Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Glycine Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino Substituted Pyran Annulated Heterocycles in Aqueous Ethanol under Refluxed Conditions

Author(s): Bubun Banerjee*, Manmeet Kaur, Aditi Sharma, Arvind Singh, Anu Priya, Vivek Kumar Gupta and Vikas Jaitak

Volume 9, Issue 3, 2022

Published on: 29 December, 2022

Page: [162 - 173] Pages: 12

DOI: 10.2174/2213346110666221212152202

Price: $65

Abstract

Introduction: A facile, convenient and general method has been developed for the one-pot three-component synthesis of structurally diverse 2-amino pyran annulated heterocycles from the reactions of aromatic aldehydes, malononitrile and various C-H activated acids in the presence of a catalytic amount of glycine as an efficient metal-free organocatalyst in aqueous ethanol under refluxed conditions.

Methods: Using this developed protocol, we were able to synthesize a series of structurally diverse 2- amino pyran derivatives viz., 2-amino-4,5-dihydropyrano[3,2-c]chromenes, 2-amino-4,5-dihydropyrano [4,3-b]pyrans, 2-amino-5,6,7,8-tetrahydro-4H-chromenes, 2'-amino-2,5'-dioxo-5'H-spiro[indoline-3,4'-pyrano [3,2-c]chromene]-3'-carbonitrile and 2'-amino-1,3,5'-trioxo-1,3-dihydro-5'H-spiro[indene-2,4'-pyrano[3,2- c]chromene]-3'-carbonitrile in excellent yields.

Result: Synthesis of biologically promising pyrans and spiropyrans, high atom economy, excellent yields, use of metal-free catalyst, less toxic solvents, no chromatographic column purifications, multiple carbon-carbon and carbon-heteroatom bond formations are some of the major advantages of this newly developed protocol.

Conclusion: In conclusion, we have developed a simple, convenient, and efficient method for the synthesis of a series of structurally diverse 2-amino pyran annulated heterocyclic derivatives.

Graphical Abstract

[1]
Singh, P.K.; Silakari, O. The current status of O-heterocycles: A synthetic and medicinal overview. ChemMedChem, 2018, 13(11), 1071-1087.
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[2]
Agarwal, S.; Sethiya, A.; Soni, J.; Sahiba, N.; Teli, P. An overview of recent advances in the catalytic synthesis of substituted pyrans. Appl. Organomet. Chem., 2022, 36(4), e6604.
[http://dx.doi.org/10.1002/aoc.6604]
[3]
El-Desouky, S.K.; Kassem, M.E.S.; Fifi, Z.I.A.A.; El-Deen, A.M.G. A new pyranone derivative from the leaves of Livistona australis. Nat. Prod. Commun., 2009, 4(4), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400410] [PMID: 19475992]
[4]
Kaur, M.; Kaur, M.; Bandopadhyay, T.; Sharma, A.; Priya, A.; Singh, A.; Banerjee, B. 1 Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs. Phy. Sci. Rev, 2022, 1-54.
[http://dx.doi.org/10.1515/9783110735772-001]
[5]
Banerjee, B.; Kaur, M.; Priya, A.; Singh, A.; Sharma, A.; Kaur, G. Multicomponent synthesis of biologically promising pyrans and pyran annulated heterocycles using magnetically recoverable nanocatalysts. In: Magnetic Nanocatalysis: Synthetic Applications; De DGruyter: Berlin, Boston, 2022; 1, pp. 411-434.
[http://dx.doi.org/10.1515/9783110730357-011]
[6]
Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jain, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7(59), 36977-36999.
[http://dx.doi.org/10.1039/C7RA05441F]
[7]
Hussain, H.; Green, I.R. Lapachol and lapachone analogs: A journey of two decades of patent research (1997-2016). Expert Opin. Ther. Pat., 2017, 27(10), 1111-1121.
[http://dx.doi.org/10.1080/13543776.2017.1339792] [PMID: 28586252]
[8]
Agarwal, K.C.; Parks, R.E. Jr Forskolin: A potential antimetastatic agent. Int. J. Cancer, 1983, 32(6), 801-804.
[http://dx.doi.org/10.1002/ijc.2910320622] [PMID: 6686215]
[9]
Ichiyama, M.; Sada, S.; Takahashi, Y.; Sada, H.; Ban, T. Effects of bucumolol, nadolol and nifenalol on maximum upstroke velocity of action potential in guinea pig papillary muscles. Naunyn Schmiedebergs Arch. Pharmacol., 1986, 332(3), 297-304.
[http://dx.doi.org/10.1007/BF00504871] [PMID: 2872598]
[10]
Lotfi, H.; Dreyfuss, M.F.; Marquet, P.; Debord, J.; Merle, L.; Lachâtre, G. A screening procedure for the determination of 13 oral anticoagulants and rodenticides. J. Anal. Toxicol., 1996, 20(2), 93-100.
[http://dx.doi.org/10.1093/jat/20.2.93] [PMID: 8868399]
[11]
Monostory, K.; Vereczkey, L.; Lévai, F.; Szatmári, I. Ipriflavone as an inhibitor of human cytochrome P450 enzymes. Br. J. Pharmacol., 1998, 123(4), 605-610.
[http://dx.doi.org/10.1038/sj.bjp.0701633] [PMID: 9517377]
[12]
Ward, A.; Holmes, B. Nabilone. Drugs, 1985, 30(2), 127-144.
[http://dx.doi.org/10.2165/00003495-198530020-00002] [PMID: 2863127]
[13]
Murali, K.; Arya, K.R.; Prasad, K.J.R. Design and synthesis of pyrano[2,3-a]carbazoles by multicomponent reaction. Synth. Commun., 2015, 45(5), 586-598.
[http://dx.doi.org/10.1080/00397911.2014.956368]
[14]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[15]
Esmati, N.; Foroughian, M.; Saeedi, M.; Mahdavi, M.; Khoshneviszadeh, M.; Firuzi, O.; Tanideh, N.; Miri, R.; Edraki, N.; Shafiee, A.; Foroumadi, A. Synthesis and cytotoxic activity of some novel dihyrobenzo[h]pyrano [3,2-c]chromene derivatives. J. Heterocycl. Chem., 2015, 52(1), 97-104.
[http://dx.doi.org/10.1002/jhet.1991]
[16]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[17]
Hasaninejad, A.; Golzar, N.; Zare, A. One-Pot, four-component synthesis of novel spiro[indeno[2,1- b]quinoxaline-11,4′-pyran]-2′-amines. J. Heterocycl. Chem., 2013, 50(3), 608-614.
[http://dx.doi.org/10.1002/jhet.1604]
[18]
Kidwai, M.; Jain, A.; Nemaysh, V.; Kumar, R.; Luthra, P.M. Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity. Med. Chem. Res., 2013, 22(6), 2717-2723.
[http://dx.doi.org/10.1007/s00044-012-0249-x]
[19]
Kidwai, M.; Jain, A.; Singh, S.; Nemaysh, V.; Luthra, P.M. An investigatory study of antibacterial activity of functionalized spirooxindoles. Indian J. Chem., 2014, 53, 399-411.
[20]
Makawana, J.A.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus. Bioorg. Med. Chem. Lett., 2011, 21(20), 6166-6169.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.123] [PMID: 21890359]
[21]
Al-Haiza, M.; Mostafa, M.; El-Kady, M. Synthesis and biological evaluation of some new coumarin derivatives. Molecules, 2003, 8(2), 275-286.
[http://dx.doi.org/10.3390/80200275]
[22]
Baitha, A.; Gopinathan, A.; Krishnan, K.; Dabholkar, V.V. Synthesis of 2-amino-4-(2-ethoxybenzo[d][1,3]dioxol-5-yl)-4 H -pyran-3-carbonitrile derivatives and their biological evaluation. J. Heterocycl. Chem., 2018, 55(5), 1189-1192.
[http://dx.doi.org/10.1002/jhet.3152]
[23]
Kaur, R.; Naaz, F.; Sharma, S.; Mehndiratta, S.; Gupta, M.K.; Bedi, P.M.S.; Nepali, K. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: Synthesis, biological evaluation and docking studies. Med. Chem. Res., 2015, 24(8), 3334-3349.
[http://dx.doi.org/10.1007/s00044-015-1382-0]
[24]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Zarei, M.; Karamian, R.; Asadbegy, M. Synthesis and characterization of acetic acid functionalized poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. Chem., 2016, 425, 217-228.
[http://dx.doi.org/10.1016/j.molcata.2016.10.011]
[25]
Mahdavi, S.M.; Habibi, A.; Dolati, H.; Shahcheragh, S.M.; Sardari, S.; Azerang, P. Synthesis and antimicrobial evaluation of 4h-pyrans and schiff bases fused 4h-pyran derivatives as inhibitors of Mycobacterium bovis (BCG). Iran. J. Pharm. Res., 2018, 17(4), 1229-1239.
[PMID: 30568683]
[26]
Brahmachari, G.; Laskar, S.; Banerjee, B. Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Heterocycl. Chem., 2014, 51(S1), E303-E308.
[http://dx.doi.org/10.1002/jhet.1974]
[27]
El-Agrody, A.M.; Abd El-Latif, M.S.; Fakery, A.H.; Bedair, A.H. Heteroaromatization with 4-hydroxycoumarin Part I: Synthesis of some new pyranocoumarins and coumarinopyranopyrimidines. J. Chem. Res., 2000, 26-27.
[28]
Mehrabi, H.; Abusaidi, H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by Sodium Dodecyl Sulfate (SDS) in neat water. J. Indian Chem. Soc., 2010, 7(4), 890-894.
[http://dx.doi.org/10.1007/BF03246084]
[29]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50(28), 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[30]
Khurana, J.M.; Nand, B.; Saluja, P. DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron, 2010, 66(30), 5637-5641.
[http://dx.doi.org/10.1016/j.tet.2010.05.082]
[31]
Karami, B.; Kiani, M. Silica-supported molybdic acid: Preparation, characterization, and its catalytic application in synthesis of pyranocoumarins. Monatsh. Chem., 2016, 147(6), 1117-1124.
[http://dx.doi.org/10.1007/s00706-015-1551-3]
[32]
Karami, B.; Kiani, M.; Hosseini, S.J.; Bahrami, M. Synthesis and characterization of novel nanosilica molybdic acid and its first catalytic application in the synthesis of new and known pyranocoumarins. New J. Chem., 2015, 39(11), 8576-8581.
[http://dx.doi.org/10.1039/C5NJ01302J]
[33]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4h-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(3), 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[34]
Kiani, M.; Hendijani, M.; Mohammadipour, M.; Zamanian, A. Design, preparation and characterization of MoO3H-functionalized Fe3O4@SiO2 magnetic nanocatalyst and application for the one-pot multicomponent reaction. Acta Chim. Slov., 2017, 64(3), 707-713.
[http://dx.doi.org/10.17344/acsi.2017.3208] [PMID: 28862294]
[35]
Montaghami, A.; Montazeri, N. An efficient method for the one-pot, three-component synthesis of 3,4-dihydropyrano[c]chromenes catalyzed by nano Al2O3. Orient. J. Chem., 2014, 30(3), 1361-1364.
[http://dx.doi.org/10.13005/ojc/300355]
[36]
Khodabakhshi, S.; Karami, B.; Eskandari, K.; Hoseini, S.J. Titanium dioxide nanowires as green and heterogeneous catalysts for the synthesis of novel pyranocoumarins. C. R. Chim., 2014, 17(1), 35-40.
[http://dx.doi.org/10.1016/j.crci.2013.05.005]
[37]
Heravi, M.M.; Jani, B.A.; Derikvand, F.; Bamoharram, F.F.; Oskooie, H.A. Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62· 18H2O as a green and recyclable catalyst. Catal. Commun., 2008, 10(3), 272-275.
[http://dx.doi.org/10.1016/j.catcom.2008.08.023]
[38]
Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104(1-2), 39-43.
[http://dx.doi.org/10.1007/s10562-005-7433-2]
[39]
Das, P.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans: further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester. Green Chem., 2014, 16(3), 1426-1435.
[http://dx.doi.org/10.1039/C3GC42095G]
[40]
Shaterian, H.R.; Oveisi, A.R. A simple Green approach to the synthesis of 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile derivatives catalyzed by 3-hydroxypropanaminium acetate (HPAA) as a new ionic liquid. J. Indian Chem. Soc., 2011, 8(2), 545-552.
[http://dx.doi.org/10.1007/BF03249089]
[41]
Nagalapalli, R.; Jaggavarapu, S.R.; Jalli, V.P.; Kamalakaran, A.S.; Gaddamanugu, G. Ultrasound promoted green and facile one-pot multicomponent synthesis of 3,4-dihydropyrano[c]chromene derivatives. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/593803]
[42]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. J. Mol. Liq., 2019, 275, 523-534.
[http://dx.doi.org/10.1016/j.molliq.2018.11.042]
[43]
Wang, H.J.; Lu, J.; Zhang, Z.H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem., 2010, 141(10), 1107-1112.
[http://dx.doi.org/10.1007/s00706-010-0383-4]
[44]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multi-component synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22(3), 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[45]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3(45), 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[46]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2020, 23(28), 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[47]
Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. Synth. Commun., 2022, 52(16), 1635-1656.
[http://dx.doi.org/10.1080/00397911.2022.2090262]
[48]
Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3- ene-3-carboxylates: A decade update. ChemistrySelect, 2018, 3(34), 9892-9910.
[http://dx.doi.org/10.1002/slct.201801887]
[49]
Brahmachari, G.; Banerjee, B. A comparison between catalyst-free and ZrOCl2 8H2O-catalyzed strecker reactions for the rapid and solvent-free one-pot synthesis of racemic α-aminonitrile derivatives. Asian J. Org. Chem., 2012, 1(3), 251-258.
[http://dx.doi.org/10.1002/ajoc.201200055]
[50]
Banerjee, B. Multicomponent synthesis of biologically relevant spiroheterocycles in water. Mater Res Foundations, 2019, 50, 269-319.
[http://dx.doi.org/10.1515/9783110730357-011]
[51]
Singh, A.; Kaur, B.; Sharma, A.; Priya, A.; Kaur, M.; Shamim, M.; Banerjee, B. One-pot multi-component synthesis of diverse bioactive heterocyclic scaffolds involving 6-aminouracil or its N-methyl derivatives as a versatile reagent. Phy. Sci.Rev., 2022.
[http://dx.doi.org/10.1515/psr-2021-0098]
[52]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50(10), 1545-1560.
[http://dx.doi.org/10.1080/00397911.2020.1745844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy