Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Biowaste-based Porous Carbon for Supercapacitors: Synthesis, Fabrication and Electrochemical Performances: A Review

Author(s): Eugene Sefa Appiah, Anjali Gupta, Mahadeen Nanzumani Nashiru, Daniel Nframah Ampong, Frank Ofori Agyemang and Kwadwo Mensah-Darkwa*

Volume 16, Issue 2, 2023

Published on: 19 August, 2022

Page: [121 - 142] Pages: 22

DOI: 10.2174/2666145415666220517103417

Price: $65

Abstract

The development of low-cost, high-efficiency electrode materials for supercapacitors is motivated by the growing need for green and affordable clean energy (SDG goal 7). Developing new energy conversion and storage technologies, such as supercapacitors, batteries, and fuel cells, is a viable option for meeting energy demands while addressing environmental concerns. Recent advances in carbonaceous materials derived from biowaste for supercapacitor applications have piqued the interest of academics and industry alike. Because of their large surface area and porous structure, activated carbon-based electrode materials can be used in various applications, including supercapacitors, fuel cells, and batteries. Carbonaceous materials such as carbon nanotubes, graphene, and activated carbon, exhibit EDLC-like behavior mainly due to ion adsorption at the electrode interface. In recent years, several potential strategies for the synthesis and structural architecture of biowaste-derived porous carbons have been tested with varying degrees of success. Thus, it is critical to evaluate the prospects for biowaste-derived porous carbon materials used as supercapacitor electrodes.

In this review, we highlight how different biowaste-derived porous carbons affect the surface properties of carbon nanostructures and how this phenomenon affects their electrochemical performance. Additionally, the extent to which various biowastes have been utilized as porous carbon for supercapacitor electrodes is addressed. The different synthesis techniques, such as hydrothermal carbonization, physical activation, chemical activation, and microwave-assisted activation, are briefly described in this review. Finally, we highlight fabrication techniques as well as electrochemical performance measurements such as CV, GCD, EIS, energy density, and power density.

Keywords: Supercapacitor, Biowaste, Porous carbon, Energy storage, Activated carbon, Renewable energy.

Next »
[1]
Chang, B.; Guo, Y.; Li, Y.; Yin, H.; Zhang, S.; Yang, B.; Dong, X. Graphitized hierarchical porous carbon nanospheres: Simultaneous activation/graphitization and superior supercapacitance performance. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(18), 9565-9577.
[http://dx.doi.org/10.1039/C5TA00867K]
[2]
Arfeen, Z.A.; Abdullah, M.P.; Hassan, R.; Othman, B.M.; Siddique, A.; Rehman, A.U.; Sheikh, U.U. Energy storage usages: Engineering reactions, economic-technological values for electric vehicles-A technological outlook. Int. Trans. Electr. Energy Syst., 2020, 30(9), 1-30.
[http://dx.doi.org/10.1002/2050-7038.12422]
[3]
Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production-A review. Renew. Sustain. Energy Rev., 2007, 11(9), 1966-2005.
[http://dx.doi.org/10.1016/j.rser.2006.03.013]
[4]
Miller, E.E.; Hua, Y.; Tezel, F.H. Materials for energy storage  Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage, 2018, 20, 30-40.
[http://dx.doi.org/10.1016/j.est.2018.08.009]
[5]
Liu, Y.; Chen, J.; Cui, B.; Yin, P.; Zhang, C. Design and preparation of biomass-derived carbon materials for supercapacitors: A review. J. Carbon Res, 2018, 53.
[http://dx.doi.org/10.3390/c4040053]
[6]
Gupta, G.K.; Sagar, P.; Pandey, S.K.; Srivastava, M.; Singh, A.K.; Singh, J.; Srivastava, A.; Srivastava, S.K.; Srivastava, A. In situ fabrication of activated carbon from a bio-waste desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett., 2021, 16(1), 85.
[http://dx.doi.org/10.1186/s11671-021-03545-8] [PMID: 33987738]
[7]
Sundriyal, S.; Shrivastav, V.; Dubey, P.; Singh, M.; Deep, A.; Dhakate, S.R. Highly porous carbon from Azadirachta Indica leaves and UIO-66 derived metal oxide for asymmetrical supercapacitors. IEEE Trans. Nanotechnol., 2022, 66, 1-1.
[http://dx.doi.org/10.1109/TNANO.2022.3144367]
[8]
Yeleuov, M.; Daulbayev, C.; Taurbekov, A.; Abdisattar, A.; Ebrahim, R.; Kumekov, S.; Prikhodko, N.; Lesbayev, B.; Batyrzhan, K. Synthesis of graphene-like porous carbon from biomass for electrochemical energy storage applications. Diamond Related Materials, 2021, 119, 108560.
[http://dx.doi.org/10.1016/j.diamond.2021.108560]
[9]
Surya, K.; Michael, M.S. Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors. Biomass Bioenergy, 2021, 152, 106175.
[http://dx.doi.org/10.1016/j.biombioe.2021.106175]
[10]
Hwang, S.; Zhou, J.; Tang, T.; Goossens, K.; Bielawski, C.W.; Geng, J. Agarose-based hierarchical porous carbons prepared with gas-generating activators and used in high-power density supercapacitors. Energy Fuels, 2021, 35(23), 19775-19783.
[http://dx.doi.org/10.1021/acs.energyfuels.1c02875]
[11]
Tafete, G.A.; Abera, M.K.; Thothadri, G. Review on nanocellulose-based materials for supercapacitors applications. J. Energy Storage, 2022, 48, 103938.
[http://dx.doi.org/10.1016/j.est.2021.103938]
[12]
Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A.F.A. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering. Water Res., 2010, 44(8), 2381-2407.
[http://dx.doi.org/10.1016/j.watres.2010.01.033] [PMID: 20303137]
[13]
Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev., 2015, 115(11), 5159-5223.
[http://dx.doi.org/10.1021/cr5006217] [PMID: 25985835]
[14]
Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance. ACS Appl. Mater. Interfaces, 2012, 4(11), 5800-5806.
[http://dx.doi.org/10.1021/am302077c] [PMID: 23098209]
[15]
Chang, J.; Gao, Z.; Wang, X.; Wu, D.; Xu, F.; Wang, X.; Guo, Y.; Jiang, K. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta, 2015, 157, 290-298.
[http://dx.doi.org/10.1016/j.electacta.2014.12.169]
[16]
Lou, G.; Wu, Y.; Zhu, X.; Lu, Y.; Yu, S.; Yang, C.; Chen, H.; Guan, C.; Li, L.; Shen, Z. Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors. ACS Appl. Mater. Interfaces, 2018, 10(49), 42503-42512.
[http://dx.doi.org/10.1021/acsami.8b16881] [PMID: 30433754]
[17]
Sevilla, M.; Fuertes, A.B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano, 2014, 8(5), 5069-5078.
[http://dx.doi.org/10.1021/nn501124h] [PMID: 24731137]
[18]
Mao, H.; Zhou, D.; Hashisho, Z.; Wang, S.; Chen, H.; Wang, H. Preparation of pinewood- and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions. BioResources, 2015, 10(1), 809-821.
[http://dx.doi.org/10.15376/biores.10.1.809-821]
[19]
Xu, X.; Sielicki, K.; Min, J.; Li, J.; Hao, C.; Wen, X.; Chen, X.; Mijowska, E. One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors. Renew. Energy, 2021, 185, 187-195.
[http://dx.doi.org/10.1016/j.renene.2021.12.040]
[20]
Chen, T.; Luo, L.; Luo, L.; Deng, J.; Wu, X.; Fan, M.; Du, G.; Zhao, W. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renew. Energy, 2021, 175, 760-769.
[http://dx.doi.org/10.1016/j.renene.2021.05.006]
[21]
Liu, X.; Zhang, S.; Wen, X.; Chen, X.; Wen, Y.; Shi, X.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep., 2020, 10(1), 3518.
[http://dx.doi.org/10.1038/s41598-020-60625-y] [PMID: 32103118]
[22]
Gao, F.; Qu, J.; Zhao, Z.; Wang, Z.; Qiu, J. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim. Acta, 2016, 190, 1134-1141.
[http://dx.doi.org/10.1016/j.electacta.2016.01.005]
[23]
Chen, H.; Yu, F.; Wang, G.; Chen, L.; Dai, B.; Peng, S. Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors. ACS Omega, 2018, 3(4), 4724-4732.
[http://dx.doi.org/10.1021/acsomega.8b00210] [PMID: 30023900]
[24]
Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett., 2017, 5(2), 69-88.
[http://dx.doi.org/10.1080/21663831.2016.1250834]
[25]
Wang, D.G.; Liang, Z.; Gao, S.; Qu, C.; Zou, R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev., 2020, 404, 213093.
[http://dx.doi.org/10.1016/j.ccr.2019.213093]
[26]
Morales-Torres, S.; Pérez-Cadenas, A.F.; Carrasco-Marín, F. Element-doped functional carbon-based materials. Materials, 2020, 13(2), 333.
[27]
Gschwend, G.C.; Girault, H.H. Discrete Helmholtz model: A single layer of correlated counter-ions. Metal oxides and silica interfaces, ion-exchange and biological membranes. Chem. Sci. (Camb.), 2020, 11(38), 10304-10312.
[http://dx.doi.org/10.1039/D0SC03748F] [PMID: 34094294]
[28]
Scorsone, E.; Gattout, N.; Rousseau, L.; Lissorgues, G. Porous diamond pouch cell supercapacitors. Diamond Related Materials, 2017, 76, 31-37.
[http://dx.doi.org/10.1016/j.diamond.2017.04.004]
[29]
Ariharan, A.; Ramesh, K.; Vinayagamoorthi, R.; Rani, M.S.; Viswanathan, B.; Ramaprabhu, S.; Nandhakumar, V. Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J. Energy Storage, 2021, 35, 102185.
[http://dx.doi.org/10.1016/j.est.2020.102185]
[30]
Li, J.; Zan, G.; Wu, Q. Nitrogen and sulfur self-doped porous carbon from brussel sprouts as electrode materials for high stable supercapacitors. RSC Advances, 2016, 6(62), 57464-57472.
[http://dx.doi.org/10.1039/C6RA08428A]
[31]
Cao, L.; Li, H.; Xu, Z.; Zhang, H.; Ding, L.; Wang, S.; Zhang, G.; Hou, H.; Xu, W.; Yang, F.; Jiang, S. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diamond Related Materials, 2021, 114, 108316.
[http://dx.doi.org/10.1016/j.diamond.2021.108316]
[32]
Liu, C.; Hou, Y.; Li, Y.; Xiao, H. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance Supercapacitors. J. Colloid Interface Sci., 2022, 614, 566-572.
[http://dx.doi.org/10.1016/j.jcis.2022.01.010]
[33]
Deng, X.; Zhao, B.; Zhu, L.; Shao, Z. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.
[http://dx.doi.org/10.1016/j.carbon.2015.05.031]
[34]
Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(3), 1244-1254.
[http://dx.doi.org/10.1039/C7TA07579K]
[35]
Ma, G.; Yang, Q.; Sun, K.; Peng, H.; Ran, F.; Zhao, X.; Lei, Z. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol., 2015, 197, 137-142.
[http://dx.doi.org/10.1016/j.biortech.2015.07.100] [PMID: 26320018]
[36]
Liu, B.; Zhang, L.; Qi, P.; Zhu, M.; Wang, G.; Ma, Y.; Guo, X.; Chen, H.; Zhang, B.; Zhao, Z.; Dai, B.; Yu, F. Nitrogen-doped banana peel-derived porous carbon foam as binder-free electrode for supercapacitors. Nanomaterials (Basel), 2016, 6(1), 4-13.
[http://dx.doi.org/10.3390/nano6010018] [PMID: 28344275]
[37]
Wang, P.; Wang, Q.; Zhang, G.; Jiao, H.; Deng, X.; Liu, L. Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. J. Solid State Electrochem., 2016, 20(2), 319-325.
[http://dx.doi.org/10.1007/s10008-015-3042-1]
[38]
Zequine, C.; Ranaweera, C.K.; Wang, Z.; Dvornic, P.R.; Kahol, P.K.; Singh, S.; Tripathi, P.; Srivastava, O.N.; Singh, S.; Gupta, B.K.; Gupta, G.; Gupta, R.K. High-performance flexible supercapacitors obtained via recycled jute: Bio-waste to energy storage approach. Sci. Rep., 2017, 7(1), 1174.
[http://dx.doi.org/10.1038/s41598-017-01319-w] [PMID: 28446782]
[39]
Wang, Z.; Tan, Y.; Yang, Y.; Zhao, X.; Liu, Y.; Niu, L.; Tichnell, B.; Kong, L.; Kang, L.; Liu, Z.; Ran, F. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources, 2018, 378, 499-510.
[http://dx.doi.org/10.1016/j.jpowsour.2017.12.076]
[40]
Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J., 2003, 91(2-3), 87-102.
[http://dx.doi.org/10.1016/S1385-8947(02)00142-0]
[41]
Trugilho, P.F. Da SILVA, D.A. Influência da temperatura final de carbonização nas características físicas e químicas do carvão vegetal de jatobá (Himenea courbaril L.). Sci. Agrar., 2001, 2(1), 45.
[http://dx.doi.org/10.5380/rsa.v2i1.976]
[42]
Guiotoku, M.; Rambo, C.; Maia, C.; Hotz, D. Synthesis of carbon-based materials by microwave-assisted hydrothermal process. Microw. Heat., 2011.
[http://dx.doi.org/10.5772/20089]
[43]
Li, M.; Li, W.; Liu, S. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr. Res., 2011, 346(8), 999-1004.
[http://dx.doi.org/10.1016/j.carres.2011.03.020] [PMID: 21481847]
[44]
Samsul, A.; Othman, R.; Jabarullah, N.H. Preparation and synthesis of synthetic graphite from biomass waste. Sys. Rev. Pharm., 2020, 11, 881-894.
[45]
Erdem, A.; Dogru, M. Process intensification  Activated carbon production from biochar produced by gasification. Johnson Matthey Technol. Rev, 2021, 352-365.
[46]
Lee, S.; Lee, S.; Roh, J. Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis. Crystals, 2021, 11(2), 153.
[http://dx.doi.org/10.3390/cryst11020153]
[47]
Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv., 2019, 1(10), 3807-3835.
[http://dx.doi.org/10.1039/C9NA00374F]
[48]
Fu, M.; Huang, J.; Feng, S.; Zhang, T.; Qian, P.C.; Wong, W.Y. One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors. Mater. Chem. Front., 2021, 5(5), 2320-2327.
[http://dx.doi.org/10.1039/D0QM00960A]
[49]
Le Van, K.; Luong Thi, T.T. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog. Nat. Sci., 2014, 24(3), 191-198.
[http://dx.doi.org/10.1016/j.pnsc.2014.05.012]
[50]
Khan, A.; Arumugam Senthil, R.; Pan, J.; Sun, Y.; Liu, X. Hierarchically porous biomass carbon derived from natural withered rose flowers as high‐performance material for advanced supercapacitors. Batter. Supercaps, 2020, 3(8), 731-737.
[http://dx.doi.org/10.1002/batt.202000046]
[51]
Feng, W.; He, P.; Ding, S.; Zhang, G.; He, M.; Dong, F.; Wen, J.; Du, L.; Liu, M. Oxygen-doped activated carbons derived from three kinds of biomass: Preparation, characterization and performance as electrode materials for supercapacitors. RSC Advances, 2016, 6(7), 5949-5956.
[http://dx.doi.org/10.1039/C5RA24613J]
[52]
Zhou, X.; Li, H.; Yang, J. Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes. J. Energy Chem., 2016, 25(1), 35-40.
[http://dx.doi.org/10.1016/j.jechem.2015.11.008]
[53]
Momodu, D.; Madito, M.; Barzegar, F.; Bello, A.; Khaleed, A.; Olaniyan, O.; Dangbegnon, J.; Manyala, N. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J. Solid State Electrochem., 2017, 21(3), 859-872.
[http://dx.doi.org/10.1007/s10008-016-3432-z]
[54]
Dai, C.; Wan, J.; Geng, W.; Song, S.; Ma, F.; Shao, J. KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. J. Solid State Electrochem., 2017, 21(10), 2929-2938.
[http://dx.doi.org/10.1007/s10008-017-3631-2]
[55]
Sudhan, N.; Subramani, K.; Karnan, M.; Ilayaraja, N.; Sathish, M. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and nonaqueous electrolytes. Energy Fuels, 2017, 31(1), 977-985.
[http://dx.doi.org/10.1021/acs.energyfuels.6b01829]
[56]
Wang, Y.; Zhang, M.; Dai, Y.; Wang, H.Q.; Zhang, H.; Wang, Q.; Hou, W.; Yan, H.; Li, W.; Zheng, J.C. Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors. J. Power Sources, 2019, 438, 227045.
[http://dx.doi.org/10.1016/j.jpowsour.2019.227045]
[57]
Yaglikci, S.; Gokce, Y.; Yagmur, E.; Aktas, Z. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol., 2020, 41(1), 36-48.
[http://dx.doi.org/10.1080/09593330.2019.1575480] [PMID: 30681935]
[58]
Cheng, P.; Gao, S.; Zang, P.; Yang, X.; Bai, Y.; Xu, H.; Liu, Z.; Lei, Z. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon, 2015, 93, 315-324.
[http://dx.doi.org/10.1016/j.carbon.2015.05.056]
[59]
Qian, W.; Sun, F.; Xu, Y.; Qiu, L.; Liu, C.; Wang, S.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci., 2014, 7(1), 379-386.
[http://dx.doi.org/10.1039/C3EE43111H]
[60]
Wang, Q.; Cao, Q.; Wang, X.; Jing, B.; Kuang, H.; Zhou, L. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. J. Power Sources, 2013, 225, 101-107.
[http://dx.doi.org/10.1016/j.jpowsour.2012.10.022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy