Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Emerging Biomedical Applications of Algal Polysaccharides

Author(s): Maryam Rahmati, Zahra Alipanahi and Masoud Mozafari*

Volume 25, Issue 11, 2019

Page: [1335 - 1344] Pages: 10

DOI: 10.2174/1381612825666190423160357

Price: $65

Abstract

Background: Over the past two decades, there have been substantial progress and a growing body of research on using natural polymeric biomaterials in emerging biomedical applications. Among different natural biopolymers, polysaccharides have gained considerable attraction among biomedical scientists and surgeons due to their biocompatibility, biodegradability, anti-inflammatory, and antimicrobial properties. In recent years, algalbased polysaccharides including agar, alginate, and carrageenan, have been broadly suggested for different biomedical applications.

Methods: The aim of this paper is discussing various possible applications of algal-based polysaccharides in biomedical engineering particularly in controlled drug delivery systems. The main properties of each algal polysaccharide will be discussed, and particular drug delivery applications will be presented.

Results: Algal polysaccharides can be detected in a group of photosynthetic unite as their key biomass constituents. They provide a range of variety in their size, shape, liquefaction, chemical stability, and crosslinking ability. In addition, algal polysaccharides have shown exceptional gelling properties including stimuli-responsive behavior, softness, and swelling properties.

Conclusion: All the mentioned properties of alga polysaccharides lead to their successful usage in biomedical applications specially targeted and controlled drug delivery systems such as particles, capsules, and gels.

Keywords: Sulfated polysaccharide, algae, hydrogel, biomaterial, biomedical, drug delivery.

« Previous
[1]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[2]
de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[3]
d’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 2008; 13(9): 2069-106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[4]
Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 2012; 57(5): 276-306.
[http://dx.doi.org/10.1179/1743280412Y.0000000002]
[5]
Ahmadi A, Zorofchian MS, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res Int 2015; 2015825203
[http://dx.doi.org/10.1155/2015/825203]
[6]
Kraan S. Algal polysaccharides, novel applications and outlookCarbohydrates-comprehensive studies on glycobiology and glycotechnology. InTech 2012.
[http://dx.doi.org/10.5772/51572]
[7]
Painter. T.J., Algal polysaccharides.The polysaccharides. Elsevier 1983; pp. 195-285. [http://dx.doi.org/10.1016/B978-0-12-065602-8.50009-1]
[8]
Yun EJ, Choi I-G, Kim KH. Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 2015; 33(5): 247-9.
[http://dx.doi.org/10.1016/j.tibtech.2015.02.006] [PMID: 25818231]
[9]
O’Sullivan L, Murphy B, McLoughlin P, et al. Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 2010; 8(7): 2038-64.
[http://dx.doi.org/10.3390/md8072038] [PMID: 20714423]
[10]
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[11]
Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2012; 2(4): 278-89.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[12]
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 2016; 14(3): 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[13]
Dore CMPG. das C Faustino Alves MG, Will LS, et al. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr Polym 2013; 91(1): 467-75.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.075] [PMID: 23044157]
[14]
Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541-52.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[15]
da Matta CB, de Souza ET, de Queiroz AC, et al. Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Mar Drugs 2011; 9(3): 307-18.
[http://dx.doi.org/10.3390/md9030307] [PMID: 21556161]
[16]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[17]
Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release 2007; 119(1): 5-24.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.004] [PMID: 17382422]
[18]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[19]
Khan F, Ahmad SR. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 2013; 13(4): 395-421.
[http://dx.doi.org/10.1002/mabi.201200409] [PMID: 23512290]
[20]
Yang J-S, Xie Y-J, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym 2011; 84(1): 33-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.048]
[21]
Asada M, Sugie M, Inoue M, et al. Inhibitory effect of alginic acids on hyaluronidase and on histamine release from mast cells. Biosci Biotechnol Biochem 1997; 61(6): 1030-2.
[http://dx.doi.org/10.1271/bbb.61.1030] [PMID: 9214767]
[22]
Reis CP, R.J. Neufeld, Antonio JR, Francisco V. Design of insulin-loaded alginate nanoparticles: influence of the calcium ion on polymer gel matrix properties. Chem Ind Chem Eng Q 2006; 12(1): 47-52.
[http://dx.doi.org/10.2298/CICEQ0601047R]
[23]
Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 2014; 64: 353-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[24]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[25]
Mano JF. Stimuli‐responsive polymeric systems for biomedical applications. Adv Eng Mater 2008; 10(6): 515-27.
[http://dx.doi.org/10.1002/adem.200700355]
[26]
Chen S-C, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 2004; 96(2): 285-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.002] [PMID: 15081219]
[27]
Li H, Jiang F, Ye S, Wu Y, Zhu K, Wang D. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Mater Sci Eng C 2016; 62: 779-86.
[http://dx.doi.org/10.1016/j.msec.2016.02.012] [PMID: 26952484]
[28]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[29]
Prado HJ, Ciancia M, Matulewicz MC. Agarans from the red seaweed Polysiphonia nigrescens (Rhodomelaceae, Ceramiales). Carbohydr Res 2008; 343(4): 711-8.
[http://dx.doi.org/10.1016/j.carres.2007.12.024] [PMID: 18262175]
[30]
Miller IJ. Evaluation of the structures of polysaccharides from two New Zealand members of the Rhodomelaceae by 13C NMR spectroscopy. Bot Mar 2003; 46(4): 386-91.
[http://dx.doi.org/10.1515/BOT.2003.037]
[31]
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[32]
Rossi F, Santoro M, Casalini T, Veglianese P, Masi M, Perale G. Characterization and degradation behavior of agar-carbomer based hydrogels for drug delivery applications: solute effect. Int J Mol Sci 2011; 12(6): 3394-408.
[http://dx.doi.org/10.3390/ijms12063394] [PMID: 21747683]
[33]
Awadhiya A. Agarose bioplastic‐based drug delivery system for surgical and wound dressings. Eng Life Sci 2017; 17(2): 204-14.
[http://dx.doi.org/10.1002/elsc.201500116]
[34]
Kolanthai E, Abinaya SP, Thanigai AK, Sarath CV, Manikandan E, Narayana KS. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery. J Photochem Photobiol B 2017; 166: 220-31.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.005] [PMID: 28012416]
[35]
Kolanthai E, Ganesan K, Epple M, Kalkura NS. Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Materials Today Communications 2016; 8: 31-40.
[http://dx.doi.org/10.1016/j.mtcomm.2016.03.008]
[36]
Wang J, et al. Incorporation of supramolecular hydrogels into agarose hydrogels-a potential drug delivery carrier. J Mater Chem 2009; 19(42): 7892-6.
[http://dx.doi.org/10.1039/b913158b]
[37]
Thomas W. CarrageenanThickening and gelling agents for food. Springer 1997; pp. 45-59.
[http://dx.doi.org/10.1007/978-1-4615-2197-6_3]
[38]
McHugh D. A guide to the seaweed industry FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, Rome 2003.
[39]
Therkelsen G. Carrageenan Industrial Gums-Polysaccharides and their derivatives RL Whistler and JN BeMiller. London: Academic Press, Inc. 1993.
[40]
De Ruiter GA, Rudolph B. Carrageenan biotechnology. Trends Food Sci Technol 1997; 8(12): 389-95.
[http://dx.doi.org/10.1016/S0924-2244(97)01091-1]
[41]
Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 2013; 95(1): 188-94.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.075] [PMID: 23618258]
[42]
Grenha A, Gomes ME, Rodrigues M, et al. Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 2010; 92(4): 1265-72.
[PMID: 19322874]
[43]
Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 2000; 26(10): 1025-38.
[http://dx.doi.org/10.1081/DDC-100100266] [PMID: 11028217]
[44]
Guan J, Li L, Mao S. Applications of carrageenan in advanced drug deliverySeaweed Polysaccharides. Elsevier 2017; pp. 283-303.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00015-3]
[45]
Hariharan M, Wheatley TA, Price JC. Controlled-release tablet matrices from carrageenans: compression and dissolution studies. Pharm Dev Technol 1997; 2(4): 383-93.
[http://dx.doi.org/10.3109/10837459709022637] [PMID: 9552467]
[46]
Nantes CI, Pesarini JR, Mauro MO, Monreal AC, Ramires AD, Oliveira RJ. Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa. Genet Mol Res 2014; 13(4): 9523-32.
[http://dx.doi.org/10.4238/2014.November.12.1] [PMID: 25501162]
[47]
Bosio VE, Cacicedo ML, Calvignac B, et al. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids Surf B Biointerfaces 2014; 123: 158-69.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.011] [PMID: 25260219]
[48]
Ling G, Zhang T, Zhang P, Sun J, He Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm 2016; 42(8): 1351-9.
[http://dx.doi.org/10.3109/03639045.2015.1135937] [PMID: 26754913]
[49]
Abdelghany S, Alkhawaldeh M, AlKhatib HS. Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J Drug Deliv Sci Technol 2017; 39: 442-9.
[http://dx.doi.org/10.1016/j.jddst.2017.04.034]
[50]
Sathuvan M, Thangam R, Gajendiran M, et al. κ-Carrageenan: An effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym 2017; 160: 184-93.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.049] [PMID: 28115093]
[51]
Vo T-S, Kim S-K. Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods 2013; 5(1): 16-27.
[http://dx.doi.org/10.1016/j.jff.2012.08.007]
[52]
Wijesinghe W, Jeon Y-J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr Polym 2012; 88(1): 13-20.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.029]
[53]
Huang YC, Lam UI. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J Chin Chem Soc (Taipei) 2011; 58(6): 779-85.
[http://dx.doi.org/10.1002/jccs.201190121]
[54]
Lu K-Y, Li R, Hsu CH, et al. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym 2017; 165: 410-20.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.065] [PMID: 28363567]
[55]
Manivasagan P, Bharathiraja S, Bui NQ, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91: 578-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.007] [PMID: 27267570]
[56]
El-Baky HA, Baz F, Baroty G. Potential biological properties of sulphated polysaccharides extracted from the macroalgae Ulva lactuca L. Acad J Cancer Res 2009; 2: 1-11.
[57]
Hernández-Garibay E, Zertuche-González JA, Pacheco-Ruíz I. Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 2011; 23(3): 537-42.
[http://dx.doi.org/10.1007/s10811-010-9629-0]
[58]
Robic A, Sassi J-F, Lahaye M. Impact of stabilization treatments of the green seaweed Ulva rotundata (Chlorophyta) on the extraction yield, the physico-chemical and rheological properties of ulvan. Carbohydr Polym 2008; 74(3): 344-52.
[http://dx.doi.org/10.1016/j.carbpol.2008.02.020]
[59]
Quemener B, Lahaye M, Bobin-Dubigeon C. Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. J Appl Phycol 1997; 9(2): 179-88.
[http://dx.doi.org/10.1023/A:1007971023478]
[60]
Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007; 8(6): 1765-74.
[http://dx.doi.org/10.1021/bm061185q] [PMID: 17458931]
[61]
Alves A, Sousa RA, Reis RL. Processing of degradable ulvan 3D porous structures for biomedical applications. J Biomed Mater Res A 2013; 101(4): 998-1006.
[http://dx.doi.org/10.1002/jbm.a.34403] [PMID: 22965453]
[62]
Barros AA, Alves A, Nunes C, Coimbra MA, Pires RA, Reis RL. Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater 2013; 9(11): 9086-97.
[http://dx.doi.org/10.1016/j.actbio.2013.06.036] [PMID: 23816652]
[63]
Morelli A, Betti M, Puppi D, Bartoli C, Gazzarri M, Chiellini F. Enzymatically crosslinked ulvan hydrogels as injectable systems for cell delivery. Macromol Chem Phys 2016; 217(4): 581-90.
[http://dx.doi.org/10.1002/macp.201500353]
[64]
Morelli A, Chiellini F. Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol Chem Phys 2010; 211(7): 821-32.
[http://dx.doi.org/10.1002/macp.200900562]
[65]
Tziveleka L-A, Pippa N, Georgantea P, Ioannou E, Demetzos C, Roussis V. Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. Int J Biol Macromol 2018; 118(Pt A): 69-75. [http://dx.doi.org/10.1016/j.ijbiomac.2018.06.050] [PMID: 29906535]
[66]
Correc G, Hehemann JH, Czjzek M, Helbert W. Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A. Carbohydr Polym 2011; 83(1): 277-83.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.060]
[67]
Bhatia S, Sharma A, Sharma K, et al. Novel algal polysaccharides from marine source: Porphyran. Pharmacogn Rev 2008; 2(4): 271.
[68]
Venkatpurwar V, Shiras A, Pokharkar V. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int J Pharm 2011; 409(1-2): 314-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.054] [PMID: 21376108]
[69]
Sauraj, Kumar SU, Kumar V, Priyadarshi R, Gopinath P, Negi YS. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym 2018; 188: 252-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.006] [PMID: 29525163]
[70]
Cartaxo da Costa Urtiga S, Aquino Azevedo de Lucena Gabi C, Rodrigues de Araújo Eleamen G, et al. Preparation and characterization of safe microparticles based on xylan. Drug Dev Ind Pharm 2017; 43(10): 1601-9.
[http://dx.doi.org/10.1080/03639045.2017.1326932] [PMID: 284712661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy