Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

In-stent Thrombosis and COVID-19 Infection: Current Insights on the Mechanistic Relationship

Author(s): Ahmed El-Medany, Vanessa Kandoole, Nicholas Lonsdale, Gemina Doolub and Ioannis Felekos*

Volume 19, Issue 1, 2023

Published on: 20 August, 2022

Article ID: e120522204669 Pages: 9

DOI: 10.2174/1573403X18666220512142019

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been demonstrated as a major risk factor in inducing coronary stent thrombosis due to its propensity to create a pro-thrombotic state. This review explores the mechanisms that may contribute to the increased thrombosis risk seen in COVID-19. Furthermore, we discuss the patient and haematological factors that predispose to an increased risk of stent thrombosis, as well as the role of certain antiplatelet and anticoagulation therapies, including ticagrelor and enoxaparin, that may reduce the likelihood and severity of in-stent thrombosis, in SARS-CoV-2 infection. To counter the proinflammatory and pro-thrombotic state shown in COVID-19, anti-thrombotic therapy in the future may be optimised using point-of-care platelet inhibition testing and inflammation-modifying therapies. Large-scale randomised trials with long-term follow-up are increasingly necessary to assess the intersection of COVID-19 and stent optimisation as well as the reduction of stent thrombosis after drug-eluting stent (DES) implantation.

Keywords: Stent thrombosis, coronary artery disease, COVID-19, antiplatelet, drug-eluting stent implantation, anti-thrombotic therapy.

Graphical Abstract

[1]
World Health Organisation. WHO Coronavirus (COVID-19) dashboard. 2022. Available from: WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard with Vaccination Data.
[2]
Hajra A, Mathai SV, Ball S, et al. Management of thrombotic complications in COVID-19: an update. Drugs 2020; 80(15): 1553-62.
[http://dx.doi.org/10.1007/s40265-020-01377-x] [PMID: 32803670]
[3]
Gąsecka A, Borovac JA, Guerreiro RA, et al. Thrombotic complications in patients with COVID-19: pathophysiological mechanisms, diagnosis, and treatment. Cardiovasc Drugs Ther 2021; 35(2): 215-9.
[PMID: 33074525]
[4]
Levolger S, Bokkers RPH, Wille J, Kropman RHJ, de Vries JPM. Arterial thrombotic complications in COVID-19 pa-tients. J Vasc Surg Cases Innov Tech 2020; 6(3): 454-9.
[http://dx.doi.org/10.1016/j.jvscit.2020.06.012] [PMID: 32835150]
[5]
Hanif A, Khan S, Mantri N, et al. Thrombotic complications and anticoagulation in COVID-19 pneumonia: A New York City hospital experience. Ann Hematol 2020; 99(10): 2323-8.
[http://dx.doi.org/10.1007/s00277-020-04216-x] [PMID: 32808105]
[6]
Helms J, Tacquard C, Severac F, et al. High risk of throm-bosis in patients with severe SARS-CoV-2 infection: A multi-center prospective cohort study. Intensive Care Med 2020; 46(6): 1089-98.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[7]
Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-A systematic review. J Card Surg 2020; 35(8): 1988-2008.
[http://dx.doi.org/10.1111/jocs.14808] [PMID: 32652713]
[8]
Mitrani RD, Dabas N, Goldberger JJ. COVID-19 cardiac inju-ry: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm 2020; 17(11): 1984-90.
[http://dx.doi.org/10.1016/j.hrthm.2020.06.026] [PMID: 32599178]
[9]
Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr. Descrip-tion and proposed management of the acute COVID-19 cardi-ovascular syndrome. Circulation 2020; 141(23): 1903-14.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047349] [PMID: 32297796]
[10]
Prieto-Lobato A, Ramos-Martínez R, Vallejo-Calcerrada N, Corbí-Pascual M, Córdoba-Soriano JG. A case series of stent thrombosis during the COVID-19 pandemic. JACC Case Rep 2020; 2(9): 1291-6.
[http://dx.doi.org/10.1016/j.jaccas.2020.05.024] [PMID: 32835270]
[11]
Mauri L, Hsieh WH, Massaro JM, Ho KK, D’Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 2007; 356(10): 1020-9.
[http://dx.doi.org/10.1056/NEJMoa067731] [PMID: 17296821]
[12]
Senchenkova EY, Russell J, Esmon CT, Granger DN. Roles of Coagulation and fibrinolysis in angiotensin II-enhanced microvascular thrombosis. Microcirculation 2014; 21(5): 401-7.
[http://dx.doi.org/10.1111/micc.12120] [PMID: 24495184]
[13]
Senchenkova EY, Russell J, Almeida-Paula LD, Harding JW, Granger DN. Angiotensin II-mediated microvascular throm-bosis. Hypertension 2010; 56(6): 1089-95.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.158220] [PMID: 20975035]
[14]
Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol 2020; 95(12): 1578-89.
[http://dx.doi.org/10.1002/ajh.25982] [PMID: 32857878]
[15]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[16]
Tai W, He L, Zhang X, et al. Characterization of the Receptor-Binding Domain (RBD) of 2019 novel coronavirus: implica-tion for development of RBD protein as a viral attachment in-hibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[17]
Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995; 95(3): 995-1001.
[http://dx.doi.org/10.1172/JCI117809] [PMID: 7884001]
[18]
Brown NJ, Vaughan DE. Prothrombotic effects of angioten-sin. Adv Intern Med 2000; 45: 419-29.
[PMID: 10635057]
[19]
Gromotowicz-Poplawska A, Stankiewicz A, Kramkowski K, et al. The acute prothrombotic effect of aldosterone in rats is partially mediated via angiotensin II receptor type 1. Thromb Res 2016; 138: 114-20.
[http://dx.doi.org/10.1016/j.thromres.2015.12.008] [PMID: 26709040]
[20]
Sun T, Ghosh AK, Eren M, Miyata T, Vaughan DE. PAI-1 contributes to homocysteine-induced cellular senescence. Cell Signal 2019; 64109394.
[http://dx.doi.org/10.1016/j.cellsig.2019.109394] [PMID: 31472244]
[21]
Iba T, Levy JH, Raj A, Warkentin TE. Advance in the man-agement of sepsis-induced coagulopathy and disseminated in-travascular coagulation. J Clin Med 2019; 8(5): 728.
[http://dx.doi.org/10.3390/jcm8050728] [PMID: 31121897]
[22]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parame-ters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[23]
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arteri-al thromboembolic complications in COVID-19 patients ad-mitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9-14.
[http://dx.doi.org/10.1016/j.thromres.2020.04.024] [PMID: 32353746]
[24]
Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin Med J 2020; 133(11): 1261-7.
[http://dx.doi.org/10.1097/CM9.0000000000000824] [PMID: 32209890]
[25]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-30.
[26]
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis.Seminars in immunopathology. Berlin Heidelberg: Springer 2017; 39: pp. 517-28.
[http://dx.doi.org/10.1007/s00281-017-0639-8]
[27]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[28]
England JT, Abdulla A, Biggs CM, et al. Weathering the COVID-19 storm: Lessons from hematologic cytokine syn-dromes. Blood Rev 2021; 45100707.
[http://dx.doi.org/10.1016/j.blre.2020.100707] [PMID: 32425294]
[29]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[30]
Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormali-ties associated with severe illness and mortality in corona-virus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med 2020; 58(7): 1021-8.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[31]
Netea MG, Rovina N, Koulouris N. Clinical and translational report complex immune dysregulation in COVID‐19 patients with severe respiratory failure II clinical and translational re-port complex immune dysregulation in COVID‐19 patients with severe respiratory failure. Cell Host Microbe 2020; 27(6): 992-1000.
[http://dx.doi.org/10.1016/j.chom.2020.04.009]
[32]
Cornelissen A, Kutyna M, Cheng Q, et al. Effects of simulat-ed COVID-19 cytokine storm on stent thrombogenicity. Cardiovasc Revasc Med 2022; 35: 129-38.
[33]
Bowles L, Platton S, Yartey N, et al. Lupus anticoagulant and abnormal coagulation tests in patients with COVID-19. N Engl J Med 2020; 383(3): 288-90.
[http://dx.doi.org/10.1056/NEJMc2013656] [PMID: 32369280]
[34]
Lupu F, Keshari RS, Lambris JD, Coggeshall KM. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res 2014; 133 (Suppl. 1): S28-31.
[http://dx.doi.org/10.1016/j.thromres.2014.03.014] [PMID: 24759136]
[35]
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res 2020; 220: 1-13.
[http://dx.doi.org/10.1016/j.trsl.2020.04.007] [PMID: 32299776]
[36]
Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immu-nology of macrophage activation syndrome. Front Immunol 2019; 10: 119.
[http://dx.doi.org/10.3389/fimmu.2019.00119] [PMID: 30774631]
[37]
Hamadeh A, Aldujeli A, Briedis K, et al. Characteristics and outcomes in patients presenting with COVID-19 and ST-segment elevation myocardial infarction. Am J Cardiol 2020; 131: 1-6.
[http://dx.doi.org/10.1016/j.amjcard.2020.06.063] [PMID: 32732010]
[38]
Kariyanna PT, Jayarangaiah A, Das S, et al. COVID-19 and coronary stent thrombosis: A systematic review of literature. Am J Med Case Rep 2021; 9(6): 308-11.
[39]
Tam CF, Cheung KS, Lam S, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes 2020; 13(4): e006631.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.120.006631] [PMID: 32182131]
[40]
Choudry FA, Hamshere SM, Rathod KS, et al. High thrombus burden in patients with COVID-19 presenting with ST-segment elevation myocardial infarction. J Am Coll Cardiol 2020; 76(10): 1168-76.
[http://dx.doi.org/10.1016/j.jacc.2020.07.022] [PMID: 32679155]
[41]
Violi F, Cammisotto V, Pignatelli P. Thrombosis in Covid-19 and non-Covid-19 pneumonia: role of platelets. Platelets 2021; 32(8): 1009-17.
[http://dx.doi.org/10.1080/09537104.2021.1936478] [PMID: 34097572]
[42]
Storey RF, Steg P, James S, et al. Reduction in pulmonary adverse events and associated sepsis and mortality in acute coronary syndrome patients treated with ticagrelor compared to clopidogrel: A post hoc analysis of the Plato study. J Am Coll Cardiol 2012; 59(13S): E482.
[http://dx.doi.org/10.1016/S0735-1097(12)60483-5]
[43]
Mansour A, Bachelot-Loza C, Nesseler N, Gaussem P, Gouin-Thibault I. P2Y12 inhibition beyond thrombosis: Ef-fects on inflammation. Int J Mol Sci 2020; 21(4): 1391.
[http://dx.doi.org/10.3390/ijms21041391] [PMID: 32092903]
[44]
Chrysanthopoulou A, Kambas K, Stakos D, et al. Interferon lambda1/IL-29 and inorganic polyphosphate are novel regula-tors of neutrophil-driven thromboinflammation. J Pathol 2017; 243(1): 111-22.
[http://dx.doi.org/10.1002/path.4935] [PMID: 28678391]
[45]
Omarjee L, Meilhac O, Perrot F, Janin A, Mahe G. Can Ti-cagrelor be used to prevent sepsis-induced coagulopathy in COVID-19? Clin Immunol 2020; 216108468.
[http://dx.doi.org/10.1016/j.clim.2020.108468] [PMID: 32445671]
[46]
Mitsios A, Chrysanthopoulou A, Arampatzioglou A, et al. Ticagrelor exerts immune-modulatory effect by attenuating neutrophil extracellular traps. Int J Mol Sci 2020; 21(10): 3625.
[http://dx.doi.org/10.3390/ijms21103625] [PMID: 32455533]
[47]
Cattaneo M, Schulz R, Nylander S. Adenosine-mediated ef-fects of ticagrelor: Evidence and potential clinical relevance. J Am Coll Cardiol 2014; 63(23): 2503-9.
[http://dx.doi.org/10.1016/j.jacc.2014.03.031] [PMID: 24768873]
[48]
Akkaif MA, Ng ML, Sk Abdul Kader MA, Daud NAA, Sha’aban A, Ibrahim B. A review of the effects of ticagrelor on adenosine concentration and its clinical significance. Pharmacol Rep 2021; 73(6): 1551-64.
[http://dx.doi.org/10.1007/s43440-021-00309-0] [PMID: 34283374]
[49]
Haskó G, Cronstein B. Regulation of inflammation by adeno-sine. Front Immunol 2013; 4: 85.
[http://dx.doi.org/10.3389/fimmu.2013.00085] [PMID: 23580000]
[50]
Panka BA, de Grooth HJ, Spoelstra-de Man AM, Looney MR, Tuinman PR. Prevention or treatment of ARDS with aspirin: A review of preclinical models and meta-analysis of clinical studies. Shock 2017; 47(1): 13-21.
[http://dx.doi.org/10.1097/SHK.0000000000000745] [PMID: 27984533]
[51]
Loeffen R, Godschalk TC, van Oerle R, et al. The hypercoag-ulable profile of patients with stent thrombosis. Heart 2015; 101(14): 1126-32.
[http://dx.doi.org/10.1136/heartjnl-2014-306685] [PMID: 25999588]
[52]
Du L, Kao RY, Zhou Y, et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun 2007; 359(1): 174-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.092] [PMID: 17533109]
[53]
Frydman GH, Streiff MB, Connors JM, Piazza G. The poten-tial role of coagulation factor Xa in the pathophysiology of COVID-19: A role for anticoagulants as multimodal therapeu-tic agents. TH Open 2020; 4(4): e288-99.
[http://dx.doi.org/10.1055/s-0040-1718415] [PMID: 33043235]
[54]
Dörffler-Melly J, de Jonge E, Pont AC, et al. Bioavailability of subcutaneous low-molecular-weight heparin to patients on vasopressors. Lancet 2002; 359(9309): 849-50.
[http://dx.doi.org/10.1016/S0140-6736(02)07920-5] [PMID: 11897286]
[55]
Bal dit Sollier C, Dillinger JG, Drouet L. dit Sollier CB, Dil-linger JG, Drouet L. Anticoagulant activity and pleiotropic ef-fects of heparin. J Med Vasc 2020; 45(3): 147-57.
[http://dx.doi.org/10.1016/j.jdmv.2020.03.002]
[56]
Bal dit Sollier C, Drouet L. dit Sollier CB, Drouet L. Non anticoagulant properties of heparin preparations: Practical considerations. STV Sang Thromb Vaiss 2013; 25(6): 389-98.
[http://dx.doi.org/10.1684/stv.2013.0807]
[57]
Montalescot G, Bal-dit-Sollier C, Chibedi D, et al. Compari-son of effects on markers of blood cell activation of enoxapa-rin, dalteparin, and unfractionated heparin in patients with unstable angina pectoris or non-ST-segment elevation acute myocardial infarction (the ARMADA study). Am J Cardiol 2003; 91(8): 925-30.
[http://dx.doi.org/10.1016/S0002-9149(03)00105-X] [PMID: 12686329]
[58]
Rao NV, Argyle B, Xu X, et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 2010; 299(1): C97-C110.
[http://dx.doi.org/10.1152/ajpcell.00009.2010] [PMID: 20375277]
[59]
Grouve E, Kristensen S. Stent thrombosis: Definitions, mechanisms and prevention. E-J Cardiol Pract 2007; 32(5)
[60]
Ndunda P, Vindhyal MR, Muutu T, Fanari Z. Clinical out-comes of the dual-therapy CD34 antibody-covered sirolimus-eluting stent versus standard drug-eluting coronary stents: A Meta-Analysis. Cardiovascular Revascularization Medicine 2020; 21(2): 213-21.
[http://dx.doi.org/10.1016/j.carrev.2019.04.016] [PMID: 31147259]
[61]
Stimpfle F, Karathanos A, Droppa M, et al. Impact of point-of-care testing for CYP2C19 on platelet inhibition in patients with acute coronary syndrome and early dual antiplatelet therapy in the emergency setting. Thromb Res 2014; 134(1): 105-10.
[http://dx.doi.org/10.1016/j.thromres.2014.05.006] [PMID: 24856643]
[62]
Sambu N, Radhakrishnan A, Dent H, et al. Personalised an-tiplatelet therapy in stent thrombosis: observations from the Clopidogrel Resistance in Stent Thrombosis (CREST) regis-try. Heart 2012; 98(9): 706-11.
[http://dx.doi.org/10.1136/heartjnl-2011-301164] [PMID: 22523055]
[63]
Lacour T, Semaan C, Genet T, Ivanes F. Insights for in-creased risk of failed fibrinolytic therapy and stent throm-bosis associated with COVID-19 in ST-segment elevation myocardial infarction patients. Catheter Cardiovasc Interv 2021; 97(2): E241-3.
[http://dx.doi.org/10.1002/ccd.28948] [PMID: 32352633]
[64]
Zaher N, Sattar Y, Mahmood S, Vacek T, Alraies MC. COVID-19 infection complicated by a complete occlusion of the left circumflex artery with acute restenosis after drug-eluting stent placement. Cureus 2020; 12(9): e10708.
[http://dx.doi.org/10.7759/cureus.10708] [PMID: 33133872]
[65]
Galeazzi GL, Loffi M, Di Tano G, Danzi GB. Severe COVID-19 pneumonia and very late stent thrombosis: A trigger or in-nocent bystander? Korean Circ J 2020; 50(7): 632-3.
[http://dx.doi.org/10.4070/kcj.2020.0166] [PMID: 32588573]
[66]
Ayan M, Kovelamudi S, Al-Hawwas M. Subacute stent thrombosis in a patient with COVID-19 pneumonia. Baylor University Medical Center Proceedings Taylor & Francis. 2021; 34: pp. (1)175-7.
[67]
Antuña P, Rivero F, Del Val D, Cuesta J, Alfonso F. Late coronary stent thrombosis in a patient with coronavirus dis-ease 2019. JAMA Cardiol 2020; 5(10): 1195-8.
[http://dx.doi.org/10.1001/jamacardio.2020.2459] [PMID: 32639522]
[68]
Hinterseer M, Zens M, Wimmer RJ, et al. Acute myocardial infarction due to coronary stent thrombosis in a symptomatic COVID-19 patient. Clin Res Cardiol 2021; 110(2): 302-6.
[http://dx.doi.org/10.1007/s00392-020-01663-4] [PMID: 32430631]
[69]
Choudhary R, Kaushik A, Sharma JB. COVID-19 pandemic and stent thrombosis in a post percutaneous coronary inter-vention patient-a case report highlighting the selection of P2Y12 inhibitor. Cardiovasc Diagn Ther 2020; 10(4): 898-901.
[http://dx.doi.org/10.21037/cdt-20-485] [PMID: 32968646]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy