Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Modern Concepts of the Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Clinical and Epidemiological Data, the Main Pathophysiological Mechanisms

Author(s): Aleksey Michailovich Chaulin* and Artem Konstantinovich Sergeev

Volume 19, Issue 2, 2023

Published on: 19 October, 2022

Article ID: e170822207573 Pages: 15

DOI: 10.2174/1573403X18666220817103105

Price: $65

Abstract

Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs.

The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects.

Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications.

Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.

Keywords: cardiovascular diseases, atherosclerosis, particulate matter, PM 2.5, pathogenesis, endothelial dysfunction, lipid metabolis, oxidative stress, inflammation, vegetative nervous system.

Graphical Abstract

[1]
Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. Ambient air pollution and atherosclerosis: insights into dose, time, and mechanisms. Arterio. Throm. Vascular Bio 2021 Feb 41 (2): 628-37.
[http://dx.doi.org/10.1161/ATVBAHA.120.315219] [PMID: 33327745]
[2]
Chaulin A, Duplyakov D. The role of environmental factors in the pathogenesis of cardiovascular diseases Part 1. Air Pollution. Archiv Euro 2021; 11(1): 30-5.
[http://dx.doi.org/10.35630/2199-885X/2021/11/1.5]
[3]
Chaulin AM, Duplyakov DV. Environmental factors and cardiovascular diseases. Hyg San 2021; 100(3): 223-8.
[http://dx.doi.org/10.47470/0016-9900-2021-100-3-223-228]
[4]
WHO-World Health Organization. WHO ambient (outdoor) air quality database summary results, update, 2018. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ambient-air-pollution (Accessed on: 1 August 2021).
[5]
Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.The Lancet. 2017; May 13 389(10082): 1907-18.
[http://dx.doi.org/10.1016/S0140-6736(17)30505-6] [PMID: 28408086]
[6]
Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of thoracic disease 2016; 8(1): E8.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2015] [PMID: 26904258]
[7]
Chaulin AM, Duplyakov DV. Comorbidity in chronic obstructive pulmonary disease and cardiovascular disease. Cardio Ther Prev 2021 Feb 11; 20(3): 2539.
[http://dx.doi.org/10.15829/1728-8800-2021-2539]
[8]
Vriens A, Nawrot TS, Janssen BG, et al. Exposure to environmental pollutants and their association with biomarkers of aging: a multipollutant approach Environ Sci Tech May 53(10):5966-76.
[http://dx.doi.org/10.1021/acs.est.8b07141] [PMID: 31041867]
[9]
Gan WQ, Allen RW, Brauer M, Davies HW, Mancini GJ, Lear SA. Long-term exposure to traffic-related air pollution and progression of carotid artery atherosclerosis: a prospective cohort study. BMJ Open 2014; 4(4): e004743.
[http://dx.doi.org/10.1136/bmjopen-2013-004743] [PMID: 24710134]
[10]
Tian Y, Liu H, Wu Y, et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: time series study in 184 major Chinese cities. BMJ 2019 Dec 30; 367.
[http://dx.doi.org/10.1136/bmj.l6572] [PMID: 31888884]
[11]
Xu Q, Wang S, Guo Y, et al. Acute exposure to fine particulate matter and cardiovascular hospital emergency room visits in Beijing, China. Environ Polluti 2017; 220 Jan 1: 317-27.
[http://dx.doi.org/10.1016/j.envpol.2016.09.065]
[12]
Xu H, Brook RD, Wang T, et al. Short-term effects of ambient air pollution and outdoor temperature on biomarkers of myocardial damage, inflammation and oxidative stress in healthy adults. Environ Epidemiol 2019 Dec; 3(6): e078.
[http://dx.doi.org/10.1097/EE9.0000000000000078] [PMID: 33778346]
[13]
Zhang S, Breitner S, Cascio WE, et al. Association between short-term exposure to ambient fine particulate matter and myocardial injury in the CATHGEN cohort. Environ Pollut 2021; 275: 116663.
[http://dx.doi.org/10.1016/j.envpol.2021.116663] [PMID: 33581627]
[14]
Huang CH, Lin LY, Tsai MS, et al. Acute cardiac dysfunction after short-term diesel exhaust particles exposure. Toxicol Lett 2010 Feb 15; 192(3): 349-55.
[http://dx.doi.org/10.1016/j.toxlet.2009.11.008] [PMID: 19913602]
[15]
Vieira JL, Guimaraes GV, de Andre PA, Cruz FD, Saldiva PH, Bocchi EA. Respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail 2016 Jan; 4(1): 55-64.
[http://dx.doi.org/10.1016/j.jchf.2015.07.018] [PMID: 26738952]
[16]
Eze UU, Eke IG, Anakwue RC, et al. Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country. Cardiovasc Toxicol 2021 Dec; 21(12): 1019-32.
[http://dx.doi.org/10.1007/s12012-021-09693-8] [PMID: 34533688]
[17]
Wei Z, Wang LT, Chen MZ, Zheng Y. The 2013 severe haze over the Southern Hebei, China: PM2. 5 composition and source apportionment. Atmos Pollut Res 2014 Oct 1; 5(4): 759-68.
[http://dx.doi.org/10.5094/APR.2014.085]
[18]
Werner M, Kryza M, Dore AJ. Differences in the spatial distribution and chemical composition of PM10 between the UK and Poland. Environ Model Assess 2014 Jun; 19(3): 179-92.
[http://dx.doi.org/10.1007/s10666-013-9384-0]
[19]
Philip G, Nayak AS, Berger WE, et al. The effect of montelukast on rhinitis symptoms in patients with asthma and seasonal allergic rhinitis. Curr Med Res Opin 2004 Oct 1; 20(10): 1549-58.
[http://dx.doi.org/10.1185/030079904X3348] [PMID: 15462688]
[20]
Wang G, Zheng X, Duan H, et al. High-content analysis of particulate matters-induced oxidative stress and organelle dysfunction in vitro. Toxicol In Vitro 2019 Sep 1; 59: 263-74.
[http://dx.doi.org/10.1016/j.tiv.2019.04.026] [PMID: 31029784]
[21]
Zeka A, Sullivan JR, Vokonas PS, Sparrow D, Schwartz J. Inflammatory markers and particulate air pollution: characterizing the pathway to disease. Int J Epidemiol 2006 Oct 1; 35(5): 1347-54.
[http://dx.doi.org/10.1093/ije/dyl132] [PMID: 16844771]
[22]
Meng X, Zhang Y, Yang KQ, Yang YK, Zhou XL. Potential harmful effects of PM2.5 on occurrence and progression of acute coronary syndrome: Epidemiology, mechanisms, and prevention measures. Int J Environ Res Public Health 2016; 13(8): 748.
[http://dx.doi.org/10.3390/ijerph13080748] [PMID: 27463723]
[23]
Kim SY, Sheppard L, Kaufman JD, et al. Individual-level concentrations of fine particulate matter chemical components and subclinical atherosclerosis: a cross-sectional analysis based on 2 advanced exposure prediction models in the multi-ethnic study of atherosclerosis. Am J Epidemiol 2014 Oct 1; 180(7): 718-28.
[http://dx.doi.org/10.1093/aje/kwu186] [PMID: 25164422]
[24]
Sun M, Kaufman JD, Kim SY, et al. Particulate matter components and subclinical atherosclerosis: Common approaches to estimating exposure in a multi-ethnic study of atherosclerosis cross-sectional study. Environ Health 2013; 12(1): 39.
[http://dx.doi.org/10.1186/1476-069X-12-39] [PMID: 23641873]
[25]
Su R, Jin X, Li H, Huang L, Li Z. The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 2020; 241: 125127.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125127] [PMID: 31683440]
[26]
Miao X, Li W, Niu B, et al. Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 2019; 39(10): 1424-32.
[http://dx.doi.org/10.1002/jat.3828] [PMID: 31273799]
[27]
Wang Y, Zhang M, Li Z, et al. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere 2019; 2(18): 577-88.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.149] [PMID: 30502696]
[28]
Li R, Kou X, Geng H, et al. Effect of ambient PM2. 5 on lung mitochondrial damage and fusion/fission gene expression in rats. Chem Res Toxicol 2015 Mar 16; 28(3): 408-18.
[http://dx.doi.org/10.1021/tx5003723] [PMID: 25560372]
[29]
Huang YC, Ghio AJ, Stonehuerner J, et al. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxicol 2003 Jan 1; 15(4): 327-42.
[http://dx.doi.org/10.1080/08958370304460] [PMID: 12635002]
[30]
Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B 2012 Jan 1; 15(1): 1-21.
[http://dx.doi.org/10.1080/10937404.2012.632359] [PMID: 22202227]
[31]
Ye D, Klein M, Mulholland JA, Russell AG, Weber R. Edgerton, ES, Chang HH, Sarnat JA, Tolbert PE, Ebelt Sarnat S. Estimating acute cardiovascular effects of ambient PM2.5 metals. Environ Health Perspect 2018; 126(2): 027007.
[http://dx.doi.org/10.1289/EHP2182] [PMID: 29467104]
[32]
Mills NL, Miller MR, Lucking AJ, et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur Heart J 2011; 32(21): 2660-71.
[http://dx.doi.org/10.1093/eurheartj/ehr195] [PMID: 21753226]
[33]
Franklin M, Koutrakis P, Schwartz J. The role of particle composition on the association between PM2.5 and mortality. Epidemiology 2008; 19(5): 680-9.
[http://dx.doi.org/10.1097/EDE.0b013e3181812bb7] [PMID: 18714438]
[34]
Künzli N, Jerrett M, Mack WJ, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005; 113(2): 201-6.
[http://dx.doi.org/10.1289/ehp.7523] [PMID: 15687058]
[35]
Breton CV, Wang X, Mack WJ, et al. Childhood air pollutant exposure and carotid artery intima-media thickness in young adults. Circulation 2012; 126(13): 1614-20.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.096164] [PMID: 22896588]
[36]
Bauer M, Moebus S, Möhlenkam S, et al. HNR study investigative group. Urban particulate matter air pollution is associated with subclinical atherosclerosis: Results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol 2010; 56(22): 1803-8.
[http://dx.doi.org/10.1016/j.jacc.2010.04.065] [PMID: 21087707]
[37]
Adar SD, Sheppard L, Vedal S, et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med 2013; 10(4): e1001430.
[http://dx.doi.org/10.1371/journal.pmed.1001430] [PMID: 23637576]
[38]
Diez Roux AV, Auchincloss AH, Franklin TG, et al. Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the multi-ethnic study of atherosclerosis. Am J Epidemiol 2007; 167(6): 667-75.
[http://dx.doi.org/10.1093/aje/kwm359] [PMID: 18227099]
[39]
Duan C, Talbott EO, Broadwin R, Brooks M, Matthews K, Barinas-Mitchell E. Residential exposure to PM 2.5 and ozone and progression of subclinical atherosclerosis among women transitioning through menopause: The study of women’s health across the nation. J Womens Health (Larchmt) 2019; 28(6): 802-11.
[http://dx.doi.org/10.1089/jwh.2018.7182] [PMID: 30730252]
[40]
Hoffmann B, Moebus S, Möhlenkamp S, et al. Heinz Nixdorf recall study investigative group. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 2007; 116(5): 489-96.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.693622] [PMID: 17638927]
[41]
Kaufman JD, Adar SD, Barr RG, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the multi-ethnic study of atherosclerosis and air pollution): A longitudinal cohort study. Lancet 2016; 388(10045): 696-704.
[http://dx.doi.org/10.1016/S0140-6736(16)00378-0] [PMID: 27233746]
[42]
Hoffmann B, Moebus S, Kröger K, et al. Residential exposure to urban air pollution, ankle-brachial index, and peripheral arterial disease. Epidemiology 2009; 20(2): 280-8.
[http://dx.doi.org/10.1097/EDE.0b013e3181961ac2] [PMID: 19194299]
[43]
Kälsch H, Hennig F, Moebus S, et al. Heinz nixdorf recall study investigative group. Are air pollution and traffic noise independently associated with atherosclerosis: The Heinz Nixdorf recall study. Eur Heart J 2014; 35(13): 853-60.
[http://dx.doi.org/10.1093/eurheartj/eht426] [PMID: 24194529]
[44]
Brook RD, Rajagopalan S, Pope CA, et al. American Heart Association council on epidemiology and prevention, council on the kidney in cardiovascular disease, and council on nutrition, physical activity and metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121(21): 2331-78.
[http://dx.doi.org/10.1161/CIR.0b013e3181dbece1] [PMID: 20458016]
[45]
Crouse DL, Peters PA, van Donkelaar A, et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ Health Perspect 2012; 120(5): 708-14.
[http://dx.doi.org/10.1289/ehp.1104049] [PMID: 22313724]
[46]
Pinault L, Tjepkema M, Crouse DL, et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Health 2016; 15(1): 18.
[http://dx.doi.org/10.1186/s12940-016-0111-6] [PMID: 26864652]
[47]
Christidis T, Erickson AC, Pappin AJ, et al. Low concentrations of fine particle air pollution and mortality in the Canadian Community Health Survey cohort. Environ Health 2019; 18(1): 84.
[http://dx.doi.org/10.1186/s12940-019-0518-y] [PMID: 31601202]
[48]
Huynh Q, Marwick TH, Venkataraman P, Knibbs LD, Johnston FH, Negishi K. Long-term exposure to ambient air pollution is associated with coronary artery calcification among asymptomatic adults. Eur Heart J Cardiovasc Imaging 2021; 22(8): 922-9.
[http://dx.doi.org/10.1093/ehjci/jeaa073] [PMID: 32356862]
[49]
Huang W, Wang G, Lu SE, et al. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am J Respir Crit Care Med 2012; 186(11): 1150-9.
[http://dx.doi.org/10.1164/rccm.201205-0850OC] [PMID: 22936356]
[50]
Rich DQ, Kipen HM, Huang W, et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 2012; 307(19): 2068-78.
[http://dx.doi.org/10.1001/jama.2012.3488] [PMID: 22665106]
[51]
Liang S, Zhao T, Xu Q, Duan J, Sun Z. Evaluation of fine particulate matter on vascular endothelial function in vivo and in vitro. Ecotoxicol Environ Saf 2021; 222: 112485.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112485] [PMID: 34246944]
[52]
Marathe S, Kuriakose G, Williams KJ, Tabas I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler Thromb Vasc Biol 1999; 19(11): 2648-58.
[http://dx.doi.org/10.1161/01.ATV.19.11.2648] [PMID: 10559007]
[53]
Mannucci PM, Harari S, Franchini M. Novel evidence for a greater burden of ambient air pollution on cardiovascular disease. Haematologica 2019; 104(12): 2349-57.
[http://dx.doi.org/10.3324/haematol.2019.225086] [PMID: 31672903]
[54]
Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat Rev Cardiol 2019; 16(7): 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[55]
Chaulin AM, Grigoryeva YV, Duplyakov DV. About the role of immuno-inflammatory mechanisms in the pathogenesis of atherosclerosis. Eur J Nat Hist 2020; 5(5): 2-6.
[http://dx.doi.org/10.17513/ejnh.34123]
[56]
Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: A systematic review and meta-analysis. J Am Heart Assoc 2015; 4(11): e002270.
[http://dx.doi.org/10.1161/JAHA.115.002270]
[57]
Brook RD, Urch B, Dvonch JT, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 2009; 54(3): 659-67.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.130237] [PMID: 19620518]
[58]
Krishnan RM, Adar SD, Szpiro AA, et al. Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-ethnic study of atherosclerosis and air pollution). J Am Coll Cardiol 2012; 60(21): 2158-66.
[http://dx.doi.org/10.1016/j.jacc.2012.08.973] [PMID: 23103035]
[59]
Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res 2016; 119(11): 1204-14.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309279] [PMID: 27780829]
[60]
Wang T, Chiang ET, Moreno-Vinasco L, et al. Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. Am J Respir Cell Mol Biol 2010; 42(4): 442-9.
[http://dx.doi.org/10.1165/rcmb.2008-0402OC] [PMID: 19520919]
[61]
Wang M, Hou ZH, Xu H, et al. Association of estimated long-term exposure to air pollution and traffic proximity with a marker for coronary atherosclerosis in a nationwide study in China. JAMA Netw Open 2019; 2(6): e196553.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.6553] [PMID: 31251382]
[62]
Zhou Z, Shao T, Qin M, et al. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5. J Environ Sci (China) 2018; 66: 182-7.
[http://dx.doi.org/10.1016/j.jes.2017.05.019] [PMID: 29628085]
[63]
Montiel-Dávalos A, Alfaro-Moreno E, López-Marure R. PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol 2007; 19 (Suppl. 1): 91-8.
[http://dx.doi.org/10.1080/08958370701495212] [PMID: 17886056]
[64]
Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049-56.
[http://dx.doi.org/10.1172/JCI9259] [PMID: 10772649]
[65]
Geng J, Liu H, Ge P, et al. PM2.5 promotes plaque vulnerability at different stages of atherosclerosis and the formation of foam cells via TLR4/MyD88/NFκB pathway. Ecotoxicol Environ Saf 2019; 176: 76-84.
[http://dx.doi.org/10.1016/j.ecoenv.2019.03.068] [PMID: 30921699]
[66]
Mollace V, Gliozzi M, Musolino V, et al. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol 2015; 1(84): 152-8.
[http://dx.doi.org/10.1016/j.ijcard.2015.02.007] [PMID: 25703423]
[67]
Konstantinov IE, Mejevoi N, Anichkov NM, Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J 2006; 33(4): 417-23.
[PMID: 17215962]
[68]
Slawsky E, Ward-Caviness CK, Neas L, et al. Evaluation of PM2.5 air pollution sources and cardiovascular health. Environ Epidemiol 2021; 5(3): e157.
[http://dx.doi.org/10.1097/EE9.0000000000000157] [PMID: 34131618]
[69]
Valdez RB, Al-Hamdan MZ, Tabatabai M, et al. Association of cardiovascular disease and long-term exposure to fine Particulate Matter (PM2.5) in the Southeastern United States. Atmosphere (Basel) 2021; 12(8): 947.
[http://dx.doi.org/10.3390/atmos12080947]
[70]
Li H, Cai J, Chen R, et al. Particulate matter exposure and stress hormone levels. Circulation 2017; 136(7): 618-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026796] [PMID: 28808144]
[71]
Guan L, Geng X, Shen J, et al. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget 2018; 9(3): 3765-78.
[http://dx.doi.org/10.18632/oncotarget.23347] [PMID: 29423081]
[72]
Mao S, Chen G, Liu F, et al. Long-term effects of ambient air pollutants to blood lipids and dyslipidemias in a Chinese rural population. Environ Pollut 2020; 256: 113403.
[http://dx.doi.org/10.1016/j.envpol.2019.113403] [PMID: 31711721]
[73]
McGuinn LA, Schneider A, McGarrah RW, et al. Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk. Environ Int 2019; 122: 193-200.
[http://dx.doi.org/10.1016/j.envint.2018.11.001] [PMID: 30446244]
[74]
Bell G, Mora S, Greenland P, Tsai M, Gill E, Kaufman JD. Association of air pollution exposures with high-density lipoprotein cholesterol and particle number. Arterioscler Thromb Vasc Biol 2017; 37(5): 976-82.
[http://dx.doi.org/10.1161/ATVBAHA.116.308193] [PMID: 28408373]
[75]
Holme SAN, Sigsgaard T, Holme JA, Holst GJ. Effects of particulate matter on atherosclerosis: A link via High-Density Lipoprotein (HDL) functionality? Part Fibre Toxicol 2020; 17(1): 36.
[http://dx.doi.org/10.1186/s12989-020-00367-x] [PMID: 32753036]
[76]
Ramanathan G, Yin F, Speck M, et al. Effects of urban fine particulate matter and ozone on HDL functionality. Part Fibre Toxicol 2015; 13(1): 26.
[http://dx.doi.org/10.1186/s12989-016-0139-3] [PMID: 27221567]
[77]
Freeman SR, Jin X, Anzinger JJ, et al. ABCG1-mediated generation of extracellular cholesterol microdomains. J Lipid Res 2014; 55(1): 115-27.
[http://dx.doi.org/10.1194/jlr.M044552] [PMID: 24212237]
[78]
Riwanto M, Rohrer L, Roschitzki B, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: Role of high-density lipoprotein-proteome remodeling. Circulation 2013; 127(8): 891-904.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.108753] [PMID: 23349247]
[79]
Sun Q, Wang A, Jin X, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 2005; 294(23): 3003-10.
[http://dx.doi.org/10.1001/jama.294.23.3003] [PMID: 16414948]
[80]
Du X, Jiang S, Zeng X, et al. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE -/- mice. Toxicol Lett 2018; 290: 123-32.
[http://dx.doi.org/10.1016/j.toxlet.2018.03.022] [PMID: 29571893]
[81]
Rao X, Zhong J, Maiseyeu A, et al. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ Res 2014; 115(9): 770-80.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304666] [PMID: 25186795]
[82]
Shi Y, Hu J, Geng J, et al. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed Pharmacother 2018; 107: 1556-63.
[http://dx.doi.org/10.1016/j.biopha.2018.08.148] [PMID: 30257374]
[83]
Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut 2017; 230: 125-33.
[http://dx.doi.org/10.1016/j.envpol.2017.06.051] [PMID: 28649040]
[84]
Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol 2017; 13(6): 368-80.
[http://dx.doi.org/10.1038/nrneph.2017.51] [PMID: 28392564]
[85]
Sotty J, Kluza J, De Sousa C, et al. Mitochondrial alterations triggered by repeated exposure to fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) fractions of ambient particulate matter. Environ Int 2020; 142: 105830.
[http://dx.doi.org/10.1016/j.envint.2020.105830] [PMID: 32585499]
[86]
Liu J, Liang S, Du Z, et al. PM2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. Environ Pollut 2019; 249: 482-90.
[http://dx.doi.org/10.1016/j.envpol.2019.03.045] [PMID: 30928520]
[87]
Tian G, Wang J, Lu Z, et al. Indirect effect of PM1 on endothelial cells via inducing the release of respiratory inflammatory cytokines. Toxicol In Vitro 2019; 57: 203-10.
[http://dx.doi.org/10.1016/j.tiv.2019.03.013] [PMID: 30858030]
[88]
Prueitt RL, Cohen JM, Goodman JE. Evaluation of atherosclerosis as a potential mode of action for cardiovascular effects of particulate matter. Regul Toxicol Pharmacol 2015; 73(2) (Suppl.): S1-S15.
[http://dx.doi.org/10.1016/j.yrtph.2015.09.034] [PMID: 26474868]
[89]
Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev 2015; 16(2): 127-36.
[http://dx.doi.org/10.1111/obr.12242] [PMID: 25586506]
[90]
Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim Biophys Acta, Gen Subj 2016; 1860(12): 2863-8.
[http://dx.doi.org/10.1016/j.bbagen.2016.04.030] [PMID: 27156486]
[91]
Wang J, Badeanlou L, Bielawski J, Ciaraldi TP, Samad F. Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. Am J Physiol Endocrinol Metab 2014; 306(7): E756-68.
[http://dx.doi.org/10.1152/ajpendo.00549.2013] [PMID: 24473437]
[92]
Liu C, Bai Y, Xu X, et al. Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus. Part Fibre Toxicol 2014; 11(1): 27.
[http://dx.doi.org/10.1186/1743-8977-11-27] [PMID: 24886175]
[93]
Yoo HJ, Choi KM. Adipokines as a novel link between obesity and atherosclerosis. World J Diabetes 2014; 5(3): 357-63.
[http://dx.doi.org/10.4239/wjd.v5.i3.357] [PMID: 24936256]
[94]
Chaulin AM. Cardiac troponins metabolism: From biochemical mechanisms to clinical practice (Literature Review). Int J Mol Sci 2021; 22(20): 10928.
[http://dx.doi.org/10.3390/ijms222010928] [PMID: 34681585]
[95]
Nakamura K, Fuster JJ, Walsh K. Adipokines: A link between obesity and cardiovascular disease. J Cardiol 2014; 63(4): 250-9.
[http://dx.doi.org/10.1016/j.jjcc.2013.11.006] [PMID: 24355497]
[96]
Raman P, Khanal S. Leptin in atherosclerosis: Focus on macrophages, endothelial and smooth muscle cells. Int J Mol Sci 2021; 22(11): 5446.
[http://dx.doi.org/10.3390/ijms22115446] [PMID: 34064112]
[97]
Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 2013; 4: 71.
[http://dx.doi.org/10.3389/fendo.2013.00071] [PMID: 23781214]
[98]
Chaulin A. Cardiac troponins: Contemporary biological data and new methods of determination. Vasc Health Risk Manag 2021; 17: 299-316.
[http://dx.doi.org/10.2147/VHRM.S300002] [PMID: 34113117]
[99]
Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russ J Cardiol 2020; 25(3S): 4061.
[http://dx.doi.org/10.15829/1560-4071-2020-4061]
[100]
Kim KN, Kim JH, Jung K, Hong YC. Associations of air pollution exposure with blood pressure and heart rate variability are modified by oxidative stress genes: A repeated-measures panel among elderly urban residents. Environ Health 2016; 15(1): 47.
[http://dx.doi.org/10.1186/s12940-016-0130-3] [PMID: 27015811]
[101]
Pieters N, Plusquin M, Cox B, Kicinski M, Vangronsveld J, Nawrot TS. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: A meta-analysis. Heart 2012; 98(15): 1127-35.
[http://dx.doi.org/10.1136/heartjnl-2011-301505] [PMID: 22628541]
[102]
Lee MS, Eum KD, Fang SC, Rodrigues EG, Modest GA, Christiani DC. Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. Int J Cardiol 2014; 176(1): 166-70.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.012] [PMID: 25074558]
[103]
Pei Y, Jiang R, Zou Y, et al. Effects of fine Particulate Matter (PM2.5) on systemic oxidative stress and cardiac function in ApoE-/- mice. Int J Environ Res Public Health 2016; 13(5): 484.
[http://dx.doi.org/10.3390/ijerph13050484] [PMID: 27187431]
[104]
Huang F, Wang P, Pan X, Wang Y, Ren S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. Environ Pollut 2020; 256: 113306.
[http://dx.doi.org/10.1016/j.envpol.2019.113306] [PMID: 31733955]
[105]
Fuks KB, Weinmayr G, Hennig F, et al. Heinz Nixdorf recall study investigative group. Association of long-term exposure to local industry- and traffic-specific particulate matter with arterial blood pressure and incident hypertension. Int J Hyg Environ Health 2016; 219(6): 527-35.
[http://dx.doi.org/10.1016/j.ijheh.2016.05.008] [PMID: 27318724]
[106]
Ying Z, Xu X, Bai Y, et al. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: A role for hypothalamic inflammation. Environ Health Perspect 2014; 122(1): 79-86.
[http://dx.doi.org/10.1289/ehp.1307151] [PMID: 24240275]
[107]
Tobaldini E, Bollati V, Prado M, et al. Acute particulate matter affects cardiovascular autonomic modulation and IFN-γ methylation in healthy volunteers. Environ Res 2018; 161: 97-103.
[http://dx.doi.org/10.1016/j.envres.2017.10.036] [PMID: 29102669]
[108]
Chaulin AM. Diagnostic value of highly sensitive cardiac troponins and mechanisms of their increase in serum and urine in arterial hypertension. Riv Ital Med Lab 2021; 17(2): 99-107.
[http://dx.doi.org/10.23736/S1825-859X.21.00107-9]
[109]
Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia 2019; 59(11): 66-75.
[http://dx.doi.org/10.18087/cardio.2019.11.n414]
[110]
Gerhard GT, Duell PB. Homocysteine and atherosclerosis. Curr Opin Lipidol 1999; 10(5): 417-28.
[http://dx.doi.org/10.1097/00041433-199910000-00006] [PMID: 10554704]
[111]
Chaulin A. Clinical and diagnostic value of highly sensitive cardiac troponins in arterial hypertension. Vasc Health Risk Manag 2021; 17: 431-43.
[http://dx.doi.org/10.2147/VHRM.S315376] [PMID: 34366667]
[112]
Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep 2016; 18(12): 82.
[http://dx.doi.org/10.1007/s11883-016-0632-z] [PMID: 27822682]
[113]
Ivanovic B, Tadic M. Hypercholesterolemia and hypertension: Two sides of the same coin. Am J Cardiovasc Drugs 2015; 15(6): 403-14.
[http://dx.doi.org/10.1007/s40256-015-0128-1] [PMID: 26062915]
[114]
Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999; 281(10): 921-6.
[http://dx.doi.org/10.1001/jama.281.10.921] [PMID: 10078489]
[115]
Jin S, Shen L, Nie P, et al. Endogenous renovascular hypertension combined with low shear stress induces plaque rupture in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32(10): 2372-9.
[http://dx.doi.org/10.1161/ATVBAHA.111.236158] [PMID: 22904273]
[116]
Sierra C, Coca A, Schiffrin EL. Vascular mechanisms in the pathogenesis of stroke. Curr Hypertens Rep 2011; 13(3): 200-7.
[http://dx.doi.org/10.1007/s11906-011-0195-x] [PMID: 21331606]
[117]
Chaulin AM, Duplyakov DV. Cardiac troponins in hypertension: Mechanisms of increase and diagnostic value. Arterial Hypertension 2021; 27(4): 390-401.
[http://dx.doi.org/10.18705/1607-419X-2021-27-4-390-401]
[118]
Nemmar A, Hoet PHM, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 2003; 107(8): 1202-8.
[http://dx.doi.org/10.1161/01.CIR.0000053568.13058.67] [PMID: 12615802]
[119]
Mutlu GM, Green D, Bellmeyer A, et al. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 2007; 117(10): 2952-61.
[http://dx.doi.org/10.1172/JCI30639] [PMID: 17885684]
[120]
Rückerl R, Phipps RP, Schneider A, et al. Ultrafine particles and platelet activation in patients with coronary heart disease--results from a prospective panel study. Part Fibre Toxicol 2007; 4(1): 1.
[http://dx.doi.org/10.1186/1743-8977-4-1] [PMID: 17241467]
[121]
Baccarelli A, Zanobetti A, Martinelli I, et al. Effects of exposure to air pollution on blood coagulation. J Thromb Haemost 2007; 5(2): 252-60.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02300.x] [PMID: 17083648]
[122]
Tang L, Shi S, Wang B, et al. Effect of urban air pollution on CRP and coagulation: A study on inpatients with acute exacerbation of chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21(1): 296.
[http://dx.doi.org/10.1186/s12890-021-01650-z] [PMID: 34537026]
[123]
Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol 2018; 15(1): 1.
[http://dx.doi.org/10.1186/s12989-017-0237-x] [PMID: 29298690]
[124]
Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae 2021; 17(3): 79-84.
[http://dx.doi.org/10.22514/sv.2021.050]
[125]
Chaulin AM. Cardiac troponins: Current information on the main analytical characteristics of determination methods and new diagnostic possibilities. Medwave 2021; 21(11): e8498.
[http://dx.doi.org/10.5867/medwave.2021.11.002132]
[126]
Muscente F, De Caterina R. New insights from the MESA study: Increased high-sensitivity troponins as a cardiovascular risk factor. Eur Heart J Suppl 2021; 23 (Suppl. E): E68-72.
[http://dx.doi.org/10.1093/eurheartj/suab092] [PMID: 34650358]
[127]
Chauin A. The Main causes and mechanisms of increase in cardiac troponin concentrations other than acute myocardial infarction (Part 1): Physical exertion, inflammatory heart disease, pulmonary embolism, renal failure, sepsis. Vasc Health Risk Manag 2021; 17: 601-17.
[http://dx.doi.org/10.2147/VHRM.S327661] [PMID: 34584417]
[128]
Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc Ther Prev 2021; 20(2): 2590.
[http://dx.doi.org/10.15829/1728-8800-2021-2590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy