Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Nanotechnology: Newer Approach in Insulin Therapy

Author(s): Pallavi Phadtare, Devendra Patil and Shivani Desai*

Volume 11, Issue 1, 2023

Published on: 02 November, 2022

Page: [3 - 9] Pages: 7

DOI: 10.2174/2211738510666220928111142

Price: $65

Abstract

Insulin is a peptide hormone released by pancreatic beta cells. An autoimmune reaction in diabetes mellitus type 1 causes the beta cells to die, preventing insulin from being produced or released into the bloodstream; that impacts 30 million people globally and is linked to shortened lifespan due to acute and chronic repercussions. Insulin therapy aims to replicate normal pancreatic insulin secretion, which includes low levels of insulin that are always present to support basic metabolism, as well as the two-phase secretion of additional insulin in response to high blood sugar - an initial spike in secreted insulin, followed by an extended period of continued insulin secretion. This is performed by combining various insulin formulations at varying rates and lengths of time. Since the beginning of human insulin use, several advances in insulin formulations have been made to help meet these aims as much as possible, resulting in improved glycaemic control while limiting hypoglycemia. In this review, we looked at devices used by patients with type 1 diabetes, such as insulin pumps, continuous glucose monitors, and, more recently, systems that combine a pump with a monitor for algorithm-driven insulin administration automation. We intend to provide insight into supplementary therapies and nanotechnology employed in insulin therapy as a result of our review.

Keywords: Basal Bolus Insulin, Continuous Glucose Monitoring (CGM), Insulin glargine U300, Insulin Pump Therapy, Nanotechnology

Graphical Abstract

[1]
Haller MJ, Atkinson MA, Schatz D. Type 1 diabetes mellitus: Etiology, presentation, and management. Pediatr Clin North Am 2005; 52(6): 1553-78.
[http://dx.doi.org/10.1016/j.pcl.2005.07.006] [PMID: 16301083]
[2]
Horvath K, Jeitler K, Berghold A, et al. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. Cochrane Libr 2007; 2(2): CD005613.
[http://dx.doi.org/10.1002/14651858.CD005613.pub3] [PMID: 17443605]
[3]
Langendam M, Luijf YM, Hooft L, DeVries JH, Mudde AH, Scholten RJPM. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Libr 2012; 2012(2): CD008101.
[http://dx.doi.org/10.1002/14651858.CD008101.pub2] [PMID: 22258980]
[4]
Mulinacci G, Alonso GT, Snell-Bergeon JK, Shah VN. Glycemic outcomes with early initiation of continuous glucose monitoring system in recently diagnosed patients with type 1 diabetes. Diabetes Technol Ther 2019; 21(1): 6-10.
[http://dx.doi.org/10.1089/dia.2018.0257] [PMID: 30575413]
[5]
Wojciechowski P. Ryś P, Lipowska A, Gawęska M, Małecki MT. Efficacy and safety comparison of continuous glucose monitoring and self-monitoring of blood glucose in type 1 diabetes. Systematic review and meta-analysis. Pol Arch Med Wewn 2011; 121(10): 333-44.
[http://dx.doi.org/10.20452/pamw.1087] [PMID: 22045094]
[6]
Rewers M, Pihoker C, Donaghue K, Hanas R, Swift P, Klingensmith GJ. Assessment and monitoring of glycemic control in children and adolescents with diabetes. Pediatr Diabetes 2007; 8(6): 408-18.
[http://dx.doi.org/10.1111/j.1399-5448.2007.00352.x] [PMID: 18036070]
[7]
Evans M, Chubb B, Gundgaard J. Pediatr. Cost effectiveness of insulin degludec versus insulin glargine in adults with type 1 and type 2 diabetes mellitus. Diabetes Ther 2015; 104: 164-76.
[8]
Nawaz MS, Shah KU, Khan TM, et al. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus. Diabetes Metab Syndr 2017; 11 (Suppl. 2): S833-9.
[http://dx.doi.org/10.1016/j.dsx.2017.07.003] [PMID: 28709853]
[9]
Nimri R, Nir J, Phillip M. Insulin pump therapy. Am J Ther 2020; 27(1): e30-41.
[http://dx.doi.org/10.1097/MJT.0000000000001097] [PMID: 31833871]
[10]
Payne FW, Ledden B, Lamps G. Capabilities of next generation patch pump: Improved precision, instant occlusion detection, and dual-hormone therapy. J Diabetes Sci Technol 2019; 13(1): 49-54.
[PMID: 29792066]
[11]
Peyrot M, Dreon D, Zraick V, Cross B, Tan MH. Patient perceptions and preferences for a mealtime insulin delivery patch. Diabetes Ther 2018; 9(1): 297-307.
[http://dx.doi.org/10.1007/s13300-017-0365-1] [PMID: 29327220]
[12]
Hussain T, Akle M, Nagelkerke N, Deeb A. Comparative study on treatment satisfaction and health perception in children and adolescents with type 1 diabetes mellitus on multiple daily injection of insulin, insulin pump and sensor-augmented pump therapy. SAGE Open Med 2017; 5: 2050312117694938.
[http://dx.doi.org/10.1177/2050312117694938] [PMID: 28321303]
[13]
Beck RW, Bergenstal RM, Laffel LM, Pickup JC. Advances in technology for management of type 1 diabetes. Lancet 2019; 394(10205): 1265-73.
[http://dx.doi.org/10.1016/S0140-6736(19)31142-0] [PMID: 31533908]
[14]
Boughton CK, Hovorka R. Is an artificial pancreas (closed-loop system) for type 1 diabetes effective? Diabet Med 2019; 36(3): 279-86.
[http://dx.doi.org/10.1111/dme.13816] [PMID: 30183096]
[15]
Knebel T, Neumiller JJ. Medtronic minimed 670G hybrid closed-loop system. Clin Diabetes 2019; 37(1): 94-5.
[http://dx.doi.org/10.2337/cd18-0067] [PMID: 30705505]
[16]
Brown S, Raghinaru D, Emory E, Kovatchev B. First look at control-IQ: A new-generation automated insulin delivery system. Diabetes Care 2018; 41(12): 2634-6.
[http://dx.doi.org/10.2337/dc18-1249] [PMID: 30305346]
[17]
Chen NS, Boughton CK, Hartnell S, et al. User engagement with the CamAPS FX hybrid closed-loop app according to age and user characteristics. Diabetes Care 2021; 44(7): e148-50.
[http://dx.doi.org/10.2337/dc20-2762] [PMID: 34021021]
[18]
Hanaire H, Franc S, Borot S, et al. Efficacy of the Diabeloop closed‐loop system to improve glycaemic control in patients with type 1 diabetes exposed to gastronomic dinners or to sustained physical exercise. Diabetes Obes Metab 2020; 22(3): 324-34.
[http://dx.doi.org/10.1111/dom.13898] [PMID: 31621186]
[19]
Cobry EC, Berget C, Messer LH, Forlenza GP. Review of the Omnipod ® 5 automated glucose control system powered by Horizon™ for the treatment of type 1 diabetes. Ther Deliv 2020; 11(8): 507-19.
[http://dx.doi.org/10.4155/tde-2020-0055] [PMID: 32723002]
[20]
Castellanos LE, Balliro CA, Sherwood JS, et al. Performance of the insulin-only ilet bionic pancreas and the bihormonal ilet using dasiglucagon in adults with type 1 diabetes in a home-use setting. Diabetes Care 2021; 44(6): e118-20.
[http://dx.doi.org/10.2337/dc20-1086] [PMID: 33906916]
[21]
Russell SJ, Balliro C, Ekelund M, et al. Improvements in glycemic control achieved by altering the tmax setting in the iLet® bionic pancreas when using fast-acting insulin aspart: A randomized trial. Diabetes Ther 2021; 12(7): 2019-33.
[http://dx.doi.org/10.1007/s13300-021-01087-x] [PMID: 34146238]
[22]
Wilmot EG, Danne T. DIY artificial pancreas systems: The clinician perspective. Lancet Diabetes Endocrinol 2020; 8(3): 183-5.
[http://dx.doi.org/10.1016/S2213-8587(19)30416-4] [PMID: 32085824]
[23]
GlobalData Healthcare. Tidepool Loop and the future of digital diabetes care. 2021. Available from: https://www.medicaldevice-network.com/comment/tidepool-loop-app-fda-approval-type-1-diabetes-digital/
[24]
Chen J, Fan F, Wang JY, et al. The efficacy and safety of SGLT2 inhibitors for adjunctive treatment of type 1 diabetes: A systematic review and meta-analysis. Sci Rep 2017; 7(1): 44128.
[http://dx.doi.org/10.1038/srep44128] [PMID: 28276512]
[25]
Borchard G. Lueβen HL, de Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release 1996; 39(2-3): 131-8.
[http://dx.doi.org/10.1016/0168-3659(95)00146-8]
[26]
Sharma G, Sharma AR, Nam JS, Doss GPC, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13(1): 74.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[27]
Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther 2006; 12(2): 131-8.
[http://dx.doi.org/10.1007/s10989-005-9010-3]
[28]
Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1-2): 271-80.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.025] [PMID: 15778065]
[29]
Lassalle V, Ferreira ML. PLGA based drug delivery systems (DDS) for the sustained release of insulin: Insight into the protein/polyester interactions and the insulin release behavior. J Chem Technol Biotechnol 2010; 85(12): 1588-96.
[http://dx.doi.org/10.1002/jctb.2470]
[30]
Cui F, Tao A, Cun D, Zhang L, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 2007; 96(2): 421-7.
[http://dx.doi.org/10.1002/jps.20750] [PMID: 17051590]
[31]
Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. Int J Pharm 2009; 382(1-2): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.023] [PMID: 19646519]
[32]
Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 2012; 45(5): 632-8.
[http://dx.doi.org/10.1016/j.ejps.2012.01.002] [PMID: 22248882]
[33]
Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 2012; 7(9): 1311-37.
[http://dx.doi.org/10.2217/nnm.12.31] [PMID: 22583576]
[34]
Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001; 46(1-3): 125-48.
[http://dx.doi.org/10.1016/S0169-409X(00)00136-8] [PMID: 11259837]
[35]
Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR. Insulin containing polyethylenimine–dextran sulfate nanoparticles. Int J Pharm 2003; 255(1-2): 139-51.
[http://dx.doi.org/10.1016/S0378-5173(03)00055-3] [PMID: 12672610]
[36]
Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.003] [PMID: 17239471]
[37]
Damgé C, Michel C, Aprahamian M, Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 1988; 37(2): 246-51.
[http://dx.doi.org/10.2337/diab.37.2.246] [PMID: 3292320]
[38]
Graf A, Rades T, Hook SM. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: Optimisation and in vivo evaluation. Eur J Pharm Sci 2009; 37(1): 53-61.
[http://dx.doi.org/10.1016/j.ejps.2008.12.017] [PMID: 19167488]
[39]
Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 2006; 327(1-2): 153-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.026] [PMID: 16935443]
[40]
Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine 2007; 2(4): 743-9.
[PMID: 18203440]
[41]
Yang R, Gao R, Li F, He H, Tang X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev Ind Pharm 2011; 37(2): 139-48.
[http://dx.doi.org/10.3109/03639045.2010.497151] [PMID: 20578879]
[42]
Yang X, Liu Y, Liu C, Zhang N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J Biomed Nanotechnol 2012; 8(5): 834-42.
[http://dx.doi.org/10.1166/jbn.2012.1429] [PMID: 22888755]
[43]
Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010; 5(2): 287-306.
[http://dx.doi.org/10.2217/nnm.09.110] [PMID: 20148639]
[44]
Kang S, Woo J, Kim M, et al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol 2008; 135(2): 210-6.
[http://dx.doi.org/10.1016/j.jbiotec.2008.01.021] [PMID: 18440083]
[45]
Jin Y, Song Y, Zhu X, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012; 33(5): 1573-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.075] [PMID: 22093292]
[46]
Ahmadian E, Eftekhari A, Kavetskyy T, Khosroushahi AY, Turksoy VA, Khalilov R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic Biochem Physiol 2020; 167: 104586.
[http://dx.doi.org/10.1016/j.pestbp.2020.104586] [PMID: 32527420]
[47]
Ahmadian E, Eftekhari A, Babaei H, Nayebi AM, Eghbal MA. Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome C release and the activation of NF-kB. Anticancer Agents Med Chem 2017; 17(11): 1570-7.
[PMID: 28356024]
[48]
Rashidzadeh H, Danafar H, Rahimi H, et al. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine 2021; 16(6): 497-516.
[http://dx.doi.org/10.2217/nnm-2020-0441] [PMID: 33683164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy