Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Long Non-coding RNA SNHG16 Facilitates Esophageal Cancer Cell Proliferation and Self-renewal through the microRNA-802/PTCH1 Axis

Author(s): Luquan Zhang, Hao Liang, Jinfeng Zhang, Yingnan Yang, Xiaodong Ling and Hao Jiang*

Volume 29, Issue 39, 2022

Published on: 15 August, 2022

Page: [6084 - 6099] Pages: 16

DOI: 10.2174/0929867329666220510090418

Price: $65

Abstract

Objective: This research sought to explore the effect and mechanism of long non-coding RNA SNHG16 on esophageal cancer (EC) cell proliferation and self-renewal.

Methods: SNHG16 expression was measured in EC9706 and KYSE150 cells. EC9706 and KYSE150 cells were transfected with Lenti-SNHG16, sh-SNHG16, Lenti-protein patched homolog 1 (PTCH1), miR-802 mimic, or miR-802 inhibitor. Flow cytometry was used to sort cancer stem cells (CSCs) in EC9706 and KYSE150 cells. Cell proliferation in EC cells was measured, in addition to colony and tumorsphere numbers. The possible interactions among SNHG16, PTCH1, and miR-802 were identified by dual luciferase reporter and RNA pull-down assays. The expression of the genes in the Hedgehog pathway was detected. Nude mice were injected with SNHG16-silenced EC9706 cells to observe the tumorigenicity of EC9706 cells.

Results: Upregulated SNHG16 expression was found in CSCs, whose expression was decreased during the differentiation of CSCs. SNHG16 or PTCH1 overexpression or miR-802 inhibition promoted the proliferation, colony formation, and tumorsphere formation of EC9706 and KYSE150 cells as well as SOX2, OCT4, Bmi-1, and PTCH1 expression. Consistently, SNHG16 knockdown or miR-802 overexpression inhibited EC progression. Moreover, SNHG16 and PTCH1 were competitively bound to miR-802, and SNHG16 orchestrated the miR-802/PTCH1 axis to activate the Hedgehog pathway. SNHG16 silencing repressed the tumorigenicity of EC9706 in nude mice.

Conclusion: Conclusively, SNHG16 acts as a sponge of miR-802 to upregulate PTCH1 and activate the Hedgehog pathway, thus promoting EC cell proliferation and selfrenewal.

Keywords: SNHG16, esophageal cancer, microRNA-802, PTCH1, self-renewal, proliferation, Hedgehog pathway.

[1]
Gisbertz, S.S.; Hagens, E.R.C.; Ruurda, J.P.; Schneider, P.M.; Tan, L.J.; Domrachev, S.A.; Hoeppner, J.; van Berge Henegouwen, M.I. The evolution of surgical approach for esophageal cancer. Ann. N. Y. Acad. Sci., 2018, 1434(1), 149-155.
[http://dx.doi.org/10.1111/nyas.13957] [PMID: 30191569]
[2]
Wang, D.; Plukker, J.T.M.; Coppes, R.P. Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin. Cancer Biol., 2017, 44, 60-66.
[http://dx.doi.org/10.1016/j.semcancer.2017.03.010] [PMID: 28366541]
[3]
Mohamed, A.; El-Rayes, B.; Khuri, F.R.; Saba, N.F. Targeted therapies in metastatic esophageal cancer: Advances over the past decade. Crit. Rev. Oncol. Hematol., 2014, 91(2), 186-196.
[http://dx.doi.org/10.1016/j.critrevonc.2014.01.010] [PMID: 24582516]
[4]
Noordman, B.J.; Verdam, M.G.E.; Lagarde, S.M.; Hulshof, M.C.C.M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; Cuesta, M.A.; Blaisse, R.J.B.; Busch, O.R.; Ten Kate, F.J.W.; Creemers, G.M.; Punt, C.J.A.; Plukker, J.T.M.; Verheul, H.M.W.; Spillenaar Bilgen, E.J.; van Dekken, H.; van der Sangen, M.J.C.; Rozema, T.; Biermann, K.; Beukema, J.C.; Piet, A.H.M.; van Rij, C.M.; Reinders, J.G.; Tilanus, H.W.; Steyerberg, E.W.; van der Gaast, A.; Sprangers, M.A.G.; van Lanschot, J.J.B. Effect of neoadjuvant chemoradiotherapy on health-related quality of life in esophageal or junctional cancer: Results From the Randomized CROSS Trial. J. Clin. Oncol., 2018, 36(3), 268-275.
[http://dx.doi.org/10.1200/JCO.2017.73.7718] [PMID: 29161204]
[5]
Taniguchi, H.; Moriya, C.; Igarashi, H.; Saitoh, A.; Yamamoto, H.; Adachi, Y.; Imai, K. Cancer stem cells in human gastrointestinal cancer. Cancer Sci., 2016, 107(11), 1556-1562.
[http://dx.doi.org/10.1111/cas.13069] [PMID: 27575869]
[6]
Zhao, Y.; Bao, Q.; Schwarz, B.; Zhao, L.; Mysliwietz, J.; Ellwart, J.; Renner, A.; Hirner, H.; Niess, H.; Camaj, P.; Angele, M.; Gros, S.; Izbicki, J.; Jauch, K.W.; Nelson, P.J.; Bruns, C.J. Stem cell-like side populations in esophageal cancer: A source of chemotherapy resistance and metastases. Stem Cells Dev., 2014, 23(2), 180-192.
[http://dx.doi.org/10.1089/scd.2013.0103] [PMID: 24021093]
[7]
Shen, S.N.; Li, K.; Liu, Y.; Yang, C.L.; He, C.Y.; Wang, H.R. Down-regulation of long noncoding RNA PVT1 inhibits esophageal carcinoma cell migration and invasion and promotes cell apoptosis via microRNA-145-mediated inhibition of FSCN1. Mol. Oncol., 2019, 13(12), 2554-2573.
[http://dx.doi.org/10.1002/1878-0261.12555] [PMID: 31369196]
[8]
Zhang, K.; Chen, J.; Song, H.; Chen, L.B. SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1. Oncotarget, 2017, 9(1), 1028-1040.
[http://dx.doi.org/10.18632/oncotarget.23178] [PMID: 29416674]
[9]
Qi, C.; Di Minin, G.; Vercellino, I.; Wutz, A.; Korkhov, V.M. Structural basis of sterol recognition by human hedgehog receptor PTCH1. Sci. Adv., 2019, 5(9), eaaw6490.
[http://dx.doi.org/10.1126/sciadv.aaw6490] [PMID: 31555730]
[10]
Li, N.; Yu, Y.; Wang, B. Down-regulation of ATAD2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway. Am. J. Physiol. Cell Physiol., 2020, 319(1), C93-C104.
[11]
Yuan, Z.; Xiu, C.; Liu, D.; Zhou, G.; Yang, H.; Pei, R.; Ding, C.; Cui, X.; Sun, J.; Song, K. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis. J. Cell. Physiol., 2019, 234(12), 23111-23122.
[http://dx.doi.org/10.1002/jcp.28874] [PMID: 31131448]
[12]
Yu, X.; Jiang, X.; Li, H.; Guo, L.; Jiang, W.; Lu, S.H. miR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev., 2014, 23(6), 576-585.
[http://dx.doi.org/10.1089/scd.2013.0308] [PMID: 24219349]
[13]
Feng, H.; Liu, L.; Xu, L.; Wang, H.; Hua, Q.; He, P. MiR-802 suppresses colorectal cancer cell viability, migration and invasion by targeting RAN. Cancer Manag. Res., 2020, 12, 2291-2300.
[http://dx.doi.org/10.2147/CMAR.S231709] [PMID: 32273766]
[14]
Wu, X.; Liu, L.; Zhang, H. miR-802 inhibits the epithelial-mesenchymal transition, migration and invasion of cervical cancer by regulating BTF3. Mol. Med. Rep., 2020, 22(3), 1883-1891.
[http://dx.doi.org/10.3892/mmr.2020.11267] [PMID: 32582971]
[15]
Zhang, J.; Li, J.; Li, S.; Zhou, C.; Qin, Y.; Li, X. miR-802 inhibits the aggressive behaviors of non-small cell lung cancer cells by directly targeting FGFR1. Int. J. Oncol., 2019, 54(6), 2211-2221.
[http://dx.doi.org/10.3892/ijo.2019.4765] [PMID: 30942425]
[16]
Mönig, S.; Chevallay, M.; Niclauss, N.; Zilli, T.; Fang, W.; Bansal, A.; Hoeppner, J. Early esophageal cancer: The significance of surgery, endoscopy, and chemoradiation. Ann. N. Y. Acad. Sci., 2018, 1434(1), 115-123.
[http://dx.doi.org/10.1111/nyas.13955] [PMID: 30138532]
[17]
Han, G.H.; Lu, K.J.; Wang, P.; Ye, J.; Ye, Y.Y.; Huang, J.X. LncRNA SNHG16 predicts poor prognosis in ESCC and promotes cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3795-3803.
[PMID: 29949155]
[18]
Li, S.; Peng, F.; Ning, Y.; Jiang, P.; Peng, J.; Ding, X.; Zhang, J.; Jiang, T.; Xiang, S. SNHG16 as the miRNA let-7b-5p sponge facilitates the G2/M and epithelial-mesenchymal transition by regulating CDC25B and HMGA2 expression in hepatocellular carcinoma. J. Cell. Biochem., 2020, 121(3), 2543-2558.
[PMID: 31696971]
[19]
Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma, 2018, 127(2), 175-186.
[http://dx.doi.org/10.1007/s00412-018-0659-8] [PMID: 29322240]
[20]
Ma, X.; Sheng, T.; Zhang, Y.; Zhang, X.; He, J.; Huang, S.; Chen, K.; Sultz, J.; Adegboyega, P.A.; Zhang, H.; Xie, J. Hedgehog signaling is activated in subsets of esophageal cancers. Int. J. Cancer, 2006, 118(1), 139-148.
[http://dx.doi.org/10.1002/ijc.21295] [PMID: 16003737]
[21]
Yang, L.; Wang, L.S.; Chen, X.L.; Gatalica, Z.; Qiu, S.; Liu, Z.; Stoner, G.; Zhang, H.; Weiss, H.; Xie, J. Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int. J. Biochem. Mol. Biol., 2012, 3(1), 46-57.
[PMID: 22509480]
[22]
Liu, S.; Dontu, G.; Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res., 2005, 7(3), 86-95.
[http://dx.doi.org/10.1186/bcr1021] [PMID: 15987436]
[23]
Teichman, J.; Dodbiba, L.; Thai, H.; Fleet, A.; Morey, T.; Liu, L.; McGregor, M.; Cheng, D.; Chen, Z.; Darling, G.; Brhane, Y.; Song, Y.; Espin-Garcia, O.; Xu, W.; Girgis, H.; Schwock, J.; MacKay, H.; Bristow, R.; Ailles, L.; Liu, G. Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One, 2018, 13(5), e0194809.
[http://dx.doi.org/10.1371/journal.pone.0194809] [PMID: 29715275]
[24]
Qin, Y.; Liu, X.; Pan, L.; Zhou, R.; Zhang, X. Long noncoding RNA MIR155HG facilitates pancreatic cancer progression through negative regulation of miR-802. J. Cell. Biochem., 2019, 120(10), 17926-17934.
[http://dx.doi.org/10.1002/jcb.29060] [PMID: 31161625]
[25]
Jiang, C.; Liu, X.; Wang, M.; Lv, G.; Wang, G. High blood miR-802 is associated with poor prognosis in HCC patients by regulating DNA damage response 1 (REDD1)-mediated function of T cells. Oncol. Res., 2019, 27(9), 1025-1034.
[http://dx.doi.org/10.3727/096504018X15456687424096] [PMID: 30982498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy