Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Evaluation of the Antioxidant, Antidiabetic, and Anticholinesterase Potential of Biogenic Silver Nanoparticles from Khaya grandifoliola

Author(s): Jude Akinyelu*, Abiodun Aladetuyi, Londiwe Simphiwe Mbatha and Olakunle Oladimeji

Volume 11, Issue 1, 2023

Published on: 15 December, 2022

Page: [82 - 92] Pages: 11

DOI: 10.2174/2211738511666221101123633

Price: $65

Abstract

Introduction: In recent years, plant-mediated synthesis of silver nanoparticles has evolved as a promising alternative to traditional synthesis methods. In addition to producing silver nanoparticles with diverse biomedical potential, the biosynthesis approach is known to be inexpensive, rapid, and environmentally friendly.

Objective: This study was aimed at synthesizing silver nanoparticles using ethanolic stem and root bark extracts of Khaya grandifoliola and highlighting the biomedical potential of the nanoparticles by evaluating their antioxidant, antidiabetic and anticholinesterase effects in vitro.

Methods: Silver nanoparticles were prepared using ethanolic stem and root bark extracts of K. grandifoliola as precursors. The biogenic silver nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, scanning electron microscopy and energydispersive X-ray analysis. Furthermore, 2,2-Diphenyl-1-picrylhydrazyl radical scavenging, ferric ion reducing antioxidant power, and nitric oxide scavenging assays were used to determine the antioxidant property of the nanoparticles. The antidiabetic potential of the nanoparticles was determined by evaluating their inhibitory effect on the activity of α-amylase and α-glucosidase. The anticholinesterase potential of the nanoparticles was determined by assessing their inhibitory effect on the activity of acetylcholinesterase and butyrylcholinesterase.

Results: UV-visible spectroscopy showed surface plasmon resonance bands between 425 and 450 nm. Scanning electron microscopy revealed almost round nanoparticles with a maximum size of 91 nm. Fourier transform infrared spectroscopy affirmed the role of the phytoconstituents present in K. grandifoliola as reducing and stabilizing agents. The biogenic silver nanoparticles showed remarkable antioxidant, antidiabetic, and anticholinesterase effects.

Conclusion: Biogenic silver nanoparticles could be useful in biomedical and pharmacological applications.

« Previous
Graphical Abstract

[1]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[2]
Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res 2021; 199(5): 1812-22.
[http://dx.doi.org/10.1007/s12011-020-02304-7] [PMID: 32743762]
[3]
Perumalsamy R, Krishnadhas L. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds. Appl Biochem Biotechnol 2022; 194(3): 1136-48.
[http://dx.doi.org/10.1007/s12010-022-03825-8] [PMID: 35091876]
[4]
Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials (Basel) 2021; 11(5): 1343.
[http://dx.doi.org/10.3390/nano11051343] [PMID: 34065254]
[5]
Wypij M. Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol 2021; 12: 632505.
[http://dx.doi.org/10.3389/fmicb.2021.632505] [PMID: 33967977]
[6]
Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: A review. Applied Biological Chemistry 2017; 60(3): 327-38.
[http://dx.doi.org/10.1007/s13765-017-0285-9]
[7]
Hosny M, Fawzy M, El-Fakharany EM, et al. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. J Environ Chem Eng 2022; 10(1): 106806.
[http://dx.doi.org/10.1016/j.jece.2021.106806]
[8]
Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem 2021; 111: 167-77.
[http://dx.doi.org/10.1016/j.procbio.2021.09.010]
[9]
Singh R, Hano C, Nath G, Sharma B. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules 2021; 11(2): 299.
[http://dx.doi.org/10.3390/biom11020299] [PMID: 33671333]
[10]
Khalil I, Yehye WA, Etxeberria AE, et al. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants 2019; 9(1): 24.
[http://dx.doi.org/10.3390/antiox9010024] [PMID: 31888023]
[11]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[12]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[13]
Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019; 24(23): 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[14]
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021; 190: 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[15]
Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV. The potential benefits of nanotechnology in treating Alzheimer’s disease. BioMed Res Int 2021; 1-9.
[16]
Dikshit P, Kumar J, Das A, et al. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021; 11(8): 902.
[http://dx.doi.org/10.3390/catal11080902]
[17]
Ikram M, Javed B, Raja NI, Mashwani ZR. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine 2021; 16: 249-68.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[18]
Oves M, Ahmar Rauf M, Aslam M, et al. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 2022; 29(1): 460-71.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.007] [PMID: 35002442]
[19]
Khane Y, Benouis K, Albukhaty S, et al. Green synthesis of silver nanoparticles using aqueous Citrus limon Zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 2022; 12(12): 2013.
[http://dx.doi.org/10.3390/nano12122013] [PMID: 35745352]
[20]
Thamer NA. Acute toxicity of green synthesis of silver nanoparticlesusing CROCUS SATIVUD L. on white albino rats. International J Phytopharm 2016; 7(1): 13-6.
[21]
Mukaila YO, Ajao AA, Moteetee ANK. grandifoliola C. DC. (Meliaceae: Sapindales): Ethnobotany, phytochemistry, pharmacological properties, and toxicology. J Ethnopharmacol 2021; 278: 114253.
[http://dx.doi.org/10.1016/j.jep.2021.114253] [PMID: 34058312]
[22]
Kouam AF, Yuan F, Njayou FN, et al. Induction of Mkp-1 and nuclear translocation of Nrf2 by limonoids from Khaya grandifoliola C.DC Protect L-02 hepatocytes against acetaminophen-induced hepatotoxicity. Front Pharmacol 2017; 8: 653.
[http://dx.doi.org/10.3389/fphar.2017.00653] [PMID: 28974930]
[23]
Njar V, Adesanwo J, Raji Y. Methyl angolensate: the antiulcer agent of the stem bark of Entandrophragma angolense. Planta Med 1995; 61(1): 91-2.
[http://dx.doi.org/10.1055/s-2006-958015] [PMID: 7701005]
[24]
Bickii J, Njifutie N, Ayafor Foyere J, Basco LK, Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J Ethnopharmacol 2000; 69(1): 27-33.
[http://dx.doi.org/10.1016/S0378-8741(99)00117-8] [PMID: 10661881]
[25]
Braga TM, Rocha L, Chung TY, et al. Biological activities of Gedunin-A limonoid from the Meliaceae family. Molecules 2020; 25(3): 493.
[http://dx.doi.org/10.3390/molecules25030493] [PMID: 31979346]
[26]
Cheng Z, Zhang Z, Han Y, et al. A review on anti-cancer effect of green tea catechins. J Funct Foods 2020; 74: 104172.
[http://dx.doi.org/10.1016/j.jff.2020.104172]
[27]
Isemura M. Catechin in human health and disease. molecules 2019; 24(3): 528.
[http://dx.doi.org/10.3390/molecules24030528] [PMID: 30717121]
[28]
Afreen A, Ahmed R, Mehboob S, et al. Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater Res Express 2020; 7(7): 075404.
[http://dx.doi.org/10.1088/2053-1591/aba5d0]
[29]
Kaur C, Kapoor HC. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 2002; 37(2): 153-61.
[http://dx.doi.org/10.1046/j.1365-2621.2002.00552.x]
[30]
Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal 2020; 10(3)
[http://dx.doi.org/10.38212/2224-6614.2748]
[31]
Shirwaikar A, Shirwaikar A, Rajendran K, Punitha ISR. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull 2006; 29(9): 1906-10.
[http://dx.doi.org/10.1248/bpb.29.1906] [PMID: 16946507]
[32]
Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 1986; 44(6): 307-15.
[33]
Boora F, Chirisa E, Mukanganyama S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. J Food Process 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/918018]
[34]
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959; 31(3): 426-8.
[http://dx.doi.org/10.1021/ac60147a030]
[35]
Balan K, Qing W, Wang Y, et al. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances 2016; 6(46): 40162-8.
[http://dx.doi.org/10.1039/C5RA24391B]
[36]
Ingkaninan K, de Best CM, van der Heijden R, et al. High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 2000; 872(1-2): 61-73.
[http://dx.doi.org/10.1016/S0021-9673(99)01292-3] [PMID: 10749487]
[37]
Lee S, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[38]
Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2018; 46(1): 211-22.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[39]
Hussain A, Mehmood A, Murtaza G, et al. Environmentally benevolent synthesis and characterization of silver nanoparticles using Olea ferruginea Royle for antibacterial and antioxidant activities. Green Processing and Synthesis 2020; 9(1): 451-61.
[http://dx.doi.org/10.1515/gps-2020-0047]
[40]
Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC. Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 2015; 2015: 1-10.
[41]
Skirtach AG, Dejugnat C, Braun D, et al. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 2005; 5(7): 1371-7.
[http://dx.doi.org/10.1021/nl050693n] [PMID: 16178241]
[42]
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[43]
Flieger J, Franus W, Panek R, et al. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 2021; 26(16): 4986.
[http://dx.doi.org/10.3390/molecules26164986] [PMID: 34443574]
[44]
Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci 2021; 22(7): 3380.
[http://dx.doi.org/10.3390/ijms22073380] [PMID: 33806141]
[45]
Dauthal P, Mukhopadhyay M. In vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. J Nanopart Res 2013; 15(1): 1366.
[http://dx.doi.org/10.1007/s11051-012-1366-7]
[46]
Khan H. Marya, Amin S, Kamal MA, Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed Pharmacother 2018; 101: 860-70.
[http://dx.doi.org/10.1016/j.biopha.2018.03.007] [PMID: 29635895]
[47]
Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: Assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res Int 2018; 25(11): 10418-33.
[http://dx.doi.org/10.1007/s11356-017-9789-4] [PMID: 28762049]
[48]
Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004; 20(16): 6800-7.
[http://dx.doi.org/10.1021/la0497200] [PMID: 15274588]
[49]
Khatoon A, Khan F, Ahmad N, et al. Silver nanoparticles from leaf extract of Mentha piperita: Eco-friendly synthesis and effect on acetylcholinesterase activity. Life Sci 2018; 209: 430-4.
[http://dx.doi.org/10.1016/j.lfs.2018.08.046] [PMID: 30138593]
[50]
Rajakumar G, Gomathi T, Thiruvengadam M, Devi Rajeswari V, Kalpana VN, Chung IM. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb Pathog 2017; 103: 123-8.
[http://dx.doi.org/10.1016/j.micpath.2016.12.019] [PMID: 28025099]
[51]
Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. J Neurochem 2017; 142 (Suppl. 2): 111-21.
[http://dx.doi.org/10.1111/jnc.14052] [PMID: 28791706]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy