Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Applications of Gold Nanoparticles in Brain Diseases across the Blood-Brain Barrier

Author(s): Jun Zhang, Ting Yang, Wan Huang, Yao Yu* and Taolei Sun*

Volume 29, Issue 39, 2022

Published on: 02 August, 2022

Page: [6063 - 6083] Pages: 21

DOI: 10.2174/0929867329666220527121943

Price: $65

Abstract

Brain diseases, including Alzheimer's disease (AD), brain tumors and Parkinson's disease (PD), pose heavy pressure on the public healthcare system. The main obstacle to vanquish brain diseases is the blood-brain barrier (BBB), which is a selective barrier mainly formed by brain endothelial cells. BBB prevents almost all drugs from reaching the brain, thereby hindering drug delivery. Over the past few decades, considerable signs of progress have been made in crossing the BBB and treating brain diseases. Gold nanoparticles (AuNPs) demonstrate the characteristics of adjustable size, unique optical properties, flexible surface modification, and good biocompatibility, which all contribute AuNPs as a promising candidate in biomedical fields. This article reviews the structure and properties of BBB, and discusses main transport routes through the BBB. Besides, nanoparticles, specially AuNPs applied in brain diseases as main drug delivery platforms, are systematically summarized, emphasizing several methods to modify AuNPs, including tuning particle size and surface modification, which are aimed at promoting BBB penetration or prolonging circulation time of AuNPs. In addition, AuNPs utilized in brain diseases are introduced in detail from the aspects of brain imaging, AD, brain tumors, and PD. Prospects and challenges that need to be considered in further investigations and clinical transformation of AuNPs used in brain diseases are also included, hoping to bring new insights into the applications of AuNPs in brain diseases.

Keywords: Blood-brain barrier, gold nanoparticles, brain diseases, drug delivery, Alzheimer's disease, brain tumors.

[1]
Kim, J.; Ahn, S.I.; Kim, Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem., 2019, 73, 8-18.
[http://dx.doi.org/10.1016/j.jiec.2019.01.021] [PMID: 31588177]
[2]
Barchet, T.M.; Amiji, M.M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv., 2009, 6(3), 211-225.
[http://dx.doi.org/10.1517/17425240902758188] [PMID: 19290842]
[3]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[4]
Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today, 2020, 37, 112-125.
[http://dx.doi.org/10.1016/j.mattod.2020.02.001] [PMID: 33093794]
[5]
Ehrlich, P.; Frerichs, T.V. The Collected Papers of Paul Ehrlich, Pergamon 2013, 364-432.
[http://dx.doi.org/10.1016/B978-0-08-009054-2.50039-0]
[6]
Ehrlich, P. Das Sauerstoff-Bedürfniss des Organismus: Eine farbenanalytische Studie. In: A. Hirschwald; , 1885.
[7]
Keaney, J.; Walsh, D.M.; O’Malley, T.; Hudson, N.; Crosbie, D.E.; Loftus, T.; Sheehan, F.; McDaid, J.; Humphries, M.M.; Callanan, J.J.; Brett, F.M.; Farrell, M.A.; Humphries, P.; Campbell, M. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci. Adv., 2015, 1(8), e1500472.
[http://dx.doi.org/10.1126/sciadv.1500472] [PMID: 26491725]
[8]
Pardridge, W.M. Blood-brain barrier delivery. Drug Discov. Today, 2007, 12(1-2), 54-61.
[http://dx.doi.org/10.1016/j.drudis.2006.10.013] [PMID: 17198973]
[9]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[10]
Pardridge, W.M. Molecular biology of the blood-brain barrier. Mol. Biotechnol., 2005, 30(1), 57-70.
[http://dx.doi.org/10.1385/MB:30:1:057] [PMID: 15805577]
[11]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 640-665.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[12]
Juillerat-Jeanneret, L. The targeted delivery of cancer drugs across the blood-brain barrier: Chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today, 2008, 13(23-24), 1099-1106.
[http://dx.doi.org/10.1016/j.drudis.2008.09.005] [PMID: 18848640]
[13]
Witt, K.A.; Gillespie, T.J.; Huber, J.D.; Egleton, R.D.; Davis, T.P. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides, 2001, 22(12), 2329-2343.
[http://dx.doi.org/10.1016/S0196-9781(01)00537-X] [PMID: 11786210]
[14]
Doolittle, N.; Miner, M.E.; Hall, W.A.; Siegal, T.; Hanson, E.J.; Osztie, E.; McAllister, L.D.; Bubalo, J.S.; Kraemer, D.F.; Fortin, D.; Nixon, R.; Muldoon, L.L.; Neuwelt, E.A. Safety and efficacy of a multi-center study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of malignant brain tumors. Neurosurgery, 1999, 45(3), 728.
[http://dx.doi.org/10.1097/00006123-199909000-00183]
[15]
Hynynen, K. Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev., 2008, 60(10), 1209-1217.
[http://dx.doi.org/10.1016/j.addr.2008.03.010] [PMID: 18486271]
[16]
Vykhodtseva, N.; McDannold, N.; Hynynen, K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics, 2008, 48(4), 279-296.
[http://dx.doi.org/10.1016/j.ultras.2008.04.004] [PMID: 18511095]
[17]
Doolittle, N.D.; Miner, M.E.; Hall, W.A.; Siegal, T.; Jerome, E.; Osztie, E.; McAllister, L.D.; Bubalo, J.S.; Kraemer, D.F.; Fortin, D.; Nixon, R.; Muldoon, L.L.; Neuwelt, E.A. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer, 2000, 88(3), 637-647.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000201)88:3<637::AID-CNCR22>3.0.CO;2-Y] [PMID: 10649259]
[18]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H-F.; Kulkarni, A.R.; Sung, H-W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.024] [PMID: 16246446]
[19]
Spandana, K.; Bhaskaran, M.; Karri, V.; Natarajan, J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J. Drug Deliv. Sci. Technol., 2020, 57(17), 101628.
[http://dx.doi.org/10.1016/j.jddst.2020.101628]
[20]
Mukherjee, S.; Madamsetty, V.S.; Bhattacharya, D.; Roy Chowdhury, S.; Paul, M.K.; Mukherjee, A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater., 2020, 30(35), 2003054.
[http://dx.doi.org/10.1002/adfm.202003054]
[21]
Takeuchi, I.; Nobata, S.; Oiri, N.; Tomoda, K.; Makino, K. Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: Effects of particle size. Biomed. Mater. Eng., 2017, 28(3), 315-323.
[http://dx.doi.org/10.3233/BME-171677] [PMID: 28527194]
[22]
Clark, A.J.; Davis, M.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl. Acad. Sci. USA, 2015, 112(40), 12486-12491.
[http://dx.doi.org/10.1073/pnas.1517048112] [PMID: 26392563]
[23]
Kreuter, J.; Alyautdin, R.N.; Kharkevich, D.A.; Ivanov, A.A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res., 1995, 674(1), 171-174.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[24]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Patel, R.J.; Ajazuddin, ; Ravichandiran, V.; Murty, U.S.; Alexander, A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[25]
Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Kopec, B.M.; Siahaan, T.J.; Miller, D.W. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci. Rep., 2020, 10(1), 11292.
[http://dx.doi.org/10.1038/s41598-020-68017-y] [PMID: 32647151]
[26]
Hainfeld, J.F.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.), 2013, 8(10), 1601-1609.
[http://dx.doi.org/10.2217/nnm.12.165] [PMID: 23265347]
[27]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[28]
Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater., 2018, 30(46), e1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[29]
Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces, 2008, 66(2), 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[30]
Takeuchi, I.; Onaka, H.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size. Biomed. Mater. Eng., 2018, 29(2), 205-215.
[http://dx.doi.org/10.3233/BME-171723] [PMID: 29457594]
[31]
Yoon, H-J.; Lee, E-S.; Kang, M.; Jeong, Y.; Park, J-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(15), 2935-2938.
[http://dx.doi.org/10.1039/C4TB01759E] [PMID: 32262492]
[32]
Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao, H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 2015, 37, 425-435.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.007] [PMID: 25453970]
[33]
Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; Lesniak, M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast Cancer. Mol. Pharm., 2016, 13(6), 1843-1854.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[34]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[35]
Meola, A.; Rao, J.; Chaudhary, N.; Sharma, M.; Chang, S.D. Gold nanoparticles for brain tumor imaging: A systematic review. Front. Neurol., 2018, 9(328), 328.
[http://dx.doi.org/10.3389/fneur.2018.00328] [PMID: 29867737]
[36]
Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140.
[http://dx.doi.org/10.1016/j.nantod.2018.12.006]
[37]
Tsou, Y-H.; Zhang, X-Q.; Zhu, H.; Syed, S.; Xu, X. Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small, 2017, 13(43), 1701921.
[http://dx.doi.org/10.1002/smll.201701921] [PMID: 29045030]
[38]
Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm., 2014, 87(3), 409-432.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.012] [PMID: 24686194]
[39]
Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. Nanoscale, 2018, 10(36), 16962-16983.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[40]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[41]
Thorat, N.D.; Townely, H.; Brennan, G.; Parchur, A.K.; Silien, C.; Bauer, J.; Tofail, S.A.M. Progress in remotely triggered hybrid nanostructures for next-generation brain cancer theranostics. ACS Biomater. Sci. Eng., 2019, 5(6), 2669-2687.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01173] [PMID: 33405601]
[42]
Wang, S.; Liu, K.; Wang, F.; Peng, F.; Tu, Y. The application of micro- and nanomotors in classified drug delivery. Chem. Asian J., 2019, 14(14), 2336-2347.
[http://dx.doi.org/10.1002/asia.201900274] [PMID: 30946529]
[43]
Lombardo, S.M.; Schneider, M.; Türeli, A.E.; Günday Türeli, N. Key for crossing the BBB with nanoparticles: The rational design. Beilstein J. Nanotechnol., 2020, 11(1), 866-883.
[http://dx.doi.org/10.3762/bjnano.11.72] [PMID: 32551212]
[44]
Ruan, S.; Zhou, Y.; Jiang, X.; Gao, H. Rethinking CRITID procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv. Sci. (Weinh.), 2021, 8(9), 2004025.
[http://dx.doi.org/10.1002/advs.202004025] [PMID: 33977060]
[45]
Recht, L.; Torres, C.O.; Smith, T.W.; Raso, V.; Griffin, T.W. Transferrin receptor in normal and neoplastic brain tissue: Implications for brain-tumor immunotherapy. J. Neurosurg., 1990, 72(6), 941-945.
[http://dx.doi.org/10.3171/jns.1990.72.6.0941] [PMID: 2159987]
[46]
Wiley, D.T.; Webster, P.; Gale, A.; Davis, M.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8662-8667.
[http://dx.doi.org/10.1073/pnas.1307152110] [PMID: 23650374]
[47]
Rao, K.S.; Reddy, M.K.; Horning, J.L.; Labhasetwar, V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 2008, 29(33), 4429-4438.
[http://dx.doi.org/10.1016/j.biomaterials.2008.08.004] [PMID: 18760470]
[48]
Chen, X.; Yuan, M.; Zhang, Q.; Ting Yang, Y.; Gao, H.; He, Q. Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma. Curr. Pharm. Biotechnol., 2016, 17(7), 636-650.
[http://dx.doi.org/10.2174/1389201017666160401144440] [PMID: 27033513]
[49]
Bilmin, K.; Kujawska, T.; Grieb, P. Sonodynamic therapy for gliomas. Perspectives and prospects of selective sonosensitization of glioma cells. Cells, 2019, 8(11), 1428.
[http://dx.doi.org/10.3390/cells8111428] [PMID: 31766152]
[50]
Liang, K.; Li, Z.; Luo, Y.; Zhang, Q.; Yin, F.; Xu, L.; Chen, H.; Wang, H. Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma. Small, 2020, 16(8), e1906985.
[http://dx.doi.org/10.1002/smll.201906985] [PMID: 32003089]
[51]
Liu, Y.; Gong, Y.; Xie, W.; Huang, A.; Yuan, X.; Zhou, H.; Zhu, X.; Chen, X.; Liu, J.; Liu, J.; Qin, X. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale, 2020, 12(11), 6498-6511.
[http://dx.doi.org/10.1039/C9NR09713A] [PMID: 32154811]
[52]
Joseph, A.; Contini, C.; Cecchin, D.; Nyberg, S.; Ruiz-Perez, L.; Gaitzsch, J.; Fullstone, G.; Tian, X.; Azizi, J.; Preston, J.; Volpe, G.; Battaglia, G. Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing. Sci. Adv., 2017, 3(8), e1700362.
[http://dx.doi.org/10.1126/sciadv.1700362] [PMID: 28782037]
[53]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm., 2017, 526(1-2), 413-424.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[54]
Chen, Z-L.; Huang, M.; Wang, X-R.; Fu, J.; Han, M.; Shen, Y-Q.; Xia, Z.; Gao, J-Q. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine, 2016, 12(2), 421-430.
[http://dx.doi.org/10.1016/j.nano.2015.10.021] [PMID: 26711963]
[55]
Wong, H.L.; Wu, X.Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev., 2012, 64(7), 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[56]
Shen, C.; Wang, X.; Zheng, Z.; Gao, C.; Chen, X.; Zhao, S.; Dai, Z. Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma. Int. J. Nanomedicine, 2018, 14, 101-117.
[http://dx.doi.org/10.2147/IJN.S173954] [PMID: 30587988]
[57]
Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.R.; Simon, R.; Schubert, D.; Eisenberg, D.; Rivier, J.; Sawchenko, P.; Vale, W.; Riek, R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science, 2009, 325(5938), 328-332.
[http://dx.doi.org/10.1126/science.1173155] [PMID: 19541956]
[58]
Das, S.; Zhou, K.; Ghosh, D.; Jha, N.N.; Singh, P.K.; Jacob, R.S.; Bernard, C.C.; Finkelstein, D.I.; Forsythe, J.S.; Maji, S.K. Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Mater., 2016, 8(9), e304-e304.
[http://dx.doi.org/10.1038/am.2016.116]
[59]
Wang, T-W.; Chang, K-C.; Chen, L-H.; Liao, S-Y.; Yeh, C-W.; Chuang, Y-J. Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system. Nanoscale, 2017, 9(42), 16281-16292.
[http://dx.doi.org/10.1039/C7NR06528K] [PMID: 29046917]
[60]
Dixit, S.; Novak, T.; Miller, K.; Zhu, Y.; Kenney, M.E.; Broome, A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale, 2015, 7(5), 1782-1790.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[61]
Meyers, J.D.; Cheng, Y.; Broome, A-M.; Agnes, R.S.; Schluchter, M.D.; Margevicius, S.; Wang, X.; Kenney, M.E.; Burda, C.; Basilion, J.P. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact., 2015, 32(4), 448-457.
[http://dx.doi.org/10.1002/ppsc.201400119] [PMID: 25999665]
[62]
Shilo, M.; Sharon, A.; Baranes, K.; Motiei, M.; Lellouche, J-P.M.; Popovtzer, R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. J. Nanobiotechnology, 2015, 13(1), 19.
[http://dx.doi.org/10.1186/s12951-015-0075-7] [PMID: 25880565]
[63]
Faraday, M.X. The bakerian lecture—experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond., 1857, (147), 145-181.
[http://dx.doi.org/10.1098/rstl.1857.0011]
[64]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11(0), 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[65]
Yu, Y.; Yang, T.; Sun, T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine (Lond.), 2020, 15(11), 1127-1145.
[http://dx.doi.org/10.2217/nnm-2019-0395] [PMID: 32329396]
[66]
Xiong, N.; Zhao, Y.; Dong, X.; Zheng, J.; Sun, Y. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity. Small, 2017, 13(13), 1601666.
[http://dx.doi.org/10.1002/smll.201601666] [PMID: 28112856]
[67]
Kim, M.J.; Rehman, S.U.; Amin, F.U.; Kim, M.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway. Nanomedicine, 2017, 13(8), 2533-2544.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[68]
Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K.; Shi, X.; Wan, K.; Ai, J.; Lv, J.; Wang, D.; Huang, Q.; Wang, H.; Cao, Q.; Liu, S.; Tang, Z. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 4790.
[http://dx.doi.org/10.1038/s41467-020-18525-2] [PMID: 32963242]
[69]
Shilo, M.; Motiei, M.; Hana, P.; Popovtzer, R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale, 2014, 6(4), 2146-2152.
[http://dx.doi.org/10.1039/C3NR04878K] [PMID: 24362586]
[70]
Cheng, Y.; Dai, Q.; Morshed, R.A.; Fan, X.; Wegscheid, M.L.; Wainwright, D.A.; Han, Y.; Zhang, L.; Auffinger, B.; Tobias, A.L.; Rincón, E.; Thaci, B.; Ahmed, A.U.; Warnke, P.C.; He, C.; Lesniak, M.S. Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small, 2014, 10(24), 5137-5150.
[http://dx.doi.org/10.1002/smll.201400654] [PMID: 25104165]
[71]
Gonzalez-Carter, D.A.; Ong, Z.Y.; McGilvery, C.M.; Dunlop, I.E.; Dexter, D.T.; Porter, A.E. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine, 2019, 15(1), 1-11.
[http://dx.doi.org/10.1016/j.nano.2018.08.011] [PMID: 30189294]
[72]
Yang, T.; Zhang, J.; Yu, Y.; Sun, T. Preparation, pharmacokinetic and application of gold nanoclusters (AuNCs) in tumor treatment. Curr. Med. Chem., 2021, 28(34), 6990-7005.
[http://dx.doi.org/10.2174/0929867328666210331145134] [PMID: 33797360]
[73]
Tripathi, R.M.; Shrivastav, A.; Shrivastav, B.R. Biogenic gold nanoparticles: As a potential candidate for brain tumor directed drug delivery. Artif. Cells Nanomed. Biotechnol., 2015, 43(5), 311-317.
[http://dx.doi.org/10.3109/21691401.2014.885445] [PMID: 24588231]
[74]
Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.; Kreyling, W.G. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm., 2011, 77(3), 407-416.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.029] [PMID: 21195759]
[75]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[76]
Betzer, O.; Shilo, M.; Opochinsky, R.; Barnoy, E.; Motiei, M.; Okun, E.; Yadid, G.; Popovtzer, R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.), 2017, 12(13), 1533-1546.
[http://dx.doi.org/10.2217/nnm-2017-0022] [PMID: 28621578]
[77]
Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 2009, 30(10), 1928-1936.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.038] [PMID: 19131103]
[78]
Mahmoud, N.N.; Albasha, A.; Hikmat, S.; Hamadneh, L.; Zaza, R.; Shraideh, Z.; Khalil, E.A. Nanoparticle size and chemical modification play a crucial role in the interaction of nano gold with the brain: extent of accumulation and toxicity. Biomater. Sci., 2020, 8(6), 1669-1682.
[http://dx.doi.org/10.1039/C9BM02072A] [PMID: 31984985]
[79]
Lipka, J.; Semmler-Behnke, M.; Sperling, R.A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W.J.; Kreyling, W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 2010, 31(25), 6574-6581.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.009] [PMID: 20542560]
[80]
Etame, A.B.; Smith, C.A.; Chan, W.C.; Rutka, J.T. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine, 2011, 7(6), 992-1000.
[http://dx.doi.org/10.1016/j.nano.2011.04.004] [PMID: 21616168]
[81]
Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Wagner, S.; Büchel, C.; von Briesen, H.; Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release, 2009, 137(1), 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.002] [PMID: 19285109]
[82]
Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Büchel, C.; Kreuter, J. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J. Drug Target., 2010, 18(10), 842-848.
[http://dx.doi.org/10.3109/1061186X.2010.513712] [PMID: 20849354]
[83]
Thakor, A.S.; Jokerst, J.; Zavaleta, C.; Massoud, T.F.; Gambhir, S.S. Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p] [PMID: 21846107]
[84]
Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel), 2011, 1(1), 31-63.
[http://dx.doi.org/10.3390/nano1010031] [PMID: 28348279]
[85]
Johnsen, K.B.; Bak, M.; Kempen, P.J.; Melander, F.; Burkhart, A.; Thomsen, M.S.; Nielsen, M.S.; Moos, T.; Andresen, T.L. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics, 2018, 8(12), 3416-3436.
[http://dx.doi.org/10.7150/thno.25228] [PMID: 29930740]
[86]
Kim, H.S.; Lee, S.J.; Lee, D.Y. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor. Bioact. Mater., 2021, 8, 35-48.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.026] [PMID: 34541385]
[87]
Guerrero, S.; Araya, E.; Fiedler, J.L.; Arias, J.I.; Adura, C.; Albericio, F.; Giralt, E.; Arias, J.L.; Fernández, M.S.; Kogan, M.J. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine (Lond.), 2010, 5(6), 897-913.
[http://dx.doi.org/10.2217/nnm.10.74] [PMID: 20735225]
[88]
Ruff, J.; Hüwel, S.; Kogan, M.J.; Simon, U.; Galla, H-J. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine, 2017, 13(5), 1645-1652.
[http://dx.doi.org/10.1016/j.nano.2017.02.013] [PMID: 28285163]
[89]
Alzheimer’s Association 2014. Alzheimer’s disease facts and figures. Alzheimers Dement., 2014, 10(2), e47-e92.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 24818261]
[90]
Oliveira, A.V.; Vilaça, R.; Santos, C.N.; Costa, V.; Menezes, R. Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology, 2017, 18(1), 3-34.
[http://dx.doi.org/10.1007/s10522-016-9666-4] [PMID: 27804052]
[91]
Canter, R.G.; Penney, J.; Tsai, L-H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature, 2016, 539(7628), 187-196.
[http://dx.doi.org/10.1038/nature20412] [PMID: 27830780]
[92]
Villemagne, V.L. Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev., 2016, 30, 95-106.
[http://dx.doi.org/10.1016/j.arr.2016.01.005] [PMID: 26827784]
[93]
Uddin, M.S.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisiting the amyloid cascade hypothesis: From anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(16), 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[94]
Muller, A.P.; Ferreira, G.K.; Pires, A.J.; de Bem Silveira, G.; de Souza, D.L.; Brandolfi, J.A.; de Souza, C.T.; Paula, M.M.S.; Silveira, P.C.L. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater. Sci. Eng. C, 2017, 77(AUG), 476-483.
[http://dx.doi.org/10.1016/j.msec.2017.03.283] [PMID: 28532055]
[95]
Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-Loaded PEG-Gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol. Neurobiol., 2017, 54(8), 6490-6506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[96]
Li, J.; Chen, R.; Zhang, S.; Ma, Z.; Luo, Z.; Gao, G. Chiral effect at nano-bio interface: A model of chiral gold nanoparticle on amylin fibrillation. Nanomaterials (Basel), 2019, 9(3), 412.
[http://dx.doi.org/10.3390/nano9030412] [PMID: 30862041]
[97]
Georganopoulou, D.G.; Chang, L.; Nam, J.M.; Thaxton, C.S.; Mufson, E.J.; Klein, W.L.; Mirkin, C.A. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2273-2276.
[http://dx.doi.org/10.1073/pnas.0409336102] [PMID: 15695586]
[98]
Mikuła, E. Recent advancements in electrochemical biosensors for Alzheimer’s disease biomarkers detection. Curr. Med. Chem., 2021, 28(20), 4049-4073.
[http://dx.doi.org/10.2174/0929867327666201111141341] [PMID: 33176635]
[99]
Liu, L.; Zhao, F.; Ma, F.; Zhang, L.; Yang, S.; Xia, N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles. Biosens. Bioelectron., 2013, 49, 231-235.
[http://dx.doi.org/10.1016/j.bios.2013.05.028] [PMID: 23770394]
[100]
Feng, Q.; Shen, Y.; Fu, Y.; Muroski, M.E.; Zhang, P.; Wang, Q.; Xu, C.; Lesniak, M.S.; Li, G.; Cheng, Y. Self-Assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics, 2017, 7(7), 1875-1889.
[http://dx.doi.org/10.7150/thno.18985] [PMID: 28638474]
[101]
Tang, T.; Chang, B.; Zhang, M.; Sun, T. Nanoprobe-mediated precise imaging and therapy of glioma. Nanoscale Horiz., 2021, 6(8), 634-650.
[http://dx.doi.org/10.1039/D1NH00182E] [PMID: 34110340]
[102]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 2010, 1(1), 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[103]
da Silva Córneo, E.; de Bem Silveira, G.; Scussel, R.; Correa, M.E.A.B.; da Silva Abel, J.; Luiz, G.P.; Feuser, P.E.; Silveira, P.C.L.; Machado-de-Ávila, R.A. Effects of gold nanoparticles administration through behavioral and oxidative parameters in animal model of Parkinson’s disease. Colloids Surf. B Biointerfaces, 2020, 196, 111302.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111302] [PMID: 32777662]
[104]
Khongkow, M.; Yata, T.; Boonrungsiman, S.; Ruktanonchai, U.R.; Graham, D.; Namdee, K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep., 2019, 9(1), 8278.
[http://dx.doi.org/10.1038/s41598-019-44569-6] [PMID: 31164665]
[105]
Jara-Guajardo, P.; Cabrera, P.; Celis, F.; Soler, M.; Berlanga, I.; Parra-Muñoz, N.; Acosta, G.; Albericio, F.; Guzman, F.; Campos, M.; Alvarez, A.; Morales-Zavala, F.; Kogan, M.J. Gold nanoparticles mediate improved detection of β-amyloid aggregates by fluorescence. Nanomaterials (Basel), 2020, 10(4), 690.
[http://dx.doi.org/10.3390/nano10040690] [PMID: 32268543]
[106]
Yu, Y.Y.; Zhang, L.; Sun, X.Y.; Li, C.L.; Qiu, Y.; Sun, H.P.; Tang, D.Q.; Liu, Y.W.; Yin, X.X. A sensitive colorimetric strategy for monitoring cerebral β-amyloid peptides in AD based on dual-functionalized gold nanoplasmonic particles. Chem. Commun. (Camb.), 2015, 51(42), 8880-8883.
[http://dx.doi.org/10.1039/C5CC01855B] [PMID: 25925958]
[107]
Rizvi, S.M.D.; Hussain, T.; Ahmed, A.B.F.; Alshammari, T.M.; Moin, A.; Ahmed, M.Q.; Barreto, G.E.; Kamal, M.A.; Ashraf, G.M. Gold nanoparticles: A plausible tool to combat neurological bacterial infections in humans. Biomed. Pharmacother., 2018, 107, 7-18.
[http://dx.doi.org/10.1016/j.biopha.2018.07.130] [PMID: 30075371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy