Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

A Review on Polymeric Nanostructured Micelles for the Ocular Inflammation-Main Emphasis on Uveitis

Author(s): Nikita Kaushal, Manish Kumar*, Amanjot Singh, Abhishek Tiwari, Varsha Tiwari and Rakesh Pahwa

Volume 11, Issue 1, 2023

Published on: 23 November, 2022

Page: [34 - 43] Pages: 10

DOI: 10.2174/2211738511666221019160908

Price: $65

Abstract

Background: Various types of nano-formulations are being developed and tested for the delivery of the ocular drug. They also have anatomical and physiological limitations, such as tear turnover, nasal lachrymal waste, reflex squinting, and visual static and dynamic hindrances, which pose challenges and delay ocular drug permeation. As a result of these limitations, less than 5% of the dose can reach the ocular tissues.

Objective: The basic purpose of designing these formulations is that they provide prolonged retention for a longer period and can also increase the course time.

Methods: To address the aforementioned issues, many forms of polymeric micelles were developed. Direct dissolving, dialysis, oil-in-water emulsion, solvent evaporation, co-solvent evaporation, and freeze-drying are some of the methods used to make polymeric nano micelles.

Results: Their stability is also very good and also possesses reversible drug loading capacity. When the drug is given through the topical route, then it has very low ocular bioavailability.

Conclusion: The definition and preparation process of polymeric micelles and anti-inflammatory drugs used in uveitis and the relation between uveitis and micelles are illustrated in detail.

Graphical Abstract

[1]
Li Q, Qian X, Li HY, Lai KL, Gao Q, Lee WYT. Safety assessment of polymeric micelles as an ophthalmic drug delivery system for intravitreal administration of dasatinib. Int J Pharm 2021; 596: 120226.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120226]
[2]
Di Prima G, Licciardi M, Bongiovì F, Pitarresi G, Giammona G. Inulin-based polymeric micelles functionalized with ocular permeation enhancers: Improvement of dexamethasone permeation/penetration through bovine corneas. Pharmaceutics 2021; 13(9): 1431.
[http://dx.doi.org/10.3390/pharmaceutics13091431]
[3]
Qazvini NT, Zinatloo S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2011; 22(1): 63-9.
[http://dx.doi.org/10.1007/s10856-010-4178-2]
[4]
Wu X, Gómez-Pastora J, Zborowski M, Chalmers J. SPIONs self-assembly and magnetic sedimentation in quadrupole magnets: Gaining insight into the separation mechanisms. Separ Purif Tech 2022; 280: 119786.
[http://dx.doi.org/10.1016/j.seppur.2021.119786]
[5]
Mahdavi K, Zinatloo-Ajabshir S, Yousif QA, Salavati-Niasari M. Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrason Sonochem 2022; 82: 105892.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105892] [PMID: 34959201]
[6]
Sinha S, Grieve DJ. The British society for cardiovascular research autumn 2019 meeting incorporating the Bernard and Joan Marshall research awards. Cardiovasc Drugs Ther 2020; 34(2): 227-30.
[http://dx.doi.org/10.1007/s10557-020-06945-7] [PMID: 32062790]
[7]
Tabatabaeinejad SM, Zinatloo-Ajabshir S, Amiri O, Salavati-Niasari M. Magnetic Lu 2 Cu 2 O 5 -based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances 2021; 11(63): 40100-11.
[http://dx.doi.org/10.1039/D1RA06101A] [PMID: 35494113]
[8]
Jodati H, Yilmaz B, Evis Z. In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair. Ceram Int 2021; 47(21): 29535-49.
[http://dx.doi.org/10.1016/j.ceramint.2021.07.136]
[9]
Flores EMM, Cravotto G, Bizzi CA, Santos D, Iop GD. Ultrasound-assisted biomass valorization to industrial interesting products: State-of-the-art, perspectives and challenges. Ultrason Sonochem 2021; 72: 105455.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105455] [PMID: 33444940]
[10]
Tao Y, Li P, Cai L, Sheldon Q. Flammability and mechanical properties of composites fabricated with CaCO3-filled pine flakes and Phenol Formaldehyde resin. Compos, Part B Eng 2019; 167: 1-6.
[http://dx.doi.org/10.1016/j.compositesb.2018.12.005]
[11]
Zinatloo Ajabshir S, Taheri Gazvini N. Effect of some synthetic parameters on size and polydispersity index of gelatin nanoparticles cross-linked by cdi/nhs system. J Nanostruct 2015; 5(2): 137-44.
[12]
Li Y, Zhou L, Zhang M, et al. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm 2022; 615: 121451.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121451] [PMID: 35051535]
[13]
Zinatloo-Ajabshir Z, Zinatloo-Ajabshir S. Preparation and characterization of curcumin niosomal nanoparticles via a simple and eco-friendly route. J Nanostruct 2019; 9(4): 784-90.
[http://dx.doi.org/10.22052/JNS.2019.04.020]
[14]
Baumal CR, Bodaghi B, Singer M, et al. Expert opinion on management of intraocular inflammation, retinal vasculitis, and vascular occlusion after brolucizumab treatment. Ophthalmol Retina 2021; 5(6): 519-27.
[http://dx.doi.org/10.1016/j.oret.2020.09.020] [PMID: 33007521]
[15]
Zinatloo-Ajabshir S, Taheri-Qazvini N. Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J Nanostruct 2014; 3(4): 267-75.
[http://dx.doi.org/10.7508/jns.2014.03.00315]
[16]
Mehta N, Robbins DA, Yiu G. Ocular inflammation and treatment-emergent adverse events in retinal gene therapy. Int Ophthalmol Clin 2021; 61(3): 151.
[http://dx.doi.org/10.1097/IIO.0000000000000366]
[17]
Uchegbu IF, Breznikar J, Zaffalon A, Odunze U, Schätzlein AG. Polymeric micelles for the enhanced deposition of hydrophobic drugs into ocular tissues, without plasma exposure. Pharmaceutics 2021; 13(5): 744.
[http://dx.doi.org/10.3390/pharmaceutics13050744] [PMID: 34069936]
[18]
Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-mahallawi AM. Voriconazole ternary micellar systems for the treatment of ocular mycosis: Statistical optimization and in vivo evaluation. J Pharm Sci 2021; 110(5): 2130-8.
[http://dx.doi.org/10.1016/j.xphs.2020.12.013] [PMID: 33346033]
[19]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[20]
Mofidfar M, Abdi B, Ahadian S, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607: 120924.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120924] [PMID: 34324989]
[21]
Zhao X, Seah I, Xue K, et al. Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater 2021; e2108360.
[http://dx.doi.org/10.1002/adma.202108360] [PMID: 34726299]
[22]
Kurnik IS, D’Angelo NA, Mazzola PG, et al. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomater Sci 2021; 9(6): 2183-96.
[http://dx.doi.org/10.1039/D0BM01884H] [PMID: 33502392]
[23]
Desai A, Chaon B, Berkenstock M. Neurosarcoidosis and ocular inflammation: A case series and literature review. J Neuroophthalmol 2021; 41(2): e259-66.
[http://dx.doi.org/10.1097/WNO.0000000000001117] [PMID: 33136665]
[24]
Xing Y, Zhu L, Zhang K, Li T, Huang S. Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. Artif Cells Nanomed Biotechnol 2021; 49(1): 308-16.
[http://dx.doi.org/10.1080/21691401.2021.1895184] [PMID: 33739906]
[25]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[26]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[27]
Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Polymeric micelles: A promising pathway for dermal drug delivery. Materials (Basel) 2021; 14(23): 7278.
[http://dx.doi.org/10.3390/ma14237278] [PMID: 34885432]
[28]
Zhang X, Wei D, Xu Y, Zhu Q. Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264: 118006.
[http://dx.doi.org/10.1016/j.carbpol.2021.118006] [PMID: 33910737]
[29]
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med (Lausanne) 2022; 8: 787644.
[http://dx.doi.org/10.3389/fmed.2021.787644] [PMID: 35155469]
[30]
Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective. J Control Release 2021; 336: 71-88.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.011] [PMID: 34119558]
[31]
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater Sci Eng C 2021; 127: 112212.
[http://dx.doi.org/10.1016/j.msec.2021.112212] [PMID: 34225864]
[32]
Dosmar E, Walsh J, Doyel M, et al. Targeting ocular drug delivery: An examination of local anatomy and current approaches. Bioengineering (Basel) 2022; 9(1): 41.
[http://dx.doi.org/10.3390/bioengineering9010041] [PMID: 35049750]
[33]
Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021; 191: 591-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.112] [PMID: 34562538]
[34]
Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci 2021; 159: 105736.
[http://dx.doi.org/10.1016/j.ejps.2021.105736] [PMID: 33516807]
[35]
Silva-Cunha A. Advances in ocular drug delivery systems. Pharmaceutics 2021; 13(9): 1383.
[http://dx.doi.org/10.3390/pharmaceutics13091383] [PMID: 34575459]
[36]
Akhter MH, Ahmad I, Alshahrani MY, et al. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022; 8(2): 82.
[http://dx.doi.org/10.3390/gels8020082] [PMID: 35200463]
[37]
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials (Basel) 2021; 14(15): 4290.
[http://dx.doi.org/10.3390/ma14154290] [PMID: 34361483]
[38]
Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals (Basel) 2021; 14(11): 1201.
[http://dx.doi.org/10.3390/ph14111201] [PMID: 34832983]
[39]
Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-responsive polymers for transdermal, transmucosal and ocular drug delivery. Pharmaceutics 2021; 13(12): 2050.
[http://dx.doi.org/10.3390/pharmaceutics13122050] [PMID: 34959332]
[40]
Bhandari A. Ocular fluid mechanics and drug delivery: A review of mathematical and computational models. Pharm Res 2021; 38(12): 2003-33.
[http://dx.doi.org/10.1007/s11095-021-03141-6] [PMID: 34936067]
[41]
Bodoki AE, Iacob BC, Dinte E, Vostinaru O, Samoila O, Bodoki E. Perspectives of molecularly imprinted polymer-based drug delivery systems in ocular therapy. Polymers (Basel) 2021; 13(21): 3649.
[http://dx.doi.org/10.3390/polym13213649] [PMID: 34771205]
[42]
Conrady CD, Yeh S. A review of ocular drug delivery platforms and drugs for infectious and noninfectious uveitis: The past, present, and future. Pharmaceutics 2021; 13(8): 1224.
[http://dx.doi.org/10.3390/pharmaceutics13081224] [PMID: 34452185]
[43]
Peter M, Panonnummal R. A review on newer ocular drug delivery systems with an emphasis on glaucoma. Adv Pharm Bull 2020; 11(3): 399-413.
[http://dx.doi.org/10.34172/apb.2021.048] [PMID: 34513615]
[44]
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18(7): 819-47.
[http://dx.doi.org/10.1080/17425247.2021.1872542] [PMID: 33412914]
[45]
Chaudhari P, Ghate VM, Lewis SA. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur J Pharm Biopharm 2021; 161: 80-99.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.007] [PMID: 33607239]
[46]
Uwaezuoke OJ, Kumar P, Pillay V, Choonara YE. Fouling in ocular devices: Implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11(5): 1903-23.
[http://dx.doi.org/10.1007/s13346-020-00879-1] [PMID: 33454927]
[47]
Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res 2021.
[http://dx.doi.org/10.1007/s13346-021-01043-z] [PMID: 34382178]
[48]
Maulvi FA, Desai DT, Shetty KH, Shah DO, Willcox MDP. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608: 121090.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121090] [PMID: 34530102]
[49]
Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res 2021; 11(3): 866-93.
[http://dx.doi.org/10.1007/s13346-020-00843-z] [PMID: 32901367]
[50]
Pandey M, Choudhury H, binti Abd Aziz A, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers (Basel) 2021; 13(8): 1340.
[http://dx.doi.org/10.3390/polym13081340] [PMID: 33923900]
[51]
Nguyen DCT, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Pharmaceutical-loaded contact lenses as an ocular drug delivery system: A review of critical lens characterization methodologies with reference to ISO standards. Cont Lens Anterior Eye 2021; 44(6): 101487.
[http://dx.doi.org/10.1016/j.clae.2021.101487] [PMID: 34353748]
[52]
Liu H, Bi X, Wu Y, et al. Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery. Acta Biomater 2021; 131: 162-71.
[http://dx.doi.org/10.1016/j.actbio.2021.06.027] [PMID: 34157453]
[53]
Thakur RRS, Adwan S, Tekko I, Soliman K, Donnelly RF. Laser irradiation of ocular tissues to enhance drug delivery. Int J Pharm 2021; 596: 120282.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120282] [PMID: 33508342]
[54]
Tamhane M, Luu KT, Attar M. Ocular pharmacokinetics of brimonidine drug delivery system in monkeys and translational modeling for selection of dose and frequency in clinical trials. J Pharmacol Exp Ther 2021; 378(3): 207-14.
[http://dx.doi.org/10.1124/jpet.120.000483] [PMID: 34210753]
[55]
Xu X, Awwad S, Diaz-Gomez L, et al. 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics 2021; 13(9): 1421.
[http://dx.doi.org/10.3390/pharmaceutics13091421] [PMID: 34575497]
[56]
Sahu B, Chug I, Khanna H. The ocular gene delivery landscape. Biomolecules 2021; 11(8): 1135.
[http://dx.doi.org/10.3390/biom11081135] [PMID: 34439800]
[57]
Wafa HG, Essa EA, El-Sisi AE, El Maghraby GM. Ocular films versus film-forming liquid systems for enhanced ocular drug delivery. Drug Deliv Transl Res 2021; 11(3): 1084-95.
[http://dx.doi.org/10.1007/s13346-020-00825-1] [PMID: 32728811]
[58]
Dennyson Savariraj A, Salih A, Alam F, et al. Ophthalmic sensors and drug delivery. ACS Sens 2021; 6(6): 2046-76.
[http://dx.doi.org/10.1021/acssensors.1c00370] [PMID: 34043907]
[59]
Shi H, Zhou J, Wang Y, et al. A rapid corneal healing microneedle for efficient ocular drug delivery. Small 2022; 18(4): 2104657.
[http://dx.doi.org/10.1002/smll.202104657] [PMID: 35083856]
[60]
Löscher M, Seiz C, Hurst J, Schnichels S. Topical drug delivery to the posterior segment of the eye. Pharmaceutics 2022; 14(1): 134.
[http://dx.doi.org/10.3390/pharmaceutics14010134] [PMID: 35057030]
[61]
Hancock SE, Wan CR, Fisher NE, Andino RV, Ciulla TA. Biomechanics of suprachoroidal drug delivery: From benchtop to clinical investigation in ocular therapies. Expert Opin Drug Deliv 2021; 18(6): 777-88.
[http://dx.doi.org/10.1080/17425247.2021.1867532] [PMID: 33393391]
[62]
Lasowski F, Rambarran T, Rahmani V, Brook MA, Sheardown H. PEG-containing siloxane materials by metal-free click-chemistry for ocular drug delivery applications. J Biomater Sci Polym Ed 2021; 32(5): 581-94.
[http://dx.doi.org/10.1080/09205063.2020.1851558] [PMID: 33187457]
[63]
Ramos MF, Brassard J, Masli S. Immunology and pathology in ocular drug development. Toxicol Pathol 2021; 49(3): 483-504.
[http://dx.doi.org/10.1177/0192623320978396] [PMID: 33468035]
[64]
Topete A, Saramago B, Serro AP. Intraocular lenses as drug delivery devices. Int J Pharm 2021; 602: 120613.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120613] [PMID: 33865952]
[65]
Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022; 185(2): 250-265.e16.
[http://dx.doi.org/10.1016/j.cell.2021.12.021] [PMID: 35021064]
[66]
Chaw SY, Wong TTL, Venkatraman S, Chacko AM. Spatio-temporal in vivo imaging of ocular drug delivery systems using fiberoptic confocal laser microendoscopy. J Vis Exp 2021; (175): e62685.
[http://dx.doi.org/10.3791/62685] [PMID: 34633377]
[67]
Miller PE, Eaton JS. Medical anti‐glaucoma therapy: Beyond the drop. Vet Ophthalmol 2021; 24(S1) (Suppl. 1): 2-15.
[http://dx.doi.org/10.1111/vop.12843] [PMID: 33164328]
[68]
Tharmatt A, Malhotra D, Sharma H, Bedi N. Pharmaceutical perspective in wearable drug delivery systems. Assay Drug Dev Technol 2021; 19(6): 386-401.
[http://dx.doi.org/10.1089/adt.2021.008] [PMID: 34339259]
[69]
Liu J, Wang X. Retracted article: Ofloxacin-loaded niosome-laden contact lens: Improved properties of biomaterial for ocular drug delivery. AAPS PharmSciTech 2021; 23(1): 6.
[http://dx.doi.org/10.1208/s12249-021-02157-w] [PMID: 34851496]
[70]
Yin C, Liu Y, Qi X, Guo C, Wu X. Kaempferol incorporated bovine serum albumin fibrous films for ocular drug delivery. Macromol Biosci 2021; 21(12): 2100269.
[http://dx.doi.org/10.1002/mabi.202100269] [PMID: 34528413]
[71]
Rykowska I, Nowak I, Nowak R. Soft contact lenses as drug delivery systems: A review. Molecules 2021; 26(18): 5577.
[http://dx.doi.org/10.3390/molecules26185577] [PMID: 34577045]
[72]
Dhahir RK, Al-Nima AM, Al-Bazzaz F. Nanoemulsions as ophthalmic drug delivery systems. Turk J Pharm Sci 2021; 18(5): 652-64.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319] [PMID: 34708428]
[73]
Roy A, Krishna Venuganti VV, Chauhan SS, Garg P. Polymeric drug delivery devices: Role in cornea and external disease. Eye Contact Lens 2022; 48(3): 119-26.
[http://dx.doi.org/10.1097/ICL.0000000000000874] [PMID: 35192566]
[74]
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B Mater Biol Med 2021; 9(13): 2979-92.
[http://dx.doi.org/10.1039/D0TB02877K] [PMID: 33885662]
[75]
Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today 2021; 26(6): 1437-49.
[http://dx.doi.org/10.1016/j.drudis.2021.02.027] [PMID: 33689858]
[76]
Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: Characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci 2021; 22(18): 9934.
[http://dx.doi.org/10.3390/ijms22189934] [PMID: 34576093]
[77]
Begum G, Leigh T, Stanley D, Logan A, Blanch RJ. Determining the effect of ocular chemical injuries on topical drug delivery. Drug Deliv 2021; 28(1): 2044-50.
[http://dx.doi.org/10.1080/10717544.2021.1979124] [PMID: 34595979]
[78]
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82: 100901.
[http://dx.doi.org/10.1016/j.preteyeres.2020.100901] [PMID: 32891866]
[79]
Arad D, Komoron S, Pe’er O, Sebbag L, Ofri R. Mucoadhesive polymers enhance ocular drug delivery: Proof of concept study with 0.5% tropicamide in dogs. J Ocul Pharmacol Ther 2021; 2021
[http://dx.doi.org/10.1089/jop.2021.0091] [PMID: 34962150]
[80]
Witika BA, Mweetwa LL, Tshiamo KO, et al. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J Pharm Pharmacol 2021; 73(11): 1427-41.
[http://dx.doi.org/10.1093/jpp/rgab082] [PMID: 34132342]
[81]
Macoon R, Chauhan A. Ophthalmic delivery of hydrophilic drugs through drug-loaded oleogels. Eur J Pharm Sci 2021; 158: 105634.
[http://dx.doi.org/10.1016/j.ejps.2020.105634] [PMID: 33144182]
[82]
Raj Singh TR. Call for special issue papers: Ocular drug delivery technology special issue. J Ocul Pharmacol Ther 2022; 38(1): 122.
[http://dx.doi.org/10.1089/jop.2021.29087.cfp2] [PMID: 35089802]
[83]
Cui M, Zheng M, Wiraja C, et al. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv Sci (Weinh) 2021; 8(21): 2102327.
[http://dx.doi.org/10.1002/advs.202102327] [PMID: 34494724]
[84]
Asim MH, Ijaz M, Mahmood A, et al. Thiolated cyclodextrins: Mucoadhesive and permeation enhancing excipients for ocular drug delivery. Int J Pharm 2021; 599: 120451.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120451] [PMID: 33675922]
[85]
Allison C, Cellum B, Karpinecz B, Nasrallah F, Zderic V. Ultrasound-enhanced transcorneal drug delivery for treatment of fungal keratitis. Cornea 2021; 2021
[http://dx.doi.org/10.1097/ICO.0000000000002916] [PMID: 34759205]
[86]
Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174: 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[87]
Černohlávek M, Brandejsová M, Štěpán P, et al. Insight into the lubrication and adhesion properties of hyaluronan for ocular drug delivery. Biomolecules 2021; 11(10): 1431.
[http://dx.doi.org/10.3390/biom11101431] [PMID: 34680064]
[88]
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021; 174: 482-503.
[http://dx.doi.org/10.1016/j.addr.2021.05.010] [PMID: 34015417]
[89]
Wang L, Pan H, Gu D, Li P, Su Y, Pan W. A composite system combining self-targeted carbon dots and thermosensitive hydrogels for challenging ocular drug delivery. J Pharm Sci 2021; S0022-3549(21): 00496-502.
[http://dx.doi.org/10.1016/j.xphs.2021.09.026]
[90]
Kicková E, Salmaso S, Mastrotto F, Caliceti P, Urtti A. Pullulan based bioconjugates for ocular dexamethasone delivery. Pharmaceutics 2021; 13(6): 791.
[http://dx.doi.org/10.3390/pharmaceutics13060791] [PMID: 34073275]
[91]
Devi S, Bhatt S, Saini V, Kumar M, Deep A. A review on polymeric nano micelles based delivery to the posterior segment of the eye. Nanosci Nanotechnol Asia 2020; 10(5): 591-601.
[http://dx.doi.org/10.2174/2210681209666190717162913]
[92]
Dandamudi M, McLoughlin P, Behl G, et al. Chitosan-coated PLGA nanoparticles encapsulating triamcinolone acetonide as a potential candidate for sustained ocular drug delivery. Pharmaceutics 2021; 13(10): 1590.
[http://dx.doi.org/10.3390/pharmaceutics13101590] [PMID: 34683883]
[93]
Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: Anti‐VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect 2021; 9(2): e00723.
[http://dx.doi.org/10.1002/prp2.723] [PMID: 33694304]
[94]
Astarita C, Palchetti S, Massaro-Giordano M, et al. Artificial protein coronas enable controlled interaction with corneal epithelial cells: New opportunities for ocular drug delivery. Pharmaceutics 2021; 13(6): 867.
[http://dx.doi.org/10.3390/pharmaceutics13060867] [PMID: 34204664]
[95]
Owodeha-Ashaka K, Ilomuanya MO, Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog Biomater 2021; 10(3): 207-20.
[http://dx.doi.org/10.1007/s40204-021-00164-5] [PMID: 34549376]
[96]
Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv 2021; 28(1): 1397-418.
[http://dx.doi.org/10.1080/10717544.2021.1938756] [PMID: 34184949]
[97]
Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm 2022; S0939-6411(22): 00031-5.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.010]
[98]
Ramos MF, Schafer KA, Sorden SD. Introduction to special issue on ocular pathology and drug development. Toxicol Pathol 2021; 49(3): 417-8.
[http://dx.doi.org/10.1177/0192623320986558] [PMID: 33397210]
[99]
Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: Challenges analysis and recent advances. J Drug Target 2021; 29(7): 687-702.
[http://dx.doi.org/10.1080/1061186X.2021.1878366] [PMID: 33474998]
[100]
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-based nanocarriers as topical drug delivery systems for intraocular diseases. Pharmaceutics 2021; 13(5): 678.
[http://dx.doi.org/10.3390/pharmaceutics13050678] [PMID: 34065059]
[101]
Kumara BN, Shambhu R, Prasad KS. Why chitosan could be apt candidate for glaucoma drug delivery - An overview. Int J Biol Macromol 2021; 176: 47-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.057] [PMID: 33581206]
[102]
Kour J, Kumari N, Sapra B. Ocular prodrugs: Attributes and challenges. Asian J Pharm Sci 2021; 16(2): 175-91.
[http://dx.doi.org/10.1016/j.ajps.2020.08.002] [PMID: 33995612]
[103]
Franco P, De Marco I. Contact lenses as ophthalmic drug delivery systems: A review. Polymers (Basel) 2021; 13(7): 1102.
[http://dx.doi.org/10.3390/polym13071102] [PMID: 33808363]
[104]
Burhan AM, Klahan B, Cummins W, et al. Posterior segment ophthalmic drug delivery: Role of muco-adhesion with a special focus on chitosan. Pharmaceutics 2021; 13(10): 1685.
[http://dx.doi.org/10.3390/pharmaceutics13101685] [PMID: 34683978]
[105]
De Gaetano F, Marino A, Marchetta A, et al. Development of chitosan/cyclodextrin nanospheres for levofloxacin ocular delivery. Pharmaceutics 2021; 13(8): 1293.
[http://dx.doi.org/10.3390/pharmaceutics13081293] [PMID: 34452254]
[106]
Das S, Saha D, Majumdar S, Giri L. Imaging methods for the assessment of a complex hydrogel as an ocular drug delivery system for glaucoma treatment: Opportunities and challenges in preclinical evaluation. Mol Pharm 2022; 19(3): 733-48.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00831] [PMID: 35179892]
[107]
Parenky AC, Wadhwa S, Chen HH, Bhalla AS, Graham KS, Shameem M. Container closure and delivery considerations for intravitreal drug administration. AAPS PharmSciTech 2021; 22(3): 100.
[http://dx.doi.org/10.1208/s12249-021-01949-4] [PMID: 33709236]
[108]
Naftali Ben Haim L, Moisseiev E. Drug delivery via the suprachoroidal space for the treatment of retinal diseases. Pharmaceutics 2021; 13(7): 967.
[http://dx.doi.org/10.3390/pharmaceutics13070967] [PMID: 34206925]
[109]
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606: 120873.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120873] [PMID: 34246741]
[110]
Lee K, Park S, Jo DH, et al. Self-plugging microneedle (SPM) for intravitreal drug delivery. Adv Healthc Mater 2022; 11(12): 2102599.
[http://dx.doi.org/10.1002/adhm.202102599] [PMID: 35192734]
[111]
Durgun ME, Kahraman E. Hacıoğlu M, Güngör S, Özsoy Y. Posaconazole micelles for ocular delivery: In vitro permeation, ocular irritation and antifungal activity studies. Drug Deliv Transl Res 2022; 12(3): 662-75.
[http://dx.doi.org/10.1007/s13346-021-00974-x] [PMID: 33830458]
[112]
Srinivasarao DA, Sreenivasa Reddy S, Bhanuprakash Reddy G, Katti DS. Simultaneous amelioration of diabetic ocular complications in lens and retinal tissues using a non-invasive drug delivery system. Int J Pharm 2021; 608: 121045.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121045] [PMID: 34481006]
[113]
Yi H, Feng Y, Gappa-Fahlenkamp H. Analysis of topical dosing and administration effects on ocular drug delivery in a human eyeball model using computational fluid dynamics. Comput Biol Med 2022; 141: 105016.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105016] [PMID: 34782111]
[114]
Chiaretti A, Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16(9): 1740-50.
[http://dx.doi.org/10.4103/1673-5374.306062] [PMID: 33510063]
[115]
Teba HE, Khalil IA, El Sorogy HM. Novel cubosome based system for ocular delivery of acetazolamide. Drug Deliv 2021; 28(1): 2177-86.
[http://dx.doi.org/10.1080/10717544.2021.1989090] [PMID: 34662264]
[116]
Cardoso S, da Silva CF, Severino P, et al. Genotoxicity assessment of metal-based nanocomposites applied in drug delivery. Materials (Basel) 2021; 14(21): 6551.
[http://dx.doi.org/10.3390/ma14216551] [PMID: 34772074]
[117]
Wuchte LD, DiPasquale SA, Byrne ME. In vivo drug delivery via contact lenses: The current state of the field from origins to present. J Drug Deliv Sci Technol 2021; 63: 102413.
[http://dx.doi.org/10.1016/j.jddst.2021.102413] [PMID: 34122626]
[118]
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm Dev Technol 2021; 26(8): 824-45.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[119]
Zhang T, Jin X, Zhang N, et al. Targeted drug delivery vehicles mediated by nanocarriers and aptamers for posterior eye disease therapeutics: Barriers, recent advances and potential opportunities. Nanotechnology 2022; 33(16): 162001.
[http://dx.doi.org/10.1088/1361-6528/ac46d5] [PMID: 34965522]
[120]
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130: 32-53.
[http://dx.doi.org/10.1016/j.actbio.2021.05.051] [PMID: 34077806]
[121]
Chittasupho C, Junmahasathien T, Chalermmongkol J, Wongjirasakul R, Leesawat P, Okonogi S. Suppression of intracellular reactive oxygen species in human corneal epithelial cells via the combination of quercetin nanoparticles and epigallocatechin gallate and in situ thermosensitive gel formulation for ocular drug delivery. Pharmaceuticals (Basel) 2021; 14(7): 679.
[http://dx.doi.org/10.3390/ph14070679] [PMID: 34358106]
[122]
Badr MY, Abdulrahman NS, Schatzlein AG, Uchegbu IF. A polymeric aqueous tacrolimus formulation for topical ocular delivery. Int J Pharm 2021; 599: 120364.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120364] [PMID: 33571621]
[123]
Abdelhakeem E, El-nabarawi M, Shamma R. Effective ocular delivery of eplerenone using nanoengineered lipid carriers in Rabbit model. Int J Nanomedicine 2021; 16: 4985-5002.
[http://dx.doi.org/10.2147/IJN.S319814] [PMID: 34335024]
[124]
Jiang X, Zhao H, Li W. Microneedle-mediated transdermal delivery of drug-carrying nanoparticles. Front Bioeng Biotechnol 2022; 10: 840395.
[http://dx.doi.org/10.3389/fbioe.2022.840395] [PMID: 35223799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy