Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Overview of 3D and 4D Printing Techniques and their Emerging Applications in Medical Sectors

Author(s): Santosh Kumar and Rakesh Kumar*

Volume 16, Issue 2, 2023

Published on: 24 November, 2022

Page: [143 - 170] Pages: 28

DOI: 10.2174/2666145416666221019105748

Price: $65

Abstract

Additive manufacturing is a highly effective and versatile technology, especially in the medical sector, due to its customization, material complexity, design flexibility, waste minimization, and ability to fabricate intricate shapes that are cumbersome to manufacture by conventional manufacturing techniques. 4D printing plays a significant role in the medical field, especially in the areas not covered by 3D printing technologies, such as smart implants, devices and tools. Also, 4D printing helps doctors to treat more patients with high accuracy and quality. Hence, this manuscript aims to provide an overview of distinct 3D and 4D printing techniques and their emerging applications in the medical sector. A study of 3D printing technologies is presented by explaining the working principles of distinct 3D printing methods: stereo lithography, fusion deposition modeling, inkjet printing, selective laser sintering, selective laser melting and electron beam melting. In addition, the emerging applications of 3D printing in medical sectors (e.g., bioprinting, surgical guides, pharmaceuticals, prostheses, medical devices, dentistry, physiotherapy, etc.), as well as challenges and the future scope of 3D printing, are also discussed. Further, the concept of 4D printing, the market for both 3D and 4D printing, the benefits of 4D printing, the comparison of 3D and 4D printing, limitations, applications, and the future scope of 4D printing in the medical sector are also covered.

Graphical Abstract

[1]
Jiménez M, Romero L, Domínguez IA, Espinosa MM, Domínguez M. Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity 2019; 2019: 1-30.
[http://dx.doi.org/10.1155/2019/9656938]
[2]
Vanderploeg A, Lee SE, Mamp M. The application of 3D printing technology in the fashion industry. Int J Fashion Des Technol Educ 2017; 10(2): 170-9.
[http://dx.doi.org/10.1080/17543266.2016.1223355]
[3]
Ahmed GH, Askandar NH, Jumaa GB. A review of largescale 3DCP: Material characteristics, mix design, printing process, and reinforcement strategies. Structures 2022; 43: 508-32.
[http://dx.doi.org/10.1016/j.istruc.2022.06.068]
[4]
Parupelli SK, Desai S. A comprehensive review of additive manufacturing (3D printing): Processes, applications and future potential. Am J Appl Sci 2019; 16(8): 244-72.
[http://dx.doi.org/10.3844/ajassp.2019.244.272]
[5]
Wohlers Associates. America makes offer 1-day design for additive manufacturing course. Available from: https://www.moldmakingtechnology.com/news/wohlers-associates-america-makes-offer-1-day-design-for-additive-manufacturing-course (accessed on: 2022-07-20).
[6]
V C. Worldwide spending on final part production by AM increases. Available from: https://www.3dnatives.com/en/wohlers-report-2020-230320204/# (accessed 2022 -08 -16).
[7]
Additive Manufacturing Society of India.. AMSI educates and promotes the latest developments and applications in 3D printing & additive manufacturing technologies. Available from: https://www.amsi.org.in/ (accessed 2022-07-20).
[8]
Beckmann B, Giani A, Carbone J, Koudal P, Salvo J, Barkley J. Developing the digital manufacturing commons: A national initiative for us manufacturing innovation. Procedia Manuf 2016; 5: 182-94.
[http://dx.doi.org/10.1016/j.promfg.2016.08.017]
[9]
Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies. Boston, MA: Springer US 2010.
[http://dx.doi.org/10.1007/978-1-4419-1120-9]
[10]
Kumar S. Influence of processing conditions on the mechanical, tribological and fatigue performance of cold spray coating: A review. Surf Eng 2022; 38(4): 324-65.
[http://dx.doi.org/10.1080/02670844.2022.2073424]
[11]
Diegel O. Additive manufacturing. Compr Mater Process 2014; 3-18.
[http://dx.doi.org/10.1016/B978-0-08-096532-1.01000-1]
[12]
Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit Manuf 2019; 30: 100894.
[http://dx.doi.org/10.1016/j.addma.2019.100894]
[13]
Dommati H, Ray SS, Wang JC, Chen SS. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Advances 2019; 9(29): 16869-83.
[http://dx.doi.org/10.1039/C9RA00872A] [PMID: 35516413]
[14]
Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today 2018; 21(1): 22-37.
[http://dx.doi.org/10.1016/j.mattod.2017.07.001]
[15]
Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater 2019; 1(4): 593-611.
[http://dx.doi.org/10.1021/acsapm.8b00165]
[16]
Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos, Part B Eng 2017; 110: 442-58.
[http://dx.doi.org/10.1016/j.compositesb.2016.11.034]
[17]
Kazmer D. Three-dimensional printing of plastics. Applied Plastics Engineering Handbook. 2017; pp. 617-34.
[http://dx.doi.org/10.1016/B978-0-323-39040-8.00029-8]
[18]
Masood SH. Advances in fused deposition modeling. Comprehensive Materials Processing. 2014; pp. 69-91.
[http://dx.doi.org/10.1016/B978-0-08-096532-1.01002-5]
[19]
Kumar R, Kumar M, Chohan JS. The role of additive manufacturing for biomedical applications: A critical review. J Manuf Process 2021; 64: 828-50.
[http://dx.doi.org/10.1016/j.jmapro.2021.02.022]
[20]
Soleimani-Gorgani A. Inkjet printing. Printing on Polymers. 2016; pp. 231-46.
[http://dx.doi.org/10.1016/B978-0-323-37468-2.00014-2]
[21]
Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: A state of the art. J Healthc Eng 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/5340616] [PMID: 31019667]
[22]
Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: Bioprinting. Int Mater Rev 2014; 59(8): 430-48.
[http://dx.doi.org/10.1179/1743280414Y.0000000040]
[23]
Kumar R, Kumar M, Chohan JS. Material-specific properties and applications of additive manufacturing techniques: A comprehensive review. Bull Mater Sci 2021; 44(3): 181.
[http://dx.doi.org/10.1007/s12034-021-02364-y]
[24]
Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci 2015; 74: 401-77.
[http://dx.doi.org/10.1016/j.pmatsci.2015.03.002]
[25]
Bourell DL. Sintering in laser sintering. J Miner Met Mater Soc 2016; 68(3): 885-9.
[http://dx.doi.org/10.1007/s11837-015-1780-2]
[26]
Deckard C. Method and apparatus for producing parts by selective sintering. U.S. Patent 4,863,538, 1989.
[27]
Jonkers N, van Dijk WJ, Vonk NH, van Dommelen JAW, Geers MGD. Anisotropic mechanical properties of selective laser sintered starch-based food. J Food Eng 2022; 318: 110890.
[http://dx.doi.org/10.1016/j.jfoodeng.2021.110890]
[28]
Kumar R, Kumar S. Trending applications of 3D printing: A study. Asian J Eng Appl Technol 2020; 9(1): 1-12.
[http://dx.doi.org/10.51983/ajeat-2020.9.1.1085]
[29]
Zhang Y, Wu L, Guo X, et al. Additive manufacturing of metallic materials: A review. J Mater Eng Perform 2018; 27(1): 1-13.
[http://dx.doi.org/10.1007/s11665-017-2747-y]
[30]
Song X, Zhai W, Huang R, Fu J, Fu MW, Li F. Metalbased 3D- printed micro parts & structures. Encyclopedia of Materials: Metals and Alloys. 2022; pp. 448-61.
[http://dx.doi.org/10.1016/B978-0-12-819726-4.00009-0]
[31]
Aksa HC, Hacısalihoğlu İ, Yıldız F, et al. Effects of fabrication parameters and post-processing treatments on the mechanical and tribological behavior of surface-enhanced copper based materials by selective laser melting. J Mater Process Technol 2022; 304: 117564.
[http://dx.doi.org/10.1016/j.jmatprotec.2022.117564]
[32]
Vayre B, Vignat F, Villeneuve F. Identification on some design key parameters for additive manufacturing: Application on electron beam melting. Procedia CIRP 2013; 7: 264-9.
[http://dx.doi.org/10.1016/j.procir.2013.05.045]
[33]
Zäh MF, Lutzmann S. Modelling and simulation of electron beam melting. Prod Eng 2010; 4(1): 15-23.
[http://dx.doi.org/10.1007/s11740-009-0197-6]
[34]
Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 2012; 28(1): 1-14.
[http://dx.doi.org/10.1016/S1005-0302(12)60016-4]
[35]
Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017; 9(2): 024102.
[http://dx.doi.org/10.1088/1758-5090/aa7279] [PMID: 28589921]
[36]
Pasricha A, Greeninger R. Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. CTRJ 2018; 5(1): 30.
[http://dx.doi.org/10.1186/s40691-018-0152-2]
[37]
Javaid M, Haleem A. Additive manufacturing applications in medical cases: A literature based review. Alex J Med 2018; 54(4): 411-22.
[http://dx.doi.org/10.1016/j.ajme.2017.09.003]
[38]
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-printed bioactive glasses be the future of bone tissue engineering? Polymers (Basel) 2022; 14(8): 1627.
[http://dx.doi.org/10.3390/polym14081627] [PMID: 35458377]
[39]
[40]
Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: A state-of-the-art review. Addit Manuf 2019; 27: 461-73.
[http://dx.doi.org/10.1016/j.addma.2019.03.015]
[41]
Negru N, Leba M, Rosca S, Marica L, Ionica A. A new approach on 3D scanning-printing technologies with medical applications. IOP Conf Series Mater Sci Eng 2019; 572(1): 012049.
[http://dx.doi.org/10.1088/1757-899X/572/1/012049]
[42]
Durfee WK, Iaizzo PA. Medical applications of 3D printing. Eng Med 2019; 527-43.
[http://dx.doi.org/10.1016/B978-0-12-813068-1.00021-X]
[43]
Sidhu HS, Kumar S, Kumar R, Singh S. Experimental investigation on design and analysis of prosthetic leg. J Xidian Univ 2020; 14(5): 4486-501.
[http://dx.doi.org/10.37896/jxu14.5/491]
[44]
Salmi M. Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J Med Eng 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/6191526] [PMID: 27433470]
[45]
Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 2013; 41(7): 603-9.
[http://dx.doi.org/10.1016/j.jcms.2012.11.041] [PMID: 23333490]
[46]
Li J, Stachowski M, Zhang Z. Application of responsive polymers in implantable medical devices and biosensors. Switchable and Responsive Surfaces and Materials for Biomedical Applications. 2015; pp. 259-98.
[http://dx.doi.org/10.1016/B978-0-85709-713-2.00011-0]
[47]
Poukens J, Laeve IP, Beerens M, et al. Custom surgical implants using additive manufacturing. Digital Dental News 2010; 4: 30-3. Available from: https://www.researchgate.net/publication/278740308
[48]
Bedi TS, Kumar S, Kumar R. Corrosion performance of hydroxyapaite and hydroxyapaite/titania bond coating for biomedical applications. Mater Res Express 2020; 7(1): 015402.
[http://dx.doi.org/10.1088/2053-1591/ab5cc5]
[49]
Kumar S, Kumar R. Influence of processing conditions on the properties of thermal sprayed coating: A review. Surf Eng 2021; 37(11): 1339-72.
[http://dx.doi.org/10.1080/02670844.2021.1967024]
[50]
Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: A review. Mater Sci Eng C 2016; 66: 315-22.
[http://dx.doi.org/10.1016/j.msec.2016.04.101] [PMID: 27207068]
[51]
Gibbs DMR, Vaezi M, Yang S, Oreffo ROC. Hope versus hype: What can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 2014; 9(4): 535-49.
[http://dx.doi.org/10.2217/rme.14.20] [PMID: 25159068]
[52]
Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257(9): 1815-22.
[http://dx.doi.org/10.1007/s00417-019-04312-3] [PMID: 30993457]
[53]
Alheib O, da Silva LP, Youn YH, Kwon IK, Reis RL, Correlo VM. 3D bioprinting. Addit Manuf 2021; 599-633.
[http://dx.doi.org/10.1016/B978-0-12-818411-0.00016-1]
[54]
Papaioannou T, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: Applications on artificial blood vessel fabrication. Acta Cardiol Sin 2019; 35(3): 284-9.
[http://dx.doi.org/10.6515/ACS.201905_35(3).20181115A]
[55]
Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharm Sci 2020; 15(5): 529-57.
[http://dx.doi.org/10.1016/j.ajps.2019.11.003] [PMID: 33193859]
[56]
Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: Approaches, applications and future prospects. J Transl Med 2016; 14(1): 271.
[http://dx.doi.org/10.1186/s12967-016-1028-0] [PMID: 27645770]
[57]
Ihalainen P, Määttänen A, Sandler N. Printing technologies for biomolecule and cell-based applications. Int J Pharm 2015; 494(2): 585-92.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.033] [PMID: 25683144]
[58]
Da Veiga Beltrame E, Tyrwhitt-Drake J, Roy I, Shalaby R, Suckale J, Pomeranz Krummel D. 3D printing of biomolecular models for research and pedagogy. J Vis Exp 2017; (121): 55427.
[http://dx.doi.org/10.3791/55427] [PMID: 28362403]
[59]
Zhou X, Wu H, Wen H, Zheng B. Advances in single-cell printing. Micromachines (Basel) 2022; 13(1): 80.
[http://dx.doi.org/10.3390/mi13010080] [PMID: 35056245]
[60]
Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: A novel avenue for manufacturing tissues and organs. Engineering (Beijing) 2019; 5(4): 777-94.
[http://dx.doi.org/10.1016/j.eng.2019.03.009]
[61]
Othon CM, Wu X, Anders JJ, Ringeisen BR. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 2008; 3(3): 034101.
[http://dx.doi.org/10.1088/1748-6041/3/3/034101] [PMID: 18689930]
[62]
Gu Q, Hao J, Lu Y, Wang L, Wallace GG, Zhou Q. Three-dimensional bio-printing. Sci China Life Sci 2015; 58(5): 411-9.
[http://dx.doi.org/10.1007/s11427-015-4850-3] [PMID: 25921944]
[63]
Shapira A, Dvir T. 3D tissue and organ printing-Hope and reality. Adv Sci (Weinh) 2021; 8(10): 2003751.
[http://dx.doi.org/10.1002/advs.202003751] [PMID: 34026444]
[64]
Ozbolat IT, Yin Yu. Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans Biomed Eng 2013; 60(3): 691-9.
[http://dx.doi.org/10.1109/TBME.2013.2243912] [PMID: 23372076]
[65]
Ventola CL. Medical applications for 3D printing: Current and projected uses. P&T 2014; 39(10): 704-11.
[66]
Shimizu K, Ito A, Arinobe M, et al. Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J Biosci Bioeng 2007; 103(5): 472-8.
[http://dx.doi.org/10.1263/jbb.103.472] [PMID: 17609164]
[67]
Hoch E, Tovar GEM, Borchers K. Bioprinting of artificial blood vessels: Current approaches towards a demanding goal. Eur J Cardiothorac Surg 2014; 46(5): 767-78.
[http://dx.doi.org/10.1093/ejcts/ezu242] [PMID: 24970571]
[68]
Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today 2016; 21(8): 1257-71.
[http://dx.doi.org/10.1016/j.drudis.2016.04.006] [PMID: 27086009]
[69]
Kong HH. Skin microbiome: Genomics-based insights into the diversity and role of skin microbes. Trends Mol Med 2011; 17(6): 320-8.
[http://dx.doi.org/10.1016/j.molmed.2011.01.013] [PMID: 21376666]
[70]
Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009; 30(8): 1587-95.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.009] [PMID: 19108884]
[71]
Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 2017; 7(1): 9416.
[http://dx.doi.org/10.1038/s41598-017-10060-3] [PMID: 28842703]
[72]
DeSilva M, Munoz FM, Mcmillan M, et al. Congenital anomalies: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2016; 34(49): 6015-26.
[http://dx.doi.org/10.1016/j.vaccine.2016.03.047] [PMID: 27435386]
[73]
Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater 2019; 8(7): 1801048.
[http://dx.doi.org/10.1002/adhm.201801048] [PMID: 30734530]
[74]
Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: A review of current surgical applications. J Surg Res 2015; 199(2): 512-22.
[http://dx.doi.org/10.1016/j.jss.2015.06.051] [PMID: 26255224]
[75]
George M, Aroom KR, Hawes HG, Gill BS, Love J. 3D printed surgical instruments: The design and fabrication process. World J Surg 2017; 41(1): 314-9.
[http://dx.doi.org/10.1007/s00268-016-3814-5] [PMID: 27822724]
[76]
Gargiulo P, Árnadóttir Í, Gíslason M, Edmunds K, Ólafsson I. New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/1439643]
[77]
Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014; 86(7): 3240-53.
[http://dx.doi.org/10.1021/ac403397r] [PMID: 24432804]
[78]
Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 2012; 6(2): 149-55.
[http://dx.doi.org/10.2174/187221112800672949] [PMID: 22436025]
[79]
Sun Y, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 2015; 27(47): 7847-53.
[http://dx.doi.org/10.1002/adma.201504122] [PMID: 26498272]
[80]
Cuellar JS, Smit G, Zadpoor AA, Breedveld P. Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. Proc Inst Mech Eng H 2018; 232(9): 962-71.
[http://dx.doi.org/10.1177/0954411918794734] [PMID: 30114955]
[81]
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems — a passing fad or the future? Adv Drug Deliv Rev 2018; 132: 139-68.
[http://dx.doi.org/10.1016/j.addr.2018.05.006] [PMID: 29778901]
[82]
Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 2018; 545(1-2): 144-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.055] [PMID: 29705104]
[83]
Louzao I, Koch B, Taresco V, et al. Identification of novel “inks” for 3D printing using high-throughput screening: Bioresorbable photocurable polymers for controlled drug delivery. ACS Appl Mater Interfaces 2018; 10(8): 6841-8.
[http://dx.doi.org/10.1021/acsami.7b15677] [PMID: 29322768]
[84]
Arafat B, Wojsz M, Isreb A, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci 2018; 118: 191-9.
[http://dx.doi.org/10.1016/j.ejps.2018.03.019] [PMID: 29559404]
[85]
Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 2017; 261: 207-15.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.025] [PMID: 28668378]
[86]
Verstraete G, Samaro A, Grymonpré W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 2018; 536(1): 318-25.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.002] [PMID: 29217471]
[87]
Tagami T, Nagata N, Hayashi N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int J Pharm 2018; 543(1-2): 361-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.057] [PMID: 29605693]
[88]
Kwak MK, Jeong HE, Suh KY. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv Mater 2011; 23(34): 3949-53.
[http://dx.doi.org/10.1002/adma.201101694] [PMID: 21796686]
[89]
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016; 234: 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[90]
Ye Y, Yu J, Wang C, et al. Microneedles integrated with pancreatic cells and synthetic glucose‐signal amplifiers for smart insulin delivery. Adv Mater 2016; 28(16): 3115-21.
[http://dx.doi.org/10.1002/adma.201506025] [PMID: 26928976]
[91]
Zuniga JM, Peck J, Srivastava R, Katsavelis D, Carson A. An open source 3D-printed transitional hand prosthesis for children. J Prosthet Orthot 2016; 28(3): 103-8.
[http://dx.doi.org/10.1097/JPO.0000000000000097]
[92]
Fulzele A, Kocha H, Jain A, Sawant D, Raut A. 3D printed prosthetic arm. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS).
[http://dx.doi.org/10.1109/ICIIS51140.2020.9342659]
[93]
Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: Fused filament fabrication and semi solid extrusion. Molecules 2022; 27(9): 2784.
[http://dx.doi.org/10.3390/molecules27092784] [PMID: 35566146]
[94]
Dodziuk H. Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 2016; 3(3): 283-93.
[http://dx.doi.org/10.5114/kitp.2016.62625] [PMID: 27785150]
[95]
Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2015; 2: 25.
[http://dx.doi.org/10.3389/fsurg.2015.00025] [PMID: 26137465]
[96]
Koprnický J, Najman P, Šafka J. 3D printed bionic prosthetic hands. IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). 1-6.
[http://dx.doi.org/10.1109/ECMSM.2017.7945898]
[97]
ten Kate J, Smit G, Breedveld P. 3D-printed upper limb prostheses: A review. Disabil Rehabil Assist Technol 2017; 12(3): 300-14.
[http://dx.doi.org/10.1080/17483107.2016.1253117] [PMID: 28152642]
[98]
Bhargav A, Sanjairaj V, Rosa V, Feng LW, Fuh YHJ. Applications of additive manufacturing in dentistry: A review. J Biomed Mater Res B Appl Biomater 2018; 106(5): 2058-64.
[http://dx.doi.org/10.1002/jbm.b.33961] [PMID: 28736923]
[99]
Zaharia C, Gabor AG, Gavrilovici A, et al. Digital dentistry-3D printing applications. Journal of Interdisciplinary Medicine 2017; 2(1): 50-3.
[http://dx.doi.org/10.1515/jim-2017-0032]
[100]
Boonsiriphant P, Al-Salihi Z, Holloway JA, Schneider GB. The use of 3D printed tooth preparation to assist in teaching and learning in preclinical fixed prosthodontics courses. J Prosthodont 2019; 28(2): e545-7.
[http://dx.doi.org/10.1111/jopr.12918] [PMID: 29876996]
[101]
Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015; 219(11): 521-9.
[http://dx.doi.org/10.1038/sj.bdj.2015.914] [PMID: 26657435]
[102]
Kessler A, Hickel R, Reymus M. 3D printing in dentistry-State of the art. Oper Dent 2019.
[http://dx.doi.org/10.2341/18-229-L] [PMID: 31172871]
[103]
Rakesh K, Santosh K. Role of qualification and validation in medical device industry: A study. J Future Eng Technol 2022; 17(2): 37.
[http://dx.doi.org/10.26634/jfet.17.2.18571]
[104]
Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: A review of the current literature & how to get started. Ann Transl Med 2016; 4(23): 456.
[http://dx.doi.org/10.21037/atm.2016.12.18] [PMID: 28090512]
[105]
Bell J. Five pieces of medical equipment that can be made with 3D printing. Available from: https://www.nsmedicaldevices.com/analysis/3d-printing-medical-equipment/
[106]
Johnson BV, Gong Z, Cole BA, Cappelleri DJ. Design of disposable 3D printed surgical end-effectors for robotic lumbar discectomy procedures. In. Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 42nd Mechanisms and Robotics Conference. August 26-29; Quebec City, Quebec, Canada. 2018.
[http://dx.doi.org/10.1115/DETC2018-85257]
[107]
Chan HK, Griffin J, Lim JJ, Zeng F, Chiu ASF. The impact of 3D printing technology on the supply chain: Manufacturing and legal perspectives. Int J Prod Econ 2018; 205: 156-62.
[http://dx.doi.org/10.1016/j.ijpe.2018.09.009]
[108]
Kermavnar T, Shannon A, O’Sullivan K J, McCarthy C, Dunne C P, O’Sullivan L W. Three-dimensional printing of medical devices used directly to treat patients: A systematic review. 3D Print Add Manuf 2021; 8(6): 366-408.
[http://dx.doi.org/10.1089/3dp.2020.0324]
[109]
McDonald S, Comrie N, Buehler E, et al. Uncovering challenges and opportunities for 3D printing assistive technology with physical therapists. ASSETS ’16: Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility October 2016. 131-9.
[http://dx.doi.org/10.1145/2982142.2982162]
[110]
Kashapova RM, Kashapov RN, Kashapova RS. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system. IOP Conf Series Mater Sci Eng 2017; 240: 012036.
[http://dx.doi.org/10.1088/1757-899X/240/1/012036]
[111]
Sun M, Zhang Y, Peng Y, Fu D, Fan H, He R. Gait analysis after total knee arthroplasty assisted by 3D-printed personalized guide. BioMed Res Int 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/6485178] [PMID: 32685514]
[112]
Teng X, Zhang M, Mujumdar AS. 4D printing: Recent advances and proposals in the food sector. Trends Food Sci Technol 2021; 110: 349-63.
[http://dx.doi.org/10.1016/j.tifs.2021.01.076]
[113]
Hu GF, Damanpack AR, Bodaghi M, Liao WH. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Mater Struct 2017; 26(12): 125023.
[http://dx.doi.org/10.1088/1361-665X/aa95ec]
[114]
Koch L, Deiwick A, Chichkov B. Laser-based 3D cell printing for tissue engineering. BioNanoMaterials 2014; 15(3-4)
[http://dx.doi.org/10.1515/bnm-2014-0005]
[115]
Fu P, Li H, Gong J, et al. 4D printing of polymers: Techniques, materials, and prospects. Prog Polym Sci 2022; 126: 101506.
[http://dx.doi.org/10.1016/j.progpolymsci.2022.101506]
[116]
Tibbits S. 4D printing: Multi-material shape change. Archit Des 2014; 84(1): 116-21.
[http://dx.doi.org/10.1002/ad.1710]
[117]
Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013; 103(13): 131901.
[http://dx.doi.org/10.1063/1.4819837]
[118]
Rivera-Tarazona LK, Shukla T, Singh KA, Gaharwar AK, Campbell ZT, Ware TH. 4D printing of engineered living materials. Adv Funct Mater 2022; 32(4): 2106843.
[http://dx.doi.org/10.1002/adfm.202106843]
[119]
Pei E. 4D Printing: Dawn of an emerging technology cycle. Assem Autom 2014; 34(4): 310-4.
[http://dx.doi.org/10.1108/AA-07-2014-062]
[120]
Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016; 15(4): 413-8.
[http://dx.doi.org/10.1038/nmat4544] [PMID: 26808461]
[121]
Zhou Y, Huang WM, Kang SF, et al. From 3D to 4D printing: Approaches and typical applications. J Mech Sci Technol 2015; 29(10): 4281-8.
[http://dx.doi.org/10.1007/s12206-015-0925-0]
[122]
Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: A review on current smart materials, technologies, and applications. Int J Smart Nano Mater 2019; 10(3): 205-24.
[http://dx.doi.org/10.1080/19475411.2019.1591541]
[123]
Choi J. 4D printing technology: A review. 3D Printing and Additive Manufacturing 2015; 2(4): 159-67.
[http://dx.doi.org/10.1089/3dp.2015.0039]
[124]
Kaynak A, Zolfagharian A. Stimuli-responsive polymer systems-Recent manufacturing techniques and applications. Materials (Basel) 2019; 12(15): 2380.
[http://dx.doi.org/10.3390/ma12152380] [PMID: 31357393]
[125]
Momeni F, Mehdi Hassani M. N S, Liu X, Ni J. A review of 4D printing. Mater Des 2017; 122: 42-79.
[http://dx.doi.org/10.1016/j.matdes.2017.02.068]
[126]
Chae M, Hunter-Smith D, De-Silva I, Tham S, Spychal R, Rozen W. Four-dimensional (4D) printing: A new evolution in computed tomography-guided stereolithographic modeling. Principles and application. J Reconstr Microsurg 2015; 31(6): 458-63.
[http://dx.doi.org/10.1055/s-0035-1549006] [PMID: 25868154]
[127]
Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 2016; 6(1): 31110.
[http://dx.doi.org/10.1038/srep31110] [PMID: 27499417]
[128]
Quanjin M, Rejab MRM, Idris MS, Kumar NM, Abdullah MH, Reddy GR. Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective. Procedia Comput Sci 2020; 167: 1210-9.
[http://dx.doi.org/10.1016/j.procs.2020.03.434]
[129]
Kumar R, Kumar S. Implant material specific properties and corrosion testing procedure: A study. J Future Eng Technol 2021; 17(1): 29.
[http://dx.doi.org/10.26634/jfet.17.1.18494]
[130]
Ponnamma D, Sai Bhargava Reddy M, et al. Recent developments on 4D printings and applications. In: Maurya MR, Sadasivuni KK, Cabibihan JJ, Ahmad S, Kazim S, Eds. Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham.
[http://dx.doi.org/10.1007/978-3-030-94114-7_16]
[131]
Pingale P, Dawre S, Dhapte-Pawar V, Dhas N, Rajput A. Advances in 4D printing: From stimulation to simulation. Drug Deliv Transl Res 2022.
[http://dx.doi.org/10.1007/s13346-022-01200-y] [PMID: 35751000]
[132]
Javaid M, Haleem A, Singh RP, Rab S, Suman R, Kumar L. Significance of 4D printing for dentistry: Materials, process, and potentials. J Oral Biol Craniofac Res 2022; 12(3): 388-95.
[http://dx.doi.org/10.1016/j.jobcr.2022.05.002]
[133]
Miao S, Zhu W, Castro NJ, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 2016; 6(1): 27226.
[http://dx.doi.org/10.1038/srep27226] [PMID: 27251982]
[134]
Javaid M, Haleem A. Additive manufacturing applications in orthopaedics: A review. J Clin Orthop Trauma 2018; 9(3): 202-6.
[http://dx.doi.org/10.1016/j.jcot.2018.04.008] [PMID: 30202149]
[135]
Javaid M, Haleem A. Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma 2020; 11 (Suppl. 4): S485-90.
[http://dx.doi.org/10.1016/j.jcot.2020.04.021] [PMID: 32774016]
[136]
Mallakpour S, Tabesh F, Hussain CM. 3D and 4D printing: From innovation to evolution. Adv Colloid Interface Sci 2021; 294: 102482.
[http://dx.doi.org/10.1016/j.cis.2021.102482] [PMID: 34274721]
[137]
Javaid M, Haleem A. 4D printing applications in medical field: A brief review. Clin Epidemiol Glob Health 2019; 7(3): 317-21.
[http://dx.doi.org/10.1016/j.cegh.2018.09.007]
[138]
Pavan Kalyan BG, Kumar L. 3D printing: Applications in tissue engineering, medical devices, and drug delivery. AAPS PharmSciTech 2022; 23(4): 92.
[http://dx.doi.org/10.1208/s12249-022-02242-8] [PMID: 35301602]
[139]
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater 2017; 6(1): 1601118.
[http://dx.doi.org/10.1002/adhm.201601118] [PMID: 27995751]
[140]
Gu X, Mather PT. Entanglement-based shape memory polyurethanes: Synthesis and characterization. Polymer (Guildf) 2012; 53(25): 5924-34.
[http://dx.doi.org/10.1016/j.polymer.2012.09.056]
[141]
Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 2016; 27(6): 064001.
[http://dx.doi.org/10.1088/0957-4484/27/6/064001] [PMID: 26758780]
[142]
Lee SJ, Nowicki M, Harris B, Zhang LG. Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Eng Part A 2017; 23(11-12): 491-502.
[http://dx.doi.org/10.1089/ten.tea.2016.0353] [PMID: 27998214]
[143]
Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 2016; 8(44): 30017-26.
[http://dx.doi.org/10.1021/acsami.6b10673] [PMID: 27766838]
[144]
Zhu W, Castro NJ, Cui H, et al. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology 2016; 27(31): 315103.
[http://dx.doi.org/10.1088/0957-4484/27/31/315103] [PMID: 27346678]
[145]
Lee SJ, Zhu W, Heyburn L, Nowicki M, Harris B, Zhang LG. Development of novel 3-D printed scaffolds with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng 2017; 64(2): 408-18.
[http://dx.doi.org/10.1109/TBME.2016.2558493] [PMID: 28113194]
[146]
Holmes B, Zhu W, Li J, Lee JD, Zhang LG. Development of novel three-dimensional printed scaffolds for osteochondral regeneration. Tissue Eng Part A 2015; 21(1-2): 403-15.
[http://dx.doi.org/10.1089/ten.tea.2014.0138] [PMID: 25088966]
[147]
O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 2015; 21(1): 103-14.
[http://dx.doi.org/10.1089/ten.teb.2014.0168] [PMID: 25084122]
[148]
Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today 2017; 20(10): 577-91.
[http://dx.doi.org/10.1016/j.mattod.2017.06.005] [PMID: 29403328]
[149]
Sahafnejad-Mohammadi I, Karamimoghadam M, Zolfagharian A, Akrami M, Bodaghi M. 4D printing technology in medical engineering: A narrative review. J Braz Soc Mech Sci Eng 2022; 44(6): 233.
[http://dx.doi.org/10.1007/s40430-022-03514-x]
[150]
Erratum for the Research Article. Erratum for the Research Article: “Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients” by R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye, G. E. Green. Sci Transl Med 2015; 7(287): 287er4.
[http://dx.doi.org/10.1126/scitranslmed.aac4749] [PMID: 25971998]
[151]
Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 2017; 38(2): 1600628.
[http://dx.doi.org/10.1002/marc.201600628] [PMID: 27918636]
[152]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[153]
Loozen LD, Wegman F, Öner FC, Dhert WJA, Alblas J. Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering. J Mater Chem B Mater Biol Med 2013; 1(48): 6619-26.
[http://dx.doi.org/10.1039/c3tb21093f] [PMID: 32261270]
[154]
Pourchet LJ, Thepot A, Albouy M, et al. Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 2017; 6(4): 1601101.
[http://dx.doi.org/10.1002/adhm.201601101] [PMID: 27976537]
[155]
Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Int J Biol Macromol 2019; 122: 1152-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.065] [PMID: 30218727]
[156]
Hsieh FY, Lin HH, Hsu S. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015; 71: 48-57.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.028] [PMID: 26318816]
[157]
Ashammakhi N, Ahadian S, Zengjie F, et al. Advances and future perspectives in 4D bioprinting. Biotechnol J 2018; 13(12): 1800148.
[http://dx.doi.org/10.1002/biot.201800148] [PMID: 30221837]
[158]
Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting for biomedical applications. Trends Biotechnol 2016; 34(9): 746-56.
[http://dx.doi.org/10.1016/j.tibtech.2016.03.004] [PMID: 27056447]
[159]
Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications – Recent achievements and challenges. Pharm Res 2018; 35(9): 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[160]
Ahadian S, Khademhosseini A. A perspective on 3D bioprinting in tissue regeneration. Biodes Manuf 2018; 1(3): 157-60.
[http://dx.doi.org/10.1007/s42242-018-0020-3] [PMID: 30906618]
[161]
He P, Zhao J, Zhang J, et al. Bioprinting of skin constructs for wound healing. Burns Trauma 2018; 6(1): 5.
[http://dx.doi.org/10.1186/s41038-017-0104-x] [PMID: 29404374]
[162]
Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater 2017; 2(1): 16075.
[http://dx.doi.org/10.1038/natrevmats.2016.75]
[163]
Li H, Yin Y, Xiang Y, Liu H, Guo R. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Biomed Mater 2020; 15(4): 045004.
[http://dx.doi.org/10.1088/1748-605X/ab797a] [PMID: 32092713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy