Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway

Author(s): Nan Wang*, Guoli Gan, Jihao Yang and Luyao Wang

Volume 29, Issue 39, 2022

Published on: 05 August, 2022

Page: [6100 - 6111] Pages: 12

DOI: 10.2174/0929867329666220629150656

Price: $65

Abstract

Background: Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).

Methods: Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively.

Results: Treatment with barbaloin (10 and 20 μg/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/β-catenin pathway-related biomarkers.

Conclusion: Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/β-catenin signaling pathway.

Keywords: Barbaloin, osteogenic differentiation, human bone marrow mesenchymal stem cells, Wnt, β-catenin, mineralization.

« Previous
[1]
Charbord, P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum. Gene Ther., 2010, 21(9), 1045-1056.
[http://dx.doi.org/10.1089/hum.2010.115] [PMID: 20565251]
[2]
Ohishi, M.; Schipani, E. Bone marrow mesenchymal stem cells. J. Cell. Biochem., 2010, 109(2), 277-282.
[PMID: 19950205]
[3]
Xu, Z.; Liu, X.; Wei, Y.; Zhao, Z.; Cao, J.; Qiao, Y.; Yu, Y.; Zhong, J.; Suo, G. Mesenchymal stem cell spheroids: Potential cell materials for cell therapy. STE Med., 2020, 2(5), e67.
[http://dx.doi.org/10.37175/stemedicine.v2i5.67]
[4]
Bianco, P.; Robey, P.G.; Saggio, I.; Riminucci, M. “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): A critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum. Gene Ther., 2010, 21(9), 1057-1066.
[http://dx.doi.org/10.1089/hum.2010.136] [PMID: 20649485]
[5]
Hu, Y.; Tang, X.X.; He, H.Y. Gene expression during induced differentiation of sheep bone marrow mesenchymal stem cells into osteoblasts. Genet. Mol. Res., 2013, 12(4), 6527-6534.
[http://dx.doi.org/10.4238/2013.December.11.4] [PMID: 24390999]
[6]
Caetano-Lopes, J.; Canhão, H.; Fonseca, J.E. Osteoblasts and bone formation. Acta Reumatol. Port., 2007, 32(2), 103-110.
[PMID: 17572649]
[7]
Ottewell, P.D. The role of osteoblasts in bone metastasis. J. Bone Oncol., 2016, 5(3), 124-127.
[http://dx.doi.org/10.1016/j.jbo.2016.03.007] [PMID: 27761372]
[8]
Kim, H.J.; You, S.J.; Yang, D.H.; Eun, J.; Park, H.K.; Kim, M.S.; Chun, H.J. Injectable hydrogels based on MPEG–PCL–RGD and BMSCs for bone tissue engineering. Biomater. Sci., 2020, 8(15), 4334-4345.
[http://dx.doi.org/10.1039/D0BM00588F] [PMID: 32608413]
[9]
Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, 203, 96-110.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.026] [PMID: 29980291]
[10]
Groom, Q.; Reynolds, T. Barbaloin in aloe species. Planta Med., 1987, 53(4), 345-348.
[http://dx.doi.org/10.1055/s-2006-962735] [PMID: 17269040]
[11]
Patel, D.K.; Patel, K.; Tahilyani, V. Barbaloin: A concise report of its pharmacological and analytical aspects. Asian Pac. J. Trop. Biomed., 2012, 2(10), 835-838.
[http://dx.doi.org/10.1016/S2221-1691(12)60239-1] [PMID: 23569857]
[12]
Singh, N.; Goyal, K.; Sondhi, S.; Jindal, S. Traditional and medicinal use of Barbaloin: Potential for the management of various diseases. J. Appl. Pharm. Res., 2020, 8(3), 21-30.
[http://dx.doi.org/10.18231/j.joapr.2020.v.8.i.3.21.30]
[13]
Yang, H.; Zhong, W.; Hamidi, M.R.; Zhou, G.; Liu, C. Functional improvement and maturation of human cardiomyocytes derived from human pluripotent stem cells by barbaloin preconditioning. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(10), 1041-1048.
[http://dx.doi.org/10.1093/abbs/gmz090] [PMID: 31518384]
[14]
Peng, C.; Zhang, W.; Shen, X.; Yuan, Y.; Li, Y.; Zhang, W.; Yao, M. Post-transcriptional regulation activity through alternative splicing involved in the effects of Aloe vera on the Wnt/β-catenin and Notch pathways in colorectal cancer cells. J. Pharmacol. Sci., 2020, 143(3), 148-155.
[http://dx.doi.org/10.1016/j.jphs.2020.03.006] [PMID: 32268968]
[15]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[16]
Gao, J.; Liao, Y.; Qiu, M.; Shen, W. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist, 2021, 27(1), 58-72.
[http://dx.doi.org/10.1177/1073858420914509] [PMID: 32242761]
[17]
Wang, C.G.; Hu, Y.H.; Su, S.L.; Zhong, D. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp. Mol. Med., 2020, 52(8), 1310-1325.
[http://dx.doi.org/10.1038/s12276-020-0475-0] [PMID: 32778797]
[18]
Wu, W.; Xiao, Z.; Chen, Y.; Deng, Y.; Zeng, D.; Liu, Y.; Huang, F.; Wang, J.; Liu, Y.; Bellanti, J.A.; Rong, L.; Zheng, S.G. CD39 produced from human GMSCs regulates the balance of osteoclasts and osteoblasts through the Wnt/β-catenin pathway in osteoporosis. Mol. Ther., 2020, 28(6), 1518-1532.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.003] [PMID: 32304668]
[19]
Fu, C.; Shi, R. Osteoclast biology in bone resorption: A review. STE Med., 2020, 1(4), e57.
[http://dx.doi.org/10.37175/stemedicine.v1i4.57]
[20]
Gao, Y.; Huang, E.; Zhang, H.; Wang, J.; Wu, N.; Chen, X.; Wang, N.; Wen, S.; Nan, G.; Deng, F.; Liao, Z.; Wu, D.; Zhang, B.; Zhang, J.; Haydon, R.C.; Luu, H.H.; Shi, L.L.; He, T.C. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One, 2013, 8(12), e82436.
[http://dx.doi.org/10.1371/journal.pone.0082436] [PMID: 24340027]
[21]
Houschyar, K.S.; Tapking, C.; Borrelli, M.R.; Popp, D.; Duscher, D.; Maan, Z.N.; Chelliah, M.P.; Li, J.; Harati, K.; Wallner, C.; Rein, S.; Pförringer, D.; Reumuth, G.; Grieb, G.; Mouraret, S.; Dadras, M.; Wagner, J.M.; Cha, J.Y.; Siemers, F.; Lehnhardt, M.; Behr, B. Wnt pathway in bone repair and regeneration–what do we know so far. Front. Cell Dev. Biol., 2019, 6, 170.
[http://dx.doi.org/10.3389/fcell.2018.00170] [PMID: 30666305]
[22]
Chen, X.J.; Shen, Y.S.; He, M.C.; Yang, F.; Yang, P.; Pang, F.X.; He, W.; Cao, Y.; Wei, Q.S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed. Pharmacother., 2019, 112, 108746.
[http://dx.doi.org/10.1016/j.biopha.2019.108746] [PMID: 30970530]
[23]
Hang, K.; Ye, C.; Xu, J.; Chen, E.; Wang, C.; Zhang, W.; Ni, L.; Kuang, Z.; Ying, L.; Xue, D.; Pan, Z. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res. Ther., 2019, 10(1), 189.
[http://dx.doi.org/10.1186/s13287-019-1286-x] [PMID: 31238979]
[24]
Chen, X.; Yan, J.; He, F.; Zhong, D.; Yang, H.; Pei, M.; Luo, Z.P. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic. Biol. Med., 2018, 126, 187-201.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.001] [PMID: 30096433]
[25]
Liu, C.; Shen, Y.J.; Tu, Q.B.; Zhao, Y.R.; Guo, H.; Wang, J.; Zhang, L.; Shi, H.W.; Sun, Y. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed. Pharmacother., 2018, 101, 608-616.
[http://dx.doi.org/10.1016/j.biopha.2018.02.131] [PMID: 29518607]
[26]
Sun, W.; Liu, C.; Zhang, Y.; Qiu, X.; Zhang, L.; Zhao, H.; Rong, Y.; Sun, Y.; Ilexgenin, A. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aqui foliaceae shows reduction of LPS-induced peritonitis in mice. Eur. J. Pharmacol., 2017, 797, 94-105.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.019] [PMID: 28104349]
[27]
Baker, N.; Boyette, L.B.; Tuan, R.S. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone, 2015, 70, 37-47.
[http://dx.doi.org/10.1016/j.bone.2014.10.014] [PMID: 25445445]
[28]
Zhu, H.; Mitsuhashi, N.; Klein, A.; Barsky, L.W.; Weinberg, K.; Barr, M.L.; Demetriou, A.; Wu, G.D. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 2006, 24(4), 928-935.
[http://dx.doi.org/10.1634/stemcells.2005-0186] [PMID: 16306150]
[29]
Cleary, M.A.; Narcisi, R.; Focke, K.; van der Linden, R.; Brama, P.A.J.; van Osch, G.J.V.M. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage, 2016, 24(5), 868-872.
[http://dx.doi.org/10.1016/j.joca.2015.11.018] [PMID: 26687821]
[30]
Sikora, M.; Śmieszek, A.; Marycz, K. Bone marrow stromal cells (BMSCs CD45-/CD44+/CD73+/CD90+) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation. J. Cell. Mol. Med., 2021, 25(14), 6634-6651.
[http://dx.doi.org/10.1111/jcmm.16667] [PMID: 34075722]
[31]
Takemitsu, H.; Zhao, D.; Yamamoto, I.; Harada, Y.; Michishita, M.; Arai, T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet. Res., 2012, 8(1), 150.
[http://dx.doi.org/10.1186/1746-6148-8-150] [PMID: 22937862]
[32]
Zhou, Y.; Guan, X.; Zhu, Z.; Gao, S.; Zhang, C.; Li, C.; Zhou, K.; Hou, W.; Yu, H. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: Effect of microvibration and role of ERK1/2 activation. Eur. Cell. Mater., 2011, 22, 12-25.
[http://dx.doi.org/10.22203/eCM.v022a02] [PMID: 21732279]
[33]
de Girolamo, L.; Sartori, M.F.; Albisetti, W.; Brini, A.T. Osteogenic differentiation of human adipose-derived stem cells: Comparison of two different inductive media. J. Tissue Eng. Regen. Med., 2007, 1(2), 154-157.
[http://dx.doi.org/10.1002/term.12] [PMID: 18038404]
[34]
Leung, K.S.; Fung, K.P.; Sher, A.H.; Li, C.K.; Lee, K.M. Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J. Bone Joint Surg. Br., 1993, 75-B(2), 288-292.
[http://dx.doi.org/10.1302/0301-620X.75B2.8444951] [PMID: 8444951]
[35]
Satsangi, N.; Satsangi, A.; Glover, R.; Ong, J.L.; Satsangi, R.K. Osteoblast response and calcium deposition on phospholipid modified surfaces. J. Mater. Sci. Mater. Med., 2004, 15(6), 693-697.
[http://dx.doi.org/10.1023/B:JMSM.0000030211.32655.80] [PMID: 15346737]
[36]
Martini, F.; Pellati, A.; Mazzoni, E.; Salati, S.; Caruso, G.; Contartese, D.; De Mattei, M. Bone morphogenetic protein-2 signaling in the osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. Int. J. Mol. Sci., 2020, 21(6), 2104.
[http://dx.doi.org/10.3390/ijms21062104] [PMID: 32204349]
[37]
Zhu, F.; Friedman, M.S.; Luo, W.; Woolf, P.; Hankenson, K.D. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J. Cell. Physiol., 2012, 227(6), 2677-2685.
[http://dx.doi.org/10.1002/jcp.23010] [PMID: 21898406]
[38]
Cai, T.; Sun, D.; Duan, Y.; Wen, P.; Dai, C.; Yang, J.; He, W. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res., 2016, 345(2), 206-217.
[http://dx.doi.org/10.1016/j.yexcr.2016.06.007] [PMID: 27321958]
[39]
Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.N.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem., 2005, 280(39), 33132-33140.
[http://dx.doi.org/10.1074/jbc.M500608200] [PMID: 16043491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy