Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Interpenetrating Polymer Networks of Polyacrylamide with Polyacrylic and Polymethacrylic Acids and Their Application for Modified Drug Delivery - a Flash Review

Author(s): Marin Simeonov*, Bistra Kostova and Elena Vassileva

Volume 11, Issue 1, 2023

Published on: 19 October, 2022

Page: [25 - 33] Pages: 9

DOI: 10.2174/2211738510666220919103514

Price: $65

Abstract

Polyacrylic and polymethacrylic acids, in combination with polymers such as polyacrylamide, provide the ability for controlled and sustained drug delivery since they represent pHand temperature responsiveness. In addition, the synthesis techniques can be used to develop a higher level of supramolecular structures as the interpenetrating polymer networks - as bulk hydrogels or micro-/nanogels. They can provide the opportunity to organize and build up state-ofthe- art carriers for different types of drugs, thus providing the ability to control their loading capacity and drug release performance. This flash review aims to summarize the efforts for synthesizing such interpenetrating polymer networks and their properties and to demonstrate the authors' contributions to this field.

Keywords: Interpenetrating polymer networks, hydrogel, microgel, drug delivery, poly(acrylic acid), poly(methacrylic acid), polyacrylamide

Graphical Abstract

[1]
Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl Chem 1996; 68(12): 2287-311.
[http://dx.doi.org/10.1351/pac199668122287]
[2]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[3]
Zhao Z, Li Q, Qin X, Zhang M, Du Q, Luan Y. An injectable hydrogel reshaping adenosinergic axis for cancer therapy. Adv Funct Mater 2022; 32(24): 2200801.
[http://dx.doi.org/10.1002/adfm.202200801]
[4]
Li Q, Zhao Z, Qin X, et al. A checkpoint‐regulatable immune niche created by injectable hydrogel for tumor therapy. Adv Funct Mater 2021; 31(37): 2104630.
[http://dx.doi.org/10.1002/adfm.202104630]
[5]
Swift T, Swanson L, Geoghegan M, Rimmer S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 2016; 12(9): 2542-9.
[http://dx.doi.org/10.1039/C5SM02693H] [PMID: 26822456]
[6]
Schüwer N, Klok HA. Tuning the pH sensitivity of poly(methacrylic acid) brushes. Langmuir 2011; 27(8): 4789-96.
[http://dx.doi.org/10.1021/la200347u] [PMID: 21425827]
[7]
Atayde EC Jr, Montalbo RCK, Arco SD. Linear and hyperbranched copolymers of PEG-based acrylates and methacrylic acid as pH-responsive hydrophobic drug carriers. Mater Sci Forum 2018; 940: 15-20.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.940.15]
[8]
Owens DE, Jian Y, Fang JE, Slaughter BV, Chen YH, Peppas NA. Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 2007; 40(20): 7306-10.
[http://dx.doi.org/10.1021/ma071089x]
[9]
Zhang J, Peppas NA. Molecular interactions in poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymer networks. J Appl Polym Sci 2001; 82(5): 1077-82.
[http://dx.doi.org/10.1002/app.1942]
[10]
Blanco MD, García O, Olmo R, Teijón JM, Katime I. Release of 5-fluorouracil from poly(acrylamide-co-monopropyl itaconate) hydrogels. J Chromatogr, Biomed Appl 1996; 680(1-2): 243-53.
[http://dx.doi.org/10.1016/0378-4347(95)00401-7]
[11]
Ferreira L, Vidal MM, Gil MH. Design of a drug-delivery system based on polyacrylamide hydrogels evaluation of structural properties. Chem Educ 2001; 6(2): 100-3.
[http://dx.doi.org/10.1007/s00897010461a]
[12]
Katono H, Maruyama A, Sanui K, Ogata N, Okano T, Sakurai Y. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid). J Control Release 1991; 16(1-2): 215-27.
[http://dx.doi.org/10.1016/0168-3659(91)90045-F]
[13]
Katono H, Sanui K, Ogata N, Okano T, Sakurai Y. Thermo-responsive IPNs composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Polym J 1991; 23(10): 1179-89.
[http://dx.doi.org/10.1295/polymj.23.1179]
[14]
Wang Q, Li S, Wang Z, Liu H, Li C. Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 2009; 111(3): 1417-25.
[http://dx.doi.org/10.1002/app.29026]
[15]
Michaels AS, Morelos O. Polyelectrolyte adsorption by kaolinite. Ind Eng Chem 1955; 47(9): 1801-9.
[http://dx.doi.org/10.1021/ie50549a029]
[16]
Dickhaus BN, Priefer R. Determination of polyelectrolyte pKa values using surface-to-air tension measurements. Colloids Surf A Physicochem Eng Asp 2016; 488: 15-9.
[http://dx.doi.org/10.1016/j.colsurfa.2015.10.015]
[17]
Simeonov M, Kostova B, Vassileva E. Interpenetrating polymer networks of poly(acrylic acid) and polyacrylamide for sustained verapamil hydrochloride release. Macromol Symp 2015; 358(1): 225-31.
[http://dx.doi.org/10.1002/masy.201500014]
[18]
Simeonov M, Monova A, Kostova B, Vassileva E. Drug transport in stimuli responsive acrylic and methacrylic interpenetrating polymer networks. J Appl Polym Sci 2017; 134(42): 45380.
[http://dx.doi.org/10.1002/app.45380]
[19]
Available from: https://www.drugs.com/pro/verapamil.html (Accessed on: November 5, 2021).
[20]
Simeonov M, Kostova B, Vassileva E. Interpenetrating polymer networks of poly(methacrylic acid) and polyacrylamide: Synthesis, characterization and potential application for sustained drug delivery. RSC Advances 2016; 6(69): 64239-46.
[http://dx.doi.org/10.1039/C6RA14067J]
[21]
Bal A, Özkahraman B. Özbaş Z. Preparation and characterization of pH responsive poly(methacrylic acid-acrylamide-n-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J Appl Polym Sci 2015; 133(13)
[http://dx.doi.org/10.1002/app.43226]
[22]
Bouillot P, Vincent B. A comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles. Colloid Polym Sci 2000; 278(1): 74-9.
[http://dx.doi.org/10.1007/s003960050012]
[23]
Xiao XC, Chu LY, Chen WM, Zhu JH. Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer (Guildf) 2005; 46(9): 3199-209.
[http://dx.doi.org/10.1016/j.polymer.2005.01.075]
[24]
Xiao X, Zhuo R, Xu J, Chen L. Effects of reaction temperature and reaction time on positive thermosensitivity of microspheres with poly(acrylamide)/poly(acrylic acid) IPN shells. Eur Polym J 2006; 42(2): 473-8.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.07.011]
[25]
Xiao XC, Chu L-Y, Chen W-M, Wang S, Li Y. Positively thermo-sensitive monodisperse core–shell microspheres. Adv Funct Mater 2003; 13(11): 847-52.
[http://dx.doi.org/10.1002/adfm.200304513]
[26]
Ghorbaniazar P, Sepehrianazar A, Eskandani M, Nabi-Meibodi M, Kouhsoltani M, Hamishehkar H. Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv Pharm Bull 2015; 5(2): 269-75.
[http://dx.doi.org/10.15171/apb.2015.037] [PMID: 26236667]
[27]
Jeong JO, Park JS, Kim EJ, Jeong SI, Lee JY, Lim YM. Preparation of radiation cross-linked poly(acrylic acid) hydrogel containing metronidazole with enhanced antibacterial activity. Int J Mol Sci 2019; 21(1): 187.
[http://dx.doi.org/10.3390/ijms21010187] [PMID: 31888070]
[28]
Ganguly S, Maity PP, Mondal S, et al. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C 2018; 92: 34-51.
[http://dx.doi.org/10.1016/j.msec.2018.06.034] [PMID: 30184759]
[29]
Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 2011; 403(1-2): 262-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.032] [PMID: 20971177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy