, 2015, 5(56), 45152-45157.
[http://dx.doi.org/10.1039/C5RA02794B];
(c) Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: An efficient multicomponent‐tandem green synthetic approach to biologically important 2, 4‐disubstituted thiazole derivatives. ChemistrySelect, 2018, 3(41), 11634-11642.
[http://dx.doi.org/10.1002/slct.201802511];
(d) Tiwari, J.; Singh, S.; Jaiswal, D.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. An efficient, convenient and one-pot synthesis of diversified benzochromenes using L-valine as an organocatalyst: A green protocol. Curr. Catal., 2018, 7(3), 202-208.
[http://dx.doi.org/10.2174/2211544707666180924102729];
(e) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H]
[http://dx.doi.org/10.1039/C9GC03414E];
(b) Avila-Ortiz, C.G.; Juaristi, E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules, 2020, 25(16), 3579.
[http://dx.doi.org/10.3390/molecules25163579] [PMID: 32781678];
(c) Chen, J.; Guan, Z.; He, Y.H. Photoenzymatic approaches in organic synthesis. Asian J. Org. Chem., 2019, 8(10), 1775-1790.
[http://dx.doi.org/10.1002/ajoc.201900427];
(d) Vaccaro, L. Green shades in organic synthesis. Eur. J. Org. Chem., 2020, 2020(28), 4273-4283.
[http://dx.doi.org/10.1002/ejoc.202000131];
(e) Liu, J.; Lu, L.; Wood, D.; Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci., 2020, 6(8), 1317-1340.
[http://dx.doi.org/10.1021/acscentsci.0c00549] [PMID: 32875074];
(f) Costa e Silva, R.; Oliveira da Silva, L.; de Andrade Bartolomeu, A.; Brocksom, T.J.; de Oliveira, K.T. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J. Org. Chem., 2020, 16(1), 917-955.
[http://dx.doi.org/10.3762/bjoc.16.83] [PMID: 32461773];
(g) Singh, A.; Singh, K.; Singh, S. Green solvents for sustainable organic synthesis: An Overview; Green Chemistry for the Development of Eco-Friendly Products, 2022, pp. 104-128.
[http://dx.doi.org/10.4018/978-1-7998-9851-1.ch005]
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013];
(b) Ligor, M.; Ratiu, I.A.; Kiełbasa, A.; Al-Suod, H.; Buszewski, B. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis, 2018, 39(15), 1860-1874.
[http://dx.doi.org/10.1002/elps.201700431] [PMID: 29603754];
(c) Liu, D.; Ding, L.; Sun, J.; Boussetta, N.; Vorobiev, E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. Innov. Food Sci. Emerg. Technol., 2016, 36, 181-192.
[http://dx.doi.org/10.1016/j.ifset.2016.06.017]
(b) Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: pyrazoline – a review. RSC Advances, 2017, 7(74), 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[http://dx.doi.org/10.2174/2211544709999200614165508];
(b) Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem., 2020, 205, 112666.
[http://dx.doi.org/10.1016/j.ejmech.2020.112666] [PMID: 32795767]
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[http://dx.doi.org/10.1016/j.jscs.2012.04.009]
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[http://dx.doi.org/10.1039/C6NJ03181A]
[http://dx.doi.org/10.2174/2213337206666190306154327]
[http://dx.doi.org/10.1016/S0960-894X(98)00713-6] [PMID: 10021914]
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[http://dx.doi.org/10.1007/s00044-015-1382-0]
[http://dx.doi.org/10.1016/j.ejmech.2013.07.038] [PMID: 23988409]
[http://dx.doi.org/10.1002/ardp.200700090] [PMID: 18072241]
(b) Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25(6), 1789-1796.;
(c) Maleki, A.; Kari, T.; Aghaei, M. Fe3O4@SiO2@ TiO2-OSO3H: An efficient hierarchical nanocatalyst for the organic quinazolines syntheses. J. Porous Mater., 2017, 24(6), 1481-1496.;
(d) Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M.S. Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric hantzsch reaction. Mater. Sci. Eng., 2020, 109, 110502.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.041]
[http://dx.doi.org/10.1166/jpsp.2015.1048]
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016] [PMID: 15331053]
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[http://dx.doi.org/10.1155/2013/890617]
[http://dx.doi.org/10.3390/molecules18010832] [PMID: 23344196]
[http://dx.doi.org/10.1016/j.arabjc.2012.12.041]
[http://dx.doi.org/10.1021/jm4016284] [PMID: 24564525]
[http://dx.doi.org/10.1016/j.ejmech.2014.04.026] [PMID: 24747750]
[http://dx.doi.org/10.1016/j.arabjc.2012.04.003]
[http://dx.doi.org/10.1186/1752-153X-7-112] [PMID: 23829861]
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979];
(b) Gediya, L.K.; Njar, V.C.O. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431];
(c) Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980];
(d) Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J. Med. Chem., 2016, 113(113), 145-166.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.030] [PMID: 26922234]
[http://dx.doi.org/10.2174/1570193X11666141028231910]
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[http://dx.doi.org/10.2174/1385272043369773]
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[http://dx.doi.org/10.1016/j.bmcl.2006.12.020] [PMID: 17210252]
[http://dx.doi.org/10.1016/j.bmcl.2013.01.121] [PMID: 23453070]
[http://dx.doi.org/10.1007/978-981-16-3746-9]
(b) Khan, T.; Jalal, H.; Karam, K.; Khan, M.A. Biodegradable gum: A green source for silver nanoparticles. Green synthesis of silver nanomaterials; Elsevier sci, 2022, pp. 189-217.
[http://dx.doi.org/10.1016/B978-0-12-824508-8.00026-5];
(c) Kumari, S.C.; Dhand, V.; Padma, P.N. Green synthesis of metallic nanoparticles: a review. Nanomaterials, 2021, 259-281.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[http://dx.doi.org/10.1007/s00706-008-0061-y];
(b) Safaei-Ghomi, J.; Ghasemzadeh, A. Synthesis of some 3,5-diarylisoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc., 2012, 77(6), 733-739.
[http://dx.doi.org/10.2298/JSC110831001S];
(c) Gautam, N.; Chourasia, O.P. Synthesis, characterization, antimicrobial, insecticidal and anthelmintic screening of some new s-triazine derivatives of pyrazoline, pyrimidine, isoxazoline and isothiazoline moiety. Indian J. Chem., 2012, 51(9), 1400-1410.;
(d) Nazari, S.; Shabanian, M. Novel heterocyclic semi-aromatic polyamides: synthesis and characterization. Des. Monomers Polym., 2014, 17(1), 33-39.
[http://dx.doi.org/10.1080/15685551.2013.771316]
[http://dx.doi.org/10.1016/j.cclet.2013.07.022];
(b) Karthikeyan, P.; Kumar, S.S.; Jagadeesh, R.V.; Bhagat, P.R. Solvent-free synthesis of substituted-2-pyrazolines using imidazolium based ionic liquid as a solvent and catalyst: A green route approach. Asian J. Chem., 2012, 24, 1351-1353.;
(c) Siddiqui, Z.N.; Mohammed Musthafa, T.N.; Ahmad, A.; Khan, A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2860-2865.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.080] [PMID: 21507638];
(d) Sharma, S.; Sharma, A. Solvent-free synthesis of new-1-acetyl-3-(4- fluoronaphthyl)-5-substituted aryl pyrazolines as spermicides. J. Indian Chem. Soc., 2008, 85, 750-753.
[http://dx.doi.org/10.1016/j.apsusc.2005.11.006];
(b) Adib, M.; Mahdavi, M.; Noghani, M.A.; Bijanzadeh, H.R. Reaction between isocyanides and chalcones: An efficient solvent-free synthesis of 5-hydroxy- 3, 5-diaryl-1, 5dihydro-2H-pyrrol-2-ones. Tetrahedron Lett., 2007, 48, 8056-8059.;
(c) Rao, J.N.; Sujith, K.V.; Kalluraya, B. An efficient microwave assisted synthesis of some pyrazolines and their biological activity. Indian J. Heterocycl. Chem., 2009, 18, 365-368.;
(d) Shafakat Ali, N.; Dar, B.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: a mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831];
(b) Gothwal, P.; Malhotra, G.; Srivastava, Y.K. Microwave assisted synthesisand antimicrobial activities of some 2-amino-4-aryl-3-cyano-6-(4′-hydroxyphenyl)-pyridines. Eur. J. Chem., 2011, 8, 119-122.;
(c) Kidwai, M.; Thakur, R.; Rastogi, S. Ecofriendly synthesis of substituted pyridine and pyrido[2,3-d]pyrimidine derivatives. Russ. Chem. Bull., 2005, 54(6), 1523-1526.
[http://dx.doi.org/10.1007/s11172-005-0440-z];
(d) Wani, R.R.; Chaudhari, H.K.; Takale, B.S. Solvent free synthesis of n-substituted pyrroles catalyzed by calcium nitrate. J. Heterocycl. Chem., 2019, 56(4), 1337-1340.
[http://dx.doi.org/10.1002/jhet.3507];
Anastas, P.; Heine, L.G.; Williamson, T.C. Green chemical synthesis and process; Oxford University Press, 2000.
[http://dx.doi.org/10.1021/bk-2000-0767]
Matlack, A.S. Introduction to Green Chemistry; CRC Press: New York, 2021. ;
(c) Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198];
Lancaster, M. Handbook of Green Chemistry and Technology; New York, 2002.
[http://dx.doi.org/10.1055/s-1993-22441];
(b) Obst, M.; König, B. Organic synthesis without conventional solvents. Eur. J. Org. Chem., 2018, 2018(31), 4213-4232.
[http://dx.doi.org/10.1002/ejoc.201800556];
(c) Tavakolian, M.; Vahdati-Khajeh, S.; Asgari, S. Recent advances in solvent-free asymmetric catalysis. ChemCatChem, 2019, 11(13), 2943-2977.
[http://dx.doi.org/10.1002/cctc.201900354]
[http://dx.doi.org/10.1039/C9GC02657F]
[http://dx.doi.org/10.1039/C9RA01071H] [PMID: 35517685]
[http://dx.doi.org/10.1016/j.tetlet.2019.05.024]
[http://dx.doi.org/10.1039/C9RA08478A] [PMID: 35541403]
[http://dx.doi.org/10.1039/b617536h]
[http://dx.doi.org/10.1002/(SICI)1521-4133(199903)101:3<101::AID-LIPI101>3.0.CO;2-4];
(b) Díaz-Álvarez, A.E.; Francos, J.; Croche, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem., 2013, 1(1), 51-65.
[http://dx.doi.org/10.2174/221334610101131218094907]
[http://dx.doi.org/10.1039/c2gc35135h]
[http://dx.doi.org/10.1039/C5RA26797H]
[http://dx.doi.org/10.1006/exnr.2000.7516] [PMID: 11085889]
[http://dx.doi.org/10.1021/jm3015926] [PMID: 23458846]
[http://dx.doi.org/10.1002/slct.201700976]
[http://dx.doi.org/10.1002/slct.202003732]
[http://dx.doi.org/10.1016/j.eiar.2004.06.006]
[http://dx.doi.org/10.1006/rtph.1997.1175] [PMID: 9671563]
[http://dx.doi.org/10.1016/j.tet.2020.131059]
[http://dx.doi.org/10.1002/ajoc.201700680]
[http://dx.doi.org/10.1039/D0GC00738B]
[http://dx.doi.org/10.1016/j.arabjc.2016.04.007]
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753]
[http://dx.doi.org/10.1002/anie.201311136] [PMID: 24700671]
[http://dx.doi.org/10.1021/cs401160y];
(b) Gürbüz, E.I.; Gallo, J.M.R.; Alonso, D.M.; Wettstein, S.G.; Lim, W.Y.; Dumesic, J.A. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chem. Int. Ed., 2013, 52(4), 1270-1274.
[http://dx.doi.org/10.1002/anie.201207334] [PMID: 23212945]
[http://dx.doi.org/10.1039/C4GC01768D];
(b) Song, J.; Zhou, B.; Zhou, H.; Wu, L.; Meng, Q.; Liu, Z.; Han, B. Porous zirconium–phytic acid hybrid: a highly efficient catalyst for Meerwein–Ponndorf–Verley reductions. Angew. Chem. Int. Ed., 2015, 54(32), 9399-9403.
[http://dx.doi.org/10.1002/anie.201504001] [PMID: 26177726]
[http://dx.doi.org/10.1039/C6GC00043F]
[http://dx.doi.org/10.1038/ncomms7540] [PMID: 25779385]
[http://dx.doi.org/10.1021/cs5020095]
[http://dx.doi.org/10.1039/C2EE23617F]
[http://dx.doi.org/10.1126/science.1246748] [PMID: 24436415]
[http://dx.doi.org/10.1021/sc5004727];
(b) Strappaveccia, G.; Ismalaj, E.; Petrucci, C.; Lanari, D.; Marrocchi, A.; Drees, M.; Facchetti, A.; Vaccaro, L. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chem., 2015, 17(1), 365-372.
[http://dx.doi.org/10.1039/C4GC01677G]
[http://dx.doi.org/10.1039/c2gc35092k]
[http://dx.doi.org/10.1039/c3gc37065h]
[http://dx.doi.org/10.1002/cssc.201501089] [PMID: 26733161]
[http://dx.doi.org/10.1039/C6GC01393G]
[http://dx.doi.org/10.1039/C4GC01728E]
[http://dx.doi.org/10.1039/C6GC01455K]
[http://dx.doi.org/10.1021/acssuschemeng.0c03523]
[http://dx.doi.org/10.1351/pac200072071207];
(b) Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542];
(c) Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic reaction in water. Part 4. New synthesis of vicinal diamines using zinc powder-promoted carbon–carbon bond formation. Green Chem., 2000, 2(3), 117-119.
[http://dx.doi.org/10.1039/b001533o]
[http://dx.doi.org/10.1002/ardp.19122500151];
(b) Koszytkowska-Stawińska, M.; Buchowicz, W. Multicomponent reactions in nucleoside chemistry. Beilstein J. Org. Chem., 2014, 10, 1706-1732.
[http://dx.doi.org/10.3762/bjoc.10.179] [PMID: 25161730]
[http://dx.doi.org/10.1007/978-94-011-4950-1];
(b) Hirai, Y.; Uozumi, Y. Clean synthesis of triarylamines: Buchwald–Hartwig reaction in water with amphiphilic resin-supported palladium complexes. Chem. Commun. (Camb.), 2010, 46(7), 1103-1105.
[http://dx.doi.org/10.1039/B918424D] [PMID: 20126727];
(c) Savant, M.M.; Pansuriya, A.M.; Bhuva, C.V.; Kapuriya, N.; Patel, A.S.; Audichya, V.B.; Pipaliya, P.V.; Naliapara, Y.T. Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals. J. Comb. Chem., 2010, 12(1), 176-180.
[http://dx.doi.org/10.1021/cc900148q] [PMID: 19950975];
(d) Carril, M.; SanMartin, R.; Tellitu, I.; Domínguez, E. On-water chemistry: copper-catalyzed straightforward synthesis of benzo[b]furan derivatives in neat water. Org. Lett., 2006, 8(7), 1467-1470.
[http://dx.doi.org/10.1021/ol060274c] [PMID: 16562918];
(e) Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 163656431]
[http://dx.doi.org/10.1002/hc.20723]
[http://dx.doi.org/10.1016/j.tet.2008.03.082]
[http://dx.doi.org/10.1002/anie.201812537] [PMID: 30516878]
[http://dx.doi.org/10.1021/acs.joc.8b03194] [PMID: 30864430]
[http://dx.doi.org/10.1039/C6GC00611F]
[http://dx.doi.org/10.2174/1570179413999160211094705];
(b) Schäffner, B.; Schäffner, F.; Verevkin, S.P.; Börner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev., 2010, 110(8), 4554-4581.
[http://dx.doi.org/10.1021/cr900393d] [PMID: 20345182]
[http://dx.doi.org/10.1021/sc5002287]
[http://dx.doi.org/10.1016/j.molliq.2017.12.050];
(b) Suveges, N.S.; Rodriguez, A.A.; Diederichs, C.C.; de Souza, S.P.; Leão, R.A.C.; Miranda, L.S.M.; Horta, B.A.C.; Pedraza, S.F.; de Carvalho, O.V.; Pais, K.C.; Terra, J.H.C.; de Souza, R.O.M.A. Continuous‐flow synthesis of (R)‐propylene carbonate: An important intermediate in the synthesis of tenofovir. Eur. J. Org. Chem., 2018, 2018(23), 2931-2938.
[http://dx.doi.org/10.1002/ejoc.201800345]
[http://dx.doi.org/10.1002/ejoc.201700543]
[http://dx.doi.org/10.1039/C9RA07044C] [PMID: 35541805]
[http://dx.doi.org/10.1002/cssc.200900144] [PMID: 19728344]
[http://dx.doi.org/10.2174/1570179411666140115225758]
[http://dx.doi.org/10.1016/S1872-2067(14)60298-9]
[http://dx.doi.org/10.1002/chem.201100388] [PMID: 21557357]
[http://dx.doi.org/10.1002/cctc.201600247]
[http://dx.doi.org/10.1021/acscatal.9b00767]
[http://dx.doi.org/10.1021/acs.orglett.9b03918] [PMID: 31965804]
[http://dx.doi.org/10.1155/2011/907129];
(b) Watzele, S. A.; Garlyyev, B.; Gubanova, E.; Bandarenka, A. S. Structure-reactivity relations in electrocatalysis. Reference Module in Chemistry. Molecular Sci. Chem. Eng., 2021.
[http://dx.doi.org/10.1039/D1CS00223F] [PMID: 34060564]
[http://dx.doi.org/10.1016/j.jcis.2021.02.007] [PMID: 33611047];
(b) Cao, S.; Shang, W.; Li, G.L.; Lu, Z.F.; Wang, X.; Yan, Y.; Hao, C.; Wang, S.; Sun, G. Defect-rich and metal-free N, S co-doped 3D interconnected mesoporous carbon material as an advanced electrocatalyst towards oxygen reduction reaction. Carbon, 2021, 184, 127-135.
[http://dx.doi.org/10.1016/j.carbon.2021.08.003];
(c) Yu, H.; Zhang, H.; Zhang, Z. Study on the simple surface treatments of N, P dual‐doped carbon as metal‐free catalyst for metal‐air batteries. ChemCatChem, 2021, 13(1), 397-406.
[http://dx.doi.org/10.1002/cctc.202001319];
(d) Deng, J.; Wang, L.; Jin, F.; Hu, Y.H. Metal-free surface-microporous graphene electrocatalysts from CO2 for rechargeable all-solid-state zinc–air batteries. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(16), 10081-10087.
[http://dx.doi.org/10.1039/D1TA01001H];
(e) Wang, Y.; Xu, N.; He, R.; Peng, L.; Cai, D.; Qiao, J. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl. Catal. B, 2021, 285, 119811.
[http://dx.doi.org/10.1016/j.apcatb.2020.119811];
(f) Fan, H.; Wang, T.; Gong, H.; Jiang, C.; Sun, Z.; Zhao, M.; Song, L.; He, J. Heteroatom sulfur-induced defect engineering in carbon nanotubes: Enhanced electrocatalytic activity of oxygen reduction reaction. Carbon, 2021, 180, 31-40.
[http://dx.doi.org/10.1016/j.carbon.2021.04.072];
(g) Chen, L.; Chen, Y.; Xu, C.; Wang, W.; Fu, W.; Hu, W.; Zhou, M.; He, B.; Chen, Q.; Hou, Z.; Xu, W. Etching engineering on controllable synthesis of etched N-doped hierarchical porous carbon toward efficient oxygen reduction reaction in zinc–air batteries. Mater. Today Energy, 2021, 20, 100670.
[http://dx.doi.org/10.1016/j.mtener.2021.100670]
[http://dx.doi.org/10.1002/adfm.202103187];
(b) Zan, Y.; Zhang, Z.; Zhu, B.; Dou, M.; Wang, F. Ultrathin two-dimensional phosphorus and nitrogen Co-doped carbon nanosheet as efficient oxygen reduction electrocatalyst. Carbon, 2021, 174, 404-412.
[http://dx.doi.org/10.1016/j.carbon.2020.12.058];
(c) Long, Y.; Ye, F.; Shi, L.; Lin, X.; Paul, R.; Liu, D.; Hu, C. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon, 2021, 179, 365-376.
[http://dx.doi.org/10.1016/j.carbon.2021.04.039]
[http://dx.doi.org/10.1039/D1RA01197A] [PMID: 35423825];
(b) Wang, X.; Raghupathy, R.K.M.; Querebillo, C.J.; Liao, Z.; Li, D.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B.; Zschech, E.; Weidinger, I.M.; Kühne, T.D.; Mirhosseini, H.; Yu, M.; Feng, X. Interfacial covalent bonds regulated electron‐deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater., 2021, 33(20), 2008752.
[http://dx.doi.org/10.1002/adma.202008752] [PMID: 33939200]
[http://dx.doi.org/10.1016/j.cej.2020.128171];
(b) Lu, T.; Hu, X.; He, J.; Li, R.; Gao, J.; Lv, Q.; Yang, Z.; Cui, S.; Huang, C. Aqueous/solid state Zn-air batteries based on N doped graphdiyne as efficient metal-free bifunctional catalyst. Nano Energy, 2021, 85, 106024.
[http://dx.doi.org/10.1016/j.nanoen.2021.106024];
(c) Duan, Z.; Han, G.; Huo, H.; Lin, Z.; Ge, L.; Du, C.; Gao, Y.; Yin, G. Monovacancy coupled pyridinic N site enables surging oxygen reduction activity of metal-free CN x catalyst. ACS Sustain. Chem. & Eng., 2021, 9(3), 1264-1271.
[http://dx.doi.org/10.1021/acssuschemeng.0c07490]
[http://dx.doi.org/10.1016/j.cej.2021.132102]
[http://dx.doi.org/10.1002/anie.201814370] [PMID: 30633837]
[http://dx.doi.org/10.1002/cphc.201700447] [PMID: 28732139]
[http://dx.doi.org/10.1002/tcr.201500228] [PMID: 26751828]
[http://dx.doi.org/10.1039/C8NJ03339K]
[http://dx.doi.org/10.1007/s10562-018-2388-2]
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[http://dx.doi.org/10.1039/C9GC00201D]
[http://dx.doi.org/10.1039/C8CC10235J] [PMID: 30758355]
[http://dx.doi.org/10.1021/acs.orglett.0c01776] [PMID: 32519870]