Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Recent Advancements in Rare-earth Activated Phosphors in the Perspective of Phototherapy and Plant Lamp Applications: A Review

Author(s): Manohar D. Mehare*, S.A. Dhale, Chaitali M. Mehare, N.S. Dhoble and Sanjay J. Dhoble

Volume 16, Issue 2, 2023

Published on: 10 November, 2022

Page: [171 - 184] Pages: 14

DOI: 10.2174/2666145416666221031142312

Price: $65

Abstract

Recently, rare-earth activated phosphors have gained new and exciting applications in various fields, like display and illumination, phototherapy, plant growth, etc. The phosphorconverted white light emitting diode is prime in the art of solid-state lighting owing to its numerous merits, including desired spectral distribution, excellent chemical and thermal stability, high operational lifetime, reliability, and color quality of w-LEDs for lighting. The enhancement of the color gamut of backlight w-LEDs still needs to be addressed, which requires the design of high-efficient downshifting converter phosphors featuring thermally stable luminescence. The class of materials under suitable activation exhibit applications in a particular field. The emission in the UV region (312-315nm) is widely used for phototherapy lamps. Phototherapy has proven to be an excellent therapeutic option for the treatment of various types of skin diseases. Moreover, the emission corresponds to 600-750nm for plant cultivation. The present review article describes various rare-earth activated phosphors and their impact on human and plant physiology.

Graphical Abstract

[1]
Fan F, Zhao L, Shang Y, Liu J, Chen W, Li Y. Thermally stable double-perovskite Ca3TeO6 Eu3+ red-emitting phosphors with high color purity. J Lumin 2019; 211: 14-9.
[http://dx.doi.org/10.1016/j.jlumin.2019.03.001]
[2]
Smet PF, Parmentier AB, Poelman D. Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc 2011; 158(6): R37.
[http://dx.doi.org/10.1149/1.3568524]
[3]
Ke Y, Wang Y, Liu Y, et al. A new double perovskite CaY0.5Ta0.5O3:Mn4+ deep-red phosphor: Synthesis, optical properties, and potential applications in plant-growth LEDs. J Alloys Compd 2021; 851: 156875.
[http://dx.doi.org/10.1016/j.jallcom.2020.156875]
[4]
Pattison PM, Tsao JY, Brainard GC, Bugbee B. LEDs for photons, physiology and food. Nature 2018; 563(7732): 493-500.
[http://dx.doi.org/10.1038/s41586-018-0706-x] [PMID: 30464269]
[5]
Figueiro MG. An overview of the effects of light on human circadian rhythms: Implications for new light sources and lighting systems design. J Light Vis Environ 2013; 37(2_3): 51-61.
[http://dx.doi.org/10.2150/jlve.IEIJ130000503]
[6]
Dyomin VV, Olshukov AS. Digital holographic video for studying biological particles. J Opt Technol 2012; 79(6): 344.
[http://dx.doi.org/10.1364/JOT.79.000344]
[7]
Reddy L, Nkosi TJ, Masiteng PL, Balakrishna A, Swart HC, Ntwaeaborwa OM. Violet-blue-shift of emission and enhanced luminescent properties of Ca3(PO4)2:Ce3+ phosphor induced by substitution of Gd3+ ions. Curr Appl Phys 2020; 20(5): 696-702.
[http://dx.doi.org/10.1016/j.cap.2020.02.017]
[8]
Shinde VV, Kunghatkar RG, Dhoble SJ. UVB-emitting Gd(3+)-activated M2O2S (where M = La, Y) for phototherapy lamp phosphors. Luminescence 2015; 30(8): 1257-62.
[http://dx.doi.org/10.1002/bio.2889] [PMID: 25800275]
[9]
Shie JL, Lee CH, Chiou CS, Chang CT, Chang CC, Chang CY. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J Hazard Mater 2008; 155(1-2): 164-72.
[http://dx.doi.org/10.1016/j.jhazmat.2007.11.043] [PMID: 18155832]
[10]
Okamoto S, Uchino R, Kobayashi K, Yamamoto H. Luminescent properties of Pr3+ -sensitized LaPO4: Gd3+ ultraviolet-B phosphor under vacuum-ultraviolet light excitation. J Appl Phys 2009; 106(1): 106.
[http://dx.doi.org/10.1063/1.3159889]
[11]
Kusuma P, Pattison PM, Bugbee B. From physics to fixtures to food: Current and potential LED efficacy. Hortic Res 2020; 7(1): 56.
[http://dx.doi.org/10.1038/s41438-020-0283-7] [PMID: 32257242]
[12]
Wang YF. Non-blocking extended OVSF codes on multi-rate CDMA systems. Comput Commun 2008; 31(1): 35-48.
[http://dx.doi.org/10.1016/j.comcom.2007.10.015]
[13]
Huang X, Sun Q, Devakumar B. Novel efficient deep-red-emitting Ca2LuTaO6:Mn4+ double-perovskite phosphors for plant growth LEDs. J Lumin 2020; 222: 117177.
[http://dx.doi.org/10.1016/j.jlumin.2020.117177]
[14]
Dhoble SJ, Priya R, Dhoble NS, Pandey OP. Short review on recent progress in Mn4+ -activated oxide phosphors for indoor plant light-emitting diodes. Luminescence 2021; 36(3): 560-75.
[http://dx.doi.org/10.1002/bio.3991] [PMID: 33300259]
[15]
Adachi S. Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review. J Lumin 2018; 197: 119-30.
[http://dx.doi.org/10.1016/j.jlumin.2018.01.016]
[16]
Adachi S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review. J Lumin 2018; 202: 263-81.
[http://dx.doi.org/10.1016/j.jlumin.2018.05.053]
[17]
Jansen T, Jüstel T, Kirm M, Vielhauer S, Khaidukov NM, Makhov VN. Composition dependent spectral shift of Mn4+ luminescence in silicate garnet hosts CaY2M2Al2SiO12 (M = Al, Ga, Sc). J Lumin 2018; 198: 314-9.
[http://dx.doi.org/10.1016/j.jlumin.2018.02.054]
[18]
Srivastava AM, Comanzo HA, Smith DJ, et al. Spectroscopy of Mn4+ in orthorhombic perovskite, LaInO3. J Lumin 2019; 206: 398-402.
[http://dx.doi.org/10.1016/j.jlumin.2018.10.090]
[19]
Chen D, Zhou Y, Zhong J. A review on Mn4+ activators in solids for warm white light-emitting diodes. RSC Advances 2016; 6(89): 86285-96.
[http://dx.doi.org/10.1039/C6RA19584A]
[20]
Nair GB, Dhoble SJ. Highly enterprising calcium zirconium phosphate [CaZr4(PO4)6:Dy3+, Ce3+] phosphor for white light emission. RSC Advances 2015; 5(61): 49235-47.
[http://dx.doi.org/10.1039/C5RA07306E]
[21]
Lu Z, Meng Y, Fan H, et al. Luminescent properties of Mn4+-doped LaTiSbO6 deep-red-emitting phosphor for plant growth LEDs. J Lumin 2021; 236: 118100.
[http://dx.doi.org/10.1016/j.jlumin.2021.118100]
[22]
Wang D, He H, Wang X, et al. Grain size influence on the flexibility and luminous intensity of inorganic CaTiO3:Pr3+ crystal nanofibers. Ceram Int 2021; 47(22): 31329-36.
[http://dx.doi.org/10.1016/j.ceramint.2021.08.006]
[23]
Wang H, Mao F, Liu Y, et al. Effect of fluxes on luminescence properties of color-tunable Ba1.3Ca0.7SiO4:Eu2+, Mn2+ Phosphor for Near-Ultraviolet White-LEDs. Mater Res Bull 2020; 125: 110808.
[http://dx.doi.org/10.1016/j.materresbull.2020.110808]
[24]
Laczai N, Kovács L, Kocsor L, Bencs L. Influence of LiF additive and cerium doping on photoluminescence properties of polycrystalline YSO and LYSO. Mater Res Bull 2021; 133: 133.
[http://dx.doi.org/10.1016/j.materresbull.2020.111018]
[25]
Chepyga LM, Hertle E, Ali A, et al. Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor. J Lumin 2018; 197: 23-30.
[http://dx.doi.org/10.1016/j.jlumin.2017.12.072]
[26]
Xu Z, Fu L, Liu L, Du F. Effects of single and composite fluxes on the morphology and luminescence intensity of Ce3+ doped Lu3Al5O12 phosphors. Mater Chem Phys 2020; 248: 248.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122918]
[27]
Yuan J, Zhang Y, Xu J, Tian T, Luo K, Huang L. Novel Cr3+-doped double-perovskite Ca2MNbO6 (M = Ga, Al) phosphor: Synthesis, crystal structure, photoluminescence and thermoluminescence properties. J Alloys Compd 2020; 815: 152656.
[http://dx.doi.org/10.1016/j.jallcom.2019.152656]
[28]
Fang Y, Wang C, Zhang Y, et al. Preparation of far-red emitting Ba2YTaO6:Mn4+ phosphors for plant growth LEDs applications. Inorg Chem Commun 2021; 128: 108568.
[http://dx.doi.org/10.1016/j.inoche.2021.108568]
[29]
Cao Z, Dong S, Shi S, Wang J, Fu L. Solid state reaction preparation of an efficient rare-earth free deep-red Ca2YNbO6:Mn4+ phosphor. J Solid State Chem 2022; 307: 122840.
[http://dx.doi.org/10.1016/j.jssc.2021.122840]
[30]
Huang S, Shang M, Peng K, Zhao Y, Wang J, Yu L. Garnet-type far-red emitting Li6CaLa2Nb2O12: Mn4+, Bi3+ phosphor for full-spectrum white LED. J Lumin 2022; 243: 118649.
[http://dx.doi.org/10.1016/j.jlumin.2021.118649]
[31]
Wang Xingsen, Jiang Quan, Wang Zixiang, Song Biqing, Hailan Hou LX. High performance Sr4Al14O25:Mn4+ phosphor: Structure calculation and optical properties. J Mater Chem C 2022.
[32]
Pardhi SA, Nair GB, Sharma R, Dhoble SJ. Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl2O4:Eu2+, Dy3+ phosphors. J Lumin 2017; 187: 492-8.
[http://dx.doi.org/10.1016/j.jlumin.2017.03.028]
[33]
Singh V, Singh N, Pathak MS, et al. PL and ESR Study on UVB-Emitting Gadolinium-Doped BaMgAl10O17 Hexagonal Phase Obtained by Combustion Synthesis. J Electron Mater 2018; 47(12): 7365-71.
[http://dx.doi.org/10.1007/s11664-018-6676-9]
[34]
Zhou N, Liu L, Zhou Z, et al. Engineering cation vacancies to improve the luminescence properties of Ca14Al10Zn6O35: Mn4+ phosphors for LED plant lamp. J Am Ceram Soc 2020; 103(3): 1798-808.
[http://dx.doi.org/10.1111/jace.16874]
[35]
Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C Mater Opt Electron Devices 2015; 3: 10715-22.
[http://dx.doi.org/10.1039/C5TC02043C]
[36]
Parauha YR, Sahu V, Dhoble SJ. Prospective of combustion method for preparation of nanomaterials: A challenge. Mater Sci Eng B Solid-State Mater Adv Technol 2021; 267: 115054.
[http://dx.doi.org/10.1016/j.mseb.2021.115054]
[37]
Nair GB, Swart HC, Dhoble SJ. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog Mater Sci 2020; 109: 100622.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100622]
[38]
Singh V, Bajaj R, Kaur S, Rao AS, Singh N. UVB emission from sol-gel derived Gd3+-doped CaLa4Si3O13 phosphor. Optik (Stuttg) 2021; 242: 167275.
[http://dx.doi.org/10.1016/j.ijleo.2021.167275]
[39]
Singh V, Prasad A, Kaur S, Rao AS, Singh N. Optik Sol-gel derived Ca2La8(SiO4)6O2 doped with Gd 3+ as UVB emitting phosphor. Optik (Stuttg) 2021; 241: 167267.
[http://dx.doi.org/10.1016/j.ijleo.2021.167267]
[40]
Li X, Li W, Hou B, et al. Investigation of enhanced far-red emitting phosphor GdAlO3:Mn4+ by impurity doping for indoor plant growth LEDs. Physica B: Condensed Matter 2020; 581: 411953.
[41]
Pereira C, Pereira AM, Fernandes C, et al. Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 2012; 24(8): 1496-504.
[http://dx.doi.org/10.1021/cm300301c]
[42]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[43]
Shehata MM, Waly SA, Abdelaziz YA. Effect of Gd3+ doping on structural and optical properties of MgO–MgAl2O4 nanocomposites synthesized via co-precipitation method. J Mater Sci Mater Electron 2021; 32(6): 7423-30.
[http://dx.doi.org/10.1007/s10854-021-05455-y]
[44]
Singh V, Mahamuda S, Rao AS, Rao JL, Irfan M. Luminescence and EPR properties of UVB emitting Gd doped NaBaPO4 phosphor prepared by co-precipitation method. Optik (Stuttg) 2020; 206: 164086.
[http://dx.doi.org/10.1016/j.ijleo.2019.164086]
[45]
Singh V, Prasad A, Rao AS, Jung SW, Singh N, Irfan M. Luminescence and EPR studies of UVB emitting YPO4 doped with Gd3+ ions. Optik (Stuttg) 2021; 225: 165804.
[http://dx.doi.org/10.1016/j.ijleo.2020.165804]
[46]
Xu H, Hong F, Pang G, et al. Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6:Mn4+ red phosphor. J Lumin 2020; 219: 116960.
[http://dx.doi.org/10.1016/j.jlumin.2019.116960]
[47]
Liao J, Nie L, Zhong L, Gu Q, Wang Q. Co-precipitation synthesis and luminescence properties of K₂TiF₆Mn⁴⁺ red phosphors for warm white light-emitting diodes. Luminescence 2016; 31(3): 802-7.
[http://dx.doi.org/10.1002/bio.3026] [PMID: 26387574]
[48]
Thakare DS, Omanwar SK, Moharil SV, Dhopte SM, Muthal PL, Kondawar VK. Combustion synthesis of borate phosphors. Opt Mater 2007; 29(12): 1731-5.
[http://dx.doi.org/10.1016/j.optmat.2006.09.016]
[49]
Lim HW, Collins SAB, Resneck JS Jr, et al. The burden of skin disease in the United States. J Am Acad Dermatol 2017; 76(5): 958-972.e2.
[http://dx.doi.org/10.1016/j.jaad.2016.12.043] [PMID: 28259441]
[50]
Grossweiner LI, Grossweiner JB, Gerald Rogers BH, Jones LR. The science of phototherapy: An introduction. Springer 2005; 1-374.
[51]
Hönigsmann H. History of phototherapy in dermatology. Photochem Photobiol Sci 2013; 12(1): 16-21.
[http://dx.doi.org/10.1039/C2PP25120E] [PMID: 22739720]
[52]
Hemne PS, Kunghatkar RG, Dhoble SJ, Moharil SV, Singh V. Phosphor for phototherapy: Review on psoriasis. Luminescence 2017; 32(3): 260-70.
[http://dx.doi.org/10.1002/bio.3266] [PMID: 28220603]
[53]
Krutmann J, Morita A, Welden V. Mechanisms of ultraviolet (UV) B and UVA phototherapy. J Investig Dermatol Symp Proc 1999; 4(1): 70-2.
[http://dx.doi.org/10.1038/sj.jidsp.5640185] [PMID: 10537012]
[54]
Rao GM, Hussain SK, Raju GSR, Rao PSVS, Yu JS. Synthesis and characterizations of novel Sr2Gd8(SiO4)6O2:Eu3+ oxyapatite phosphors for solid-state lighting and display applications. J Alloys Compd 2015; 8.
[55]
Singh Vijay. UVB-emitting gadolinium-doped Ba2YZrO6 perovskite ceramic phosphor. Opt - Int J Light Electron Opt 2020; 206: 164263.
[56]
Singh V, Singh N, Pathak MS, et al. UV emission from Gd3+ ions in LaAl11O18 phosphors. Optik 2018; 157: 1391-6.
[57]
Singh V, Singh N, Pathak MS, et al. UV emission from Gd3+ ions in LaAl11O18 phosphors. Optik 2018; 157: 1391-6.
[58]
Chauhan AO, Gawande AB, Omanwar SK. Narrow band UVB emitting phosphor LaPO4:Gd3+ for phototherapy lamp. Optik (Stuttg) 2016; 127(16): 6647-52.
[http://dx.doi.org/10.1016/j.ijleo.2016.04.131]
[59]
Singh V, Devi CBA, Rao BRV, Rao AS, Singh N, Mistry BM. Narrow-band ultraviolet B (UVB) emitting CaZr4(PO4)6 doped with Gd3+ phosphor. Optik (Stuttg) 2021; 226: 165932.
[http://dx.doi.org/10.1016/j.ijleo.2020.165932]
[60]
Bosze EJ, Hirata GA, Shea-rohwer LE, Mckittrick J. Improving the efficiency of a blue-emitting phosphor by an energy transfer from Gd3+ to Ce3+. J Lumin 2003; 104(1-2): 47-54.
[http://dx.doi.org/10.1016/S0022-2313(02)00663-4]
[61]
Wegh R, Donker H, Meijerink A, Lamminmäki R, Hölsä J. Vacuum-ultraviolet spectroscopy and quantum cutting for. Phys Rev B Condens Matter 1997; 56(21): 13841-8.
[http://dx.doi.org/10.1103/PhysRevB.56.13841]
[62]
Singh V, Singh N, Pathak MS, Natarajan V, Jadhav NA. Photoluminescence and electron paramagnetic resonance properties of UV-B light emitting Gd3+ activated Y2O3 phosphor prepared by sol-gel method. Optik (Stuttg) 2019; 176: 694-8.
[http://dx.doi.org/10.1016/j.ijleo.2018.08.070]
[63]
Sharma AA, Chauhan AO, Palan CB, Omanwar SK. Synthesis and Photoluminescence study of Gd3+ doped YP3O9 phosphor prepared by Citric sol-gel method. Ijrst 2021; 8: 65-9.
[64]
Wang X, Chen Y, Kner PA, Pan Z. Gd3+-activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer. Dalton Trans 2021; 50(10): 3499-505.
[http://dx.doi.org/10.1039/D1DT00120E] [PMID: 33625432]
[65]
Singh V, Kaur S, Rao AS, Singh N. Ultraviolet emission from sol-gel derived Ca3MgSi2O8 doped with trivalent gadolinium. Optik (Stuttg) 2021; 226: 165927.
[http://dx.doi.org/10.1016/j.ijleo.2020.165927]
[66]
Zheng Y, Zhang H, Zhang H, et al. Co-substitution in Ca1-XYxAl12- xMgxO19 phosphors: Local structure evolution, photoluminescence tuning and application for plant growth LEDs. J Mater Chem C Mater Opt Electron Devices 2018; 6(15): 4217-24.
[http://dx.doi.org/10.1039/C8TC00165K]
[67]
Cao R, Shi Z, Quan G, et al. Preparation and luminescence properties of Li2MgZrO4:Mn4+ red phosphor for plant growth. J Lumin 2017; 188: 577-81.
[http://dx.doi.org/10.1016/j.jlumin.2017.05.002]
[68]
Zhao Y, Shi L, Han Y, Li H, Ji Z, Zhang Z. Luminescent properties of Zn2+-doped CaAl12O19:Mn4+ deep-red phosphor for indoor plant cultivation. Ceram Int 2019; 45(7): 8265-70.
[http://dx.doi.org/10.1016/j.ceramint.2019.01.132]
[69]
Liang J, Sun L, Devakumar B, et al. Far-red-emitting double-perovskite CaLaMgSbO6:Mn4+ phosphors with high photoluminescence efficiency and thermal stability for indoor plant cultivation LEDs. RSC Advances 2018; 8(55): 31666-72.
[http://dx.doi.org/10.1039/C8RA06708B] [PMID: 35548243]
[70]
Huang X, Guo H. Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application. Dyes Pigments 2018; 152: 36-42.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.022]
[71]
Liang J, Sun L, Devakumar B, et al. Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: High photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs. RSC Advances 2018; 8(48): 27144-51.
[http://dx.doi.org/10.1039/C8RA05669B] [PMID: 35539995]
[72]
Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. J Exp Bot 2010; 61(1): 11-24.
[http://dx.doi.org/10.1093/jxb/erp304] [PMID: 19815685]
[73]
Nakajima T, Tsuchiya T. Plant habitat-conscious white light emission of Dy(3+) in whitlockite-like phosphates: Reduced photosynthesis and inhibition of bloom impediment. ACS Appl Mater Interfaces 2015; 7(38): 21398-407.
[http://dx.doi.org/10.1021/acsami.5b06208] [PMID: 26356303]
[74]
Li W, Ma N, Sun Q, et al. A novel efficient Mn4+-activated Ba2YTaO6 far-red emitting phosphor for plant cultivation LEDs: Preparation and photoluminescence properties. J Lumin 2020; 228: 117621.
[http://dx.doi.org/10.1016/j.jlumin.2020.117621]
[75]
Du MH. Chemical trends of Mn4+ emission in solids. J Mater Chem C Mater Opt Electron Devices 2014; 2(14): 2475-81.
[http://dx.doi.org/10.1039/C4TC00031E]
[76]
Fu A, Zhou L, Wang S, Li Y. Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs. Dyes Pigments 2018; 148: 9-15.
[http://dx.doi.org/10.1016/j.dyepig.2017.08.050]
[77]
Zhong Y, Gai S, Xia M, et al. Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35:Mn4+ based on chemical unit engineering. Chem Eng J 2019; 374: 381-91.
[http://dx.doi.org/10.1016/j.cej.2019.05.201]
[78]
Fu L, Yang Y, Zhang Y, et al. The novel Sr3LiSbO6:Mn4+, Ca2+ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs. J Lumin 2021; 237: 237.
[http://dx.doi.org/10.1016/j.jlumin.2021.118165]
[79]
Kang X, Yang W, Ling D, Jia C, Lü W. A novel far-red emitting phosphor activated Ba2LuTaO6:Mn4+: Crystal structure, optical properties and application in plant growth lighting. Mater Res Bull 2021; 140: 111301.
[http://dx.doi.org/10.1016/j.materresbull.2021.111301]
[80]
Xue P, Tian L. A far-red phosphor LaSrZnNbO6:Mn4+ for plant growth lighting. Opt Mater 2021; 115: 1-7.
[http://dx.doi.org/10.1016/j.optmat.2021.111063]
[81]
Zhu J, Sun L, Zhang Y, Fu L, Zhu Y, Ren X, et al. Enhanced luminescence performance and efficiency of La2NaSbO6: Mn4+ by co-doping Ca2+ for plant growth lighting 2021; 617.
[82]
Yan Z, Yang X, Xiao S. Far-red-emitting Li6SrLa2Sb2O12: Mn4+ phosphor for plant growth LEDs application. Mater Res Bull 2021; 133: 111040.
[http://dx.doi.org/10.1016/j.materresbull.2020.111040]
[83]
Li G, Liu G, Mao Q, et al. Novel non-rare-earth red-emitting phosphor Li4AlSbO6:Mn4+ for plant growth: Crystal structure, luminescence properties and its LED device. Ceram Int 2021; 47(19): 27609-16.
[http://dx.doi.org/10.1016/j.ceramint.2021.06.185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy