Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Theoretical Investigation on the Mechanistic Pathways of Cp*Cobalt(III)- Catalyzed Transformation of N-Substituted Carbamoyl Indoles to Pyrroloindolone Derivatives

Author(s): Rohini Saha, Saptarshi Saha and Gourab Kanti Das*

Volume 1, 2023

Published on: 16 August, 2022

Article ID: e160822207550 Pages: 8

DOI: 10.2174/2210299X01666220816153029

Price: $

Abstract

Aim: A theoretical study on the Cp*cobalt(III) catalyzed C-H functionalization transformation of N-substituted carbamoyl indoles with alkyne derivatives to pyrroloindoline derivatives has been performed using the DFT method.

Background: The indole skeleton is important for developing regioselective C-H bond functionalisation reactions. Pyrrolo[1,2-a]indole bearing a 6-5-5 tricyclic skeleton (Scheme-1) is an important structural component found in many biologically active natural products and pharmaceuticals (such as antitumor mitomycin C, antimalarial flinderole B etc.).Thus C−H activation process has great demand methods for efficiently synthesizing a pyrrolo[1,2-a]indole unit from readily available starting materials. Matsunaga & Kanaiet al. published one such attractive report, which shows pyrroloindoline derivatives can be synthesized (Scheme-2) through Cp*Co(III) catalysed C-H alkenylation and annulations from N-substituted carbamoyl indoles.

Objective: Our current project deals with determining the rate step of the reaction for the energetically favourable pathway and investigating the actual reason behind the regioselectivity of the products, whether it is steric or electronic effects of the substituents. Methods: The geometry optimization and energy calculations of all the systems were carried out with the Gaussian 09 software. Construction of trial geometries, monitoring of the progress of calculations and visualization of the final output was done by several graphical user interface software like Gauss View, Molden etc. Geometry optimization of all species is performed using M06-2X functional in DFT method as a method for performing optimization of structures. 6-31G (d, p) basis set was employed for all non-metal atoms, and the LANL2DZ basis set was employed for cobalt. The relaxed scan method was used to determine the geometries of several transition structures on the reaction pathway's potential energy surface (PES).

Results: DFT study on a reaction of carbamoyl indoles with alkyne derivatives by activating Co(III)Cp* catalytic condition is done here. The targeting scheme followed the energetics of two possible pathways. The initial step of the reaction is the alkyne insertion step which needs 21.27 kcal mol-1 energy. In the first case, the final annulated product has been generated through a carbon-carbon bond formation, proton transfer and demetallation processes in path-a. The global activation barrier is quite high (30.17 kcal mol-1). However, the study of the second pathway, which generated the simple alkenylated product through the proto-demethylation process in path-b, reveals a more reliable activation barrier (21.27 kcal mol-1).

Conclusion: A comparison of the energy requirement reveals that the formation of the final product should go through a favourable simple alkenylation process that is path-b for dimethyl amine. Due to the lower energy barrier, the simple alkenylation pathway (i.e., Path-b) is a more favourable one. The initial alkyne addition step is the rate-determining step. The regioselectivity of the alkyne addition is purely governed by the steric crowding around the substrate. Thus the favourable mode of alkyne addition has a lower energy barrier due to lesser steric interactions. This theoretical investigation may guide future researchers in developing another economical route for generating similar derivatives.

Keywords: Cp*Cobalt(III) catalysis, DFT studies, C-H functionalization, N-substituted carbamoyl indoles, reaction mechanism.

[1]
Kharasch, M.S.; Fields, E.K. Factors determining the course and mechanisms of Grignard reactions. IV. The effect of metallic halides on the reaction of aryl Grignard reagents and organic halides. J. Am. Chem. Soc., 1941, 63, 2316-2320.
[http://dx.doi.org/10.1021/ja01854a006]
[2]
Hebrard, F.; Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev., 2009, 109(9), 4272-4282.
[http://dx.doi.org/10.1021/cr8002533] [PMID: 19572688]
[3]
Klein, H.F.; Hellwig, M.; Koch, U.N.D.; Flörke, U.; Haupt, H.J.Z. Coordination and reactions of diazenes in trimethylphosphinecobalt(I). Complexes - Syntheses and structures of complexes Containing μ2-(N,N′)-Benzo[c]cinnoline and η2-azobenzene ligands. Z. Naturforschung B., 1993, 48(6), 778-784.
[4]
Murahashi, S.; Horiie, S. The reaction of azobenzene and carbon monoxide. J. Am. Chem. Soc., 1956, 78, 4816-4817.
[http://dx.doi.org/10.1021/ja01599a079]
[5]
Murahashi, S. Synthesis of phthalimidines from Schiff bases and carbon monoxide. J. Am. Chem. Soc., 1955, 77, 6403-6404.
[http://dx.doi.org/10.1021/ja01628a120]
[6]
a) Lenges, C.P.; Brookhart, M. Co(I)-catalyzed inter- and intramolecular hydroacylation of olefins with aromatic aldehydes. J. Am. Chem. Soc., 1997, 119, 3165-3166.
[http://dx.doi.org/10.1021/ja9639776];
b) Lenges, C.P.; Brookhart, M.; Gant, B.E. H/D exchange reactions between C6D6 and C5Me5 Co(CH2=CHR)2 (R = H, SiMe3): Evidence for oxidative addition of Csp2−H bonds to the [C5Me5(L)Co] moiety. J. Organomet. Chem., 1997, 528, 199-203.
[http://dx.doi.org/10.1016/S0022-328X(96)06592-8]
[7]
Lenges, C.P.; White, P.S.; Brookhart, M. Mechanistic and synthetic studies of the addition of alkyl aldehydes to vinylsilanes catalyzed by Co(I) complexes. J. Am. Chem. Soc., 1998, 120, 6965-6979.
[http://dx.doi.org/10.1021/ja980610n]
[8]
a) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J. Am. Chem. Soc., 2010, 132(39), 13666-13668.
[http://dx.doi.org/10.1021/ja106514b] [PMID: 20822182];
b) Tsai, C-C.; Shih, W-C.; Fang, C.H.; Li, C.Y.; Ong, T-G.; Yap, G.P. Bimetallic nickel aluminum mediated para-selective alkenylation of pyridine: Direct observation of η2,η1-pyridine Ni(0)-Al(III) intermediates prior to C-H bond activation. J. Am. Chem. Soc., 2010, 132(34), 11887-11889.
[http://dx.doi.org/10.1021/ja1061246] [PMID: 20690626]
[9]
Andou, T.; Saga, Y.; Komai, H.; Matsunaga, S.; Kanai, M. Cobalt-catalyzed C4-selective direct alkylation of pyridines. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3213-3216.
[http://dx.doi.org/10.1002/anie.201208666] [PMID: 23371410]
[10]
Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: Mechanism and scope. Chem. Rev., 2011, 111(3), 1315-1345.
[http://dx.doi.org/10.1021/cr100412j] [PMID: 21391562]
[11]
Lapointe, D.; Fagnou, K. Overview of the mechanistic work on the concerted metallation - deprotonation pathway. Chem. Lett., 2010, 39, 1118-1126.
[http://dx.doi.org/10.1246/cl.2010.1118]
[12]
Varela, J.A.; Saá, C. CpRuCl- and CpCo-catalyzed or mediated cyclotrimerizations of alkynes and [2+2+2] cycloadditions of alkynes to alkenes: A comparative DFT study. J. Organomet. Chem., 2009, 694, 143-149.
[http://dx.doi.org/10.1016/j.jorganchem.2008.10.032]
[13]
Aubert, C.; Gandon, V.; Geny, A.; Heckrodt, T.J.; Malacria, M.; Paredes, E.; Vollhardt, K.P.C. Cobalt-mediated [2+2+2] cycloaddition versus C-H and N-H activation of 2-pyridonesand pyrazinoneswith alkynes: A theoretical study. Chemistry, 2007, 13, 7466-7478.
[http://dx.doi.org/10.1002/chem.200601822] [PMID: 17579899]
[14]
Ylijoki, K.E.O.; Budzelaar, P.H.M.; Stryker, J.M. A density functional theory investigation of the cobalt-mediated η5-pentadienyl/alkyne [5+2] cycloaddition reaction: Mechanistic insight and substituent effects. Chemistry, 2012, 18(32), 9894-9900.
[http://dx.doi.org/10.1002/chem.201200319] [PMID: 22777682]
[15]
Kornobis, K.; Kumar, N.; Lodowski, P.; Jaworska, M.; Piecuch, P.; Lutz, J.J.; Wong, B.M.; Kozlowski, P.M. Electronic structure of the S1 state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations. J. Comput. Chem., 2013, 34(12), 987-1004.
[http://dx.doi.org/10.1002/jcc.23204] [PMID: 23335227]
[16]
Kornobis, K.; Kumar, N.; Wong, B.M.; Lodowski, P.; Jaworska, M.; Andruniów, T.; Ruud, K.; Kozlowski, P.M. Electronically excited states of vitamin B12: Benchmark calculations including time-dependent density functional theory and correlated ab initio methods. J. Phys. Chem. A, 2011, 115(7), 1280-1292.
[http://dx.doi.org/10.1021/jp110914y] [PMID: 21280654]
[17]
Saha, R.; Mondal, S.; Chatterjee, A.; Pal, P.; Chakrabarty, K. Revisited the reaction mechanism of cobalt catalyzed [3+2] cycloaddition reactions between the derivatives of cyclopropanols and allenes: A DFT study. J. Organomet. Chem., 2021, 937, 121744.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121744]
[18]
a) Galm, U.; Hager, M.H.; Van Lanen, S.G.; Ju, J.; Thorson, J.S.; Shen, B. Antitumor antibiotics: Bleomycin, enediynes, and mitomycin. Chem. Rev., 2005, 105(2), 739-758.
[http://dx.doi.org/10.1021/cr030117g] [PMID: 15700963];
b) Fernandez, L.S.; Buchanan, M.S.; Carroll, A.R.; Feng, Y.J.; Quinn, R.J.; Avery, V.M.; Flinderoles, A-C. Flinderoles A-C: Antimalarial bis-indole alkaloids from Flindersia species. Org. Lett., 2009, 11(2), 329-332.
[http://dx.doi.org/10.1021/ol802506n] [PMID: 19090698]
[19]
Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence. J. Am. Chem. Soc., 2014, 136(14), 5424-5431.
[http://dx.doi.org/10.1021/ja5008432] [PMID: 24650237]
[20]
Frisch, M.J. Gaussian 09, Revision C.01; Gaussian Inc: Wallingford, CT, 2010.
[21]
Camiletti, G.G.; Machado, S.F.; Jorge, F.E. Gaussian basis set of double zeta quality for atoms K through Kr: Application in DFT calculations of molecular properties. J. Comput. Chem., 2008, 29(14), 2434-2444.
[http://dx.doi.org/10.1002/jcc.20996] [PMID: 18612996]
[22]
Basak, A.; Chakrabarty, K.; Ghosh, A.; Das, G.K. Mechanism of the gold(III)-catalyzed isomerization of substituted allenes to conjugated dienes: A DFT study. J. Org. Chem., 2013, 78(19), 9715-9724.
[http://dx.doi.org/10.1021/jo401400x] [PMID: 23992518]
[23]
Ghosh, A.; Basak, A.; Chakrabarty, K.; Mondal, S.; Chatterjee, A.; Das, G.K. Au-catalyzed hexannulation and Pt-catalyzed pentannulation of propargylic ester bearing a 2-alkynyl-phenyl substituent: A comparative DFT study. ACS Omega, 2018, 3(1), 1159-1169.
[http://dx.doi.org/10.1021/acsomega.7b01889] [PMID: 31457958]
[24]
Latouche, C.; Skouteris, D.; Palazzetti, F.; Barone, V. TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J. Chem. Theory Comput., 2015, 11(7), 3281-3289.
[http://dx.doi.org/10.1021/acs.jctc.5b00257] [PMID: 26575764]
[25]
Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 2008, 41(2), 157-167.
[http://dx.doi.org/10.1021/ar700111a] [PMID: 18186612]
[26]
Walker, M.; Harvey, A.J.A.; Sen, A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. A, 2013, 117(47), 12590-12600.
[http://dx.doi.org/10.1021/jp408166m] [PMID: 24147965]
[27]
Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys., 1971, 54, 724-728.
[http://dx.doi.org/10.1063/1.1674902]
[28]
Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular-orbital methods. XII. Further extensions of Gaussian-type basis for use in molecular orbital studies of organic molecules. J. Chem. Phys., 1972, 56, 2257-2261.
[http://dx.doi.org/10.1063/1.1677527]
[29]
Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta, 1973, 28, 213-222.
[http://dx.doi.org/10.1007/BF00533485]
[30]
Hariharan, P.C.; Pople, J.A. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol. Phys., 1974, 27, 209-214.
[http://dx.doi.org/10.1080/00268977400100171]
[31]
Dill, J.D.; Pople, J.A. Self-consistent molecular-orbital methods. XV. Extented Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys., 1975, 62, 2921-2923.
[http://dx.doi.org/10.1063/1.430801]
[32]
Francl, M.M.; Petro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXII. A polarization type basis set for second row elements. J. Chem. Phys., 1982, 77, 3654-3665.
[http://dx.doi.org/10.1063/1.444267]
[33]
Alexander, V.M.; Baker, J.; Pulay, P. An improved 6–31G* basis set for first row transition metals. J. Chem. Phys., 2003, 118, 7775-7782.
[http://dx.doi.org/10.1063/1.1563619]
[34]
Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys., 1998, 109, 1223-1229.
[http://dx.doi.org/10.1063/1.476673]
[35]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potential for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82, 270-283.
[http://dx.doi.org/10.1063/1.448799]
[36]
Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potential for main group elements Na to Bi. J. Chem. Phys., 1985, 82, 284-298.
[http://dx.doi.org/10.1063/1.448800]
[37]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 1985, 82, 299-310.
[http://dx.doi.org/10.1063/1.448975]
[38]
Roy, L.E.; Hay, P.J.; Martin, R.L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput., 2008, 4(7), 1029-1031.
[http://dx.doi.org/10.1021/ct8000409] [PMID: 26636355]
[39]
Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem., 1970, 74, 4161-4163.
[http://dx.doi.org/10.1021/j100717a029]
[40]
Fukui, K. The path of chemical reactions - IRC approach. Acc. Chem. Res., 1981, 14, 363-368.
[http://dx.doi.org/10.1021/ar00072a001]
[41]
Gonzalez, C.; Schlegel, H.B. Reaction path following in mass weighted internal coordinates. J. Phys. Chem., 1990, 94, 5523-5527.
[http://dx.doi.org/10.1021/j100377a021]
[42]
Tomasi, J.; Persico, M. Molecular Interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev., 1994, 94, 2027-2094.
[http://dx.doi.org/10.1021/cr00031a013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy