Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

A Review on PCR and POC-PCR - A Boon in the Diagnosis of COVID-19

Author(s): Singaravelan Sindhuja, Sivaperuman Amuthalakshmi* and Calambur Nagarajan Nalini

Volume 18, Issue 8, 2022

Published on: 29 August, 2022

Page: [745 - 764] Pages: 20

DOI: 10.2174/1573412918666220509032754

Price: $65

Abstract

Since the global spread of covid-19, PCR predominantly has taken the lead in the diagnosis. It amplifies a particular DNA target sequence into millions of copies. To simplify the laboratory- dependent disease diagnosis, the point of care diagnostics (POC) paved the way for labon- a-chip-technology. Succeeding that, POC integrated with PCR stole the limelight. This review points out the various diagnostic methods of covid-19 based on PCR and POC-PCR along with its principles, and types clustered regularly interspaced short palindromic repeats (CRISPR) based assays for the rapid, accurate, and easier detection of covid-19.

Keywords: PCR, Diagnostic techniques, covid-19, POC-PCR, DNA sequencing, CRISPR.

[1]
Butler, T. Plague into the 21st century. Clin. Infect. Dis., 2009, 49(5), 736-742.
[http://dx.doi.org/10.1086/604718 ] [PMID: 19606935]
[2]
Drancourt, M.; Raoult, D. Molecular insights into the history of plague. Microbes Infect., 2002, 4(1), 105-109.
[http://dx.doi.org/10.1016/S1286-4579(01)01515-5 ] [PMID: 11825781]
[3]
Patterson, K.D.; Pyle, G.F. The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med., 1991, 65(1), 4-21.
[PMID: 2021692]
[4]
Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev., 1992, 56(1), 152-179.
[http://dx.doi.org/10.1128/mr.56.1.152-179.1992 ] [PMID: 1579108]
[5]
Taubenberger, J.K.; Morens, D.M. Influenza: The once and future pandemic. Public Health Rep., 2010, 125(Suppl. 3), 16-26.
[http://dx.doi.org/10.1177/00333549101250S305 ] [PMID: 20568566]
[6]
Frost, W.H. The epidemiology of influenza. J. Am. Med. Assoc., 1919, 73, 313-318.
[http://dx.doi.org/10.1001/jama.1919.02610310007003]
[7]
Dawood, F.S.; Jain, S.; Finelli, L.; Shaw, M.W.; Lindstrom, S.; Garten, R.J.; Gubareva, L.V.; Xu, X.; Bridges, C.B.; Uyeki, T.M. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med., 2009, 360(25), 2605-2615.
[http://dx.doi.org/10.1056/NEJMoa0903810 ] [PMID: 19423869]
[8]
Stover, J.; Bertozzi, S.; Gutierrez, J.P.; Walker, N.; Stanecki, K.A.; Greener, R.; Gouws, E.; Hankins, C.; Garnett, G.P.; Salomon, J.A.; Boerma, J.T.; De Lay, P.; Ghys, P.D. The global impact of scaling up HIV/AIDS prevention programs in low- and middle-income countries. Science, 2006, 311(5766), 1474-1476.
[http://dx.doi.org/10.1126/science.1121176 ] [PMID: 16456039]
[9]
Fauci, A.S.; Folkers, G.K. The world must build on three decades of scientific advances to enable a new generation to live free of HIV/AIDS. Health Aff. (Millwood), 2012, 31(7), 1529-1536.
[http://dx.doi.org/10.1377/hlthaff.2012.0275 ] [PMID: 22778342]
[10]
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006841.
[http://dx.doi.org/10.1101/cshperspect.a006841 ] [PMID: 22229120]
[11]
Piot, P.; Quinn, T.C. Response to the AIDS pandemic--a global health model. N. Engl. J. Med., 2013, 368(23), 2210-2218.
[http://dx.doi.org/10.1056/NEJMra1201533 ] [PMID: 23738546]
[12]
Monascha, R.; Mahyb, M. Young people: The center of the HIV epidemic. World Health Organ. Tech. Rep. Ser., 2006, 938(15-41), 317-341.
[13]
Lederberg, J.; Shope, R.E.; Oaks, S.C., Jr Committee on microbial threats to health, institute of medicine. In: Institute of Medicine (US) Committee on Emerging Microbial Threats to Health; National Academies Press. Washington, DC: Washington, DC, 1992.
[14]
Morse, S. Factors and determinants of disease emergence. Tech. Sci. Rev., 2004, 23(2), 443-452.
[http://dx.doi.org/10.20506/rst.23.2.1494]
[15]
Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; Machalaba, C.C.; Thomas, M.J.; Heymann, D.L. Ecology of zoonoses: Natural and unnatural histories. Lancet, 2012, 380(9857), 1936-1945.
[http://dx.doi.org/10.1016/S0140-6736(12)61678-X ] [PMID: 23200502]
[16]
Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004, 430(6996), 242-249.
[http://dx.doi.org/10.1038/nature02759 ] [PMID: 15241422]
[17]
Morens, D.M.; Fauci, A.S. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog., 2013, 9(7), e1003467.
[http://dx.doi.org/10.1371/journal.ppat.1003467 ] [PMID: 23853589]
[18]
Kim, H.; Park, M.; Hwang, J.; Kim, J.H.; Chung, D.R.; Lee, K.S.; Kang, M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens., 2019, 4(5), 1306-1312.
[http://dx.doi.org/10.1021/acssensors.9b00175 ] [PMID: 31062580]
[19]
Morse, S.S.; Mazet, J.A.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, W.I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet, 2012, 380(9857), 1956-1965.
[http://dx.doi.org/10.1016/S0140-6736(12)61684-5 ] [PMID: 23200504]
[20]
Barber, M.R.; Guan, Y.; Magor, K.E.; Peiris, J.S.; Webster, R.G. The role of animal surveillance in influenza preparedness: The consequence of inapparent infection in ducks and pigs. Influenza Other Respir. Viruses, 2011, 5(Suppl. 1), 8-11.
[PMID: 21751455]
[21]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147 ] [PMID: 19430490]
[22]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7 ] [PMID: 32015507]
[23]
Wang, J.; Zhou, M.; Liu, F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J. Hosp. Infect., 2020, 105(1), 100-101.
[http://dx.doi.org/10.1016/j.jhin.2020.03.002 ] [PMID: 32147406]
[24]
Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shieh, W.J.; Guarner, J.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, J.Y.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J.; Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1953-1966.
[http://dx.doi.org/10.1056/NEJMoa030781 ] [PMID: 12690092]
[25]
Wevers, B.A.; van der Hoek, L. Recently discovered human coronaviruses. Clin. Lab. Med., 2009, 29(4), 715-724.
[http://dx.doi.org/10.1016/j.cll.2009.07.007 ] [PMID: 19892230]
[26]
Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.W.; Wong, B.H.; Wong, S.S.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 14040-14045.
[http://dx.doi.org/10.1073/pnas.0506735102 ] [PMID: 16169905]
[27]
Peiris, J.S.; Lai, S.T.; Poon, L.L.; Guan, Y.; Yam, L.Y.; Lim, W.; Nicholls, J.; Yee, W.K.; Yan, W.W.; Cheung, M.T.; Cheng, V.C.; Chan, K.H.; Tsang, D.N.; Yung, R.W.; Ng, T.K.; Yuen, K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366), 1319-1325.
[http://dx.doi.org/10.1016/S0140-6736(03)13077-2 ] [PMID: 12711465]
[28]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8 ] [PMID: 32007145]
[29]
Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; Butt, K.M.; Wong, K.L.; Chan, K.W.; Lim, W.; Shortridge, K.F.; Yuen, K.Y.; Peiris, J.S.; Poon, L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[http://dx.doi.org/10.1126/science.1087139 ] [PMID: 12958366]
[30]
Poon, L.L.; Chu, D.K.; Chan, K.H.; Wong, O.K.; Ellis, T.M.; Leung, Y.H.; Lau, S.K.; Woo, P.C.; Suen, K.Y.; Yuen, K.Y.; Guan, Y.; Peiris, J.S. Identification of a novel coronavirus in bats. J. Virol., 2005, 79(4), 2001-2009.
[http://dx.doi.org/10.1128/JVI.79.4.2001-2009.2005 ] [PMID: 15681402]
[31]
Prasad, A.; Prasad, M. SARS-CoV-2: The emergence of a viral pathogen causing havoc on human existence. J. Genet., 2020, 99(1), 37.
[http://dx.doi.org/10.1007/s12041-020-01205-x ] [PMID: 32482926]
[32]
Tu, C.; Crameri, G.; Kong, X.; Chen, J.; Sun, Y.; Yu, M.; Xiang, H.; Xia, X.; Liu, S.; Ren, T.; Yu, Y.; Eaton, B.T.; Xuan, H.; Wang, L.F. Antibodies to SARS coronavirus in civets. Emerg. Infect. Dis., 2004, 10(12), 2244-2248.
[http://dx.doi.org/10.3201/eid1012.040520 ] [PMID: 15663874]
[33]
Kan, B.; Wang, M.; Jing, H.; Xu, H.; Jiang, X.; Yan, M.; Liang, W.; Zheng, H.; Wan, K.; Liu, Q.; Cui, B.; Xu, Y.; Zhang, E.; Wang, H.; Ye, J.; Li, G.; Li, M.; Cui, Z.; Qi, X.; Chen, K.; Du, L.; Gao, K.; Zhao, Y.T.; Zou, X.Z.; Feng, Y.J.; Gao, Y.F.; Hai, R.; Yu, D.; Guan, Y.; Xu, J. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol., 2005, 79(18), 11892-11900.
[http://dx.doi.org/10.1128/JVI.79.18.11892-11900.2005 ] [PMID: 16140765]
[34]
Lau, S.K.; Li, K.S.; Huang, Y.; Shek, C.T.; Tse, H.; Wang, M.; Choi, G.K.; Xu, H.; Lam, C.S.; Guo, R.; Chan, K.H.; Zheng, B.J.; Woo, P.C.; Yuen, K.Y. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol., 2010, 84(6), 2808-2819.
[http://dx.doi.org/10.1128/JVI.02219-09 ] [PMID: 20071579]
[35]
Kobayashi, T.; Jung, S.M.; Linton, N.M.; Kinoshita, R.; Hayashi, K.; Miyama, T.; Anzai, A.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; Suzuki, A. Communicating the risk of death from novel coronavirus disease (COVID-19). J. Clin. Med., 2020, 9(2), 580.
[36]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570 ] [PMID: 15141377]
[37]
Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill., 2020, 25(10), 2000180.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.10.2000180 ] [PMID: 32183930]
[38]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0 ] [PMID: 31133031]
[39]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005 ] [PMID: 16339739]
[40]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9 ] [PMID: 32284615]
[41]
Lai, M.M.; Cavanagh, D. The molecular biology of coronaviruses. In: Advances in virus research; Academic Press: USA, 1997; Vol. 48, pp. 1-100.
[42]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zohu, J. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003 ] [PMID: 27012512]
[43]
Tyrrell, D.A.; Bynoe, M.L. Cultivation of a novel type of common-cold virus in organ cultures. BMJ, 1965, 1(5448), 1467-1470.
[http://dx.doi.org/10.1136/bmj.1.5448.1467 ] [PMID: 14288084]
[44]
Langereis, M.A.; van Vliet, A.L.; Boot, W.; de Groot, R.J. Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J. Virol., 2010, 84(17), 8970-8974.
[http://dx.doi.org/10.1128/JVI.00566-10 ] [PMID: 20538854]
[45]
Kin, N.; Miszczak, F.; Lin, W.; Gouilh, M.A.; Vabret, A. Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes. Viruses, 2015, 7(5), 2358-2377.
[http://dx.doi.org/10.3390/v7052358 ] [PMID: 26008694]
[46]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7 ] [PMID: 33024307]
[47]
Li, X.; Zai, J.; Wang, X.; Li, Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV. J. Med. Virol., 2020, 92(4), 448-454.
[http://dx.doi.org/10.1002/jmv.25693 ] [PMID: 31997390]
[48]
Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med., 2020, 27(2), taaa021.
[http://dx.doi.org/10.1093/jtm/taaa021 ] [PMID: 32052846]
[49]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973 ] [PMID: 32182409]
[50]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624 ] [PMID: 32223179]
[51]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017 ] [PMID: 31978945]
[52]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001 ] [PMID: 32035028]
[53]
Sexton, N.R.; Smith, E.C.; Blanc, H.; Vignuzzi, M.; Peersen, O.B.; Denison, M.R. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J. Virol., 2016, 90(16), 7415-7428.
[http://dx.doi.org/10.1128/JVI.00080-16 ] [PMID: 27279608]
[54]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507 ] [PMID: 32075877]
[55]
Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human coronaviruses: A review of virus–host interactions. Diseases, 2016, 4(3), 26.
[http://dx.doi.org/10.3390/diseases4030026 ] [PMID: 28933406]
[56]
Neuman, B.W.; Kiss, G.; Kunding, A.H.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; Siddell, S.G.; Stamou, D.G.; Wilson, I.A.; Kuhn, P.; Buchmeier, M.J. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol., 2011, 174(1), 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021 ] [PMID: 21130884]
[57]
Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.L.; Peiris, M.; Wu, J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 2020, 382(12), 1177-1179.
[http://dx.doi.org/10.1056/NEJMc2001737 ] [PMID: 32074444]
[58]
Shen, M.; Zhou, Y.; Ye, J.; Abdullah Al-Maskri, A.A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal., 2020, 10(2), 97-101.
[http://dx.doi.org/10.1016/j.jpha.2020.02.010 ] [PMID: 32292623]
[59]
Wan, Z.; Zhang, Y.; He, Z.; Liu, J.; Lan, K.; Hu, Y.; Zhang, C. A melting curve-based multiplex RT-qPCR assay for simultaneous detection of four human coronaviruses. Int. J. Mol. Sci., 2016, 17(11), 1880.
[http://dx.doi.org/10.3390/ijms17111880 ] [PMID: 27886052]
[60]
Noh, J.Y.; Yoon, S.W.; Kim, D.J.; Lee, M.S.; Kim, J.H.; Na, W.; Song, D.; Jeong, D.G.; Kim, H.K. Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR. Arch. Virol., 2017, 162(6), 1617-1623.
[http://dx.doi.org/10.1007/s00705-017-3281-9 ] [PMID: 28220326]
[61]
Wang, Y.; Kang, H.; Liu, X.; Tong, Z. Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak. J. Med. Virol., 2020, 92(6), 538-539.
[62]
Vabret, A.; Mouthon, F.; Mourez, T.; Gouarin, S.; Petitjean, J.; Freymuth, F. Direct diagnosis of human respiratory coronaviruses 229E and OC43 by the polymerase chain reaction. J. Virol. Methods, 2001, 97(1-2), 59-66.
[http://dx.doi.org/10.1016/S0166-0934(01)00343-3 ] [PMID: 11483217]
[63]
Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Biotechnol., 2020, 38(4), 382-384.
[http://dx.doi.org/10.1038/d41587-020-00002-2 ] [PMID: 32265548]
[64]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3 ] [PMID: 32015508]
[65]
Miller, S.; Chiu, C.; Rodino, K.G.; Miller, M.B. Point-counterpoint: Should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J. Clin. Microbiol., 2020, 58(3), e01739-e19.
[http://dx.doi.org/10.1128/JCM.01739-19 ] [PMID: 31619533]
[66]
GISAID. Next SARS-CoV2 App., Available from: https://www.gisaid.org/epifluapplications/next-sars-cov2-app/ (Accessed on: 2020/03/01).
[67]
Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230(4732), 1350-1354.
[http://dx.doi.org/10.1126/science.2999980 ] [PMID: 2999980]
[68]
Mullis, K.B.; Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol., 1987, 155, 335-350.
[69]
Tahmin ur Rahman, M.D.; Salahuddin, M.; Sultana, R.; Moue, A.; Setu, M. Polymerase chain reaction-a short review. AKMMC, 2013, 4(1), 30-36.
[70]
Joshi, M.; Deshpande, J.D. Polymerase chain reaction: Methods, principles and application. Int. J. Biomed. Res., 2010, 2(1), 81-97.
[71]
Bartlett, J.M.; Stirling, D. A short history of the polymerase chain reaction. In: PCR protocols; Humana Press: USA, 2003; pp. 3-6.
[72]
Ibrahim, W.A.; Abd El-Ghany, W.A.; Nasef, S.A.; Hatem, M.E. A comparative study on the use of real time polymerase chain reaction (RT-PCR) and standard isolation techniques for the detection of Salmonellae in broiler chicks. Int. J. Vet. Sci. Med., 2014, 2(1), 67-71.
[http://dx.doi.org/10.1016/j.ijvsm.2013.11.001]
[73]
Gibbs, R.A. DNA amplification by the polymerase chain reaction. Anal. Chem., 1990, 62(13), 1202-1214.
[http://dx.doi.org/10.1021/ac00212a004 ] [PMID: 2196835]
[74]
Powledge, T.M. The polymerase chain reaction. Adv. Physiol. Educ., 2004, 28(1-4), 44-50.
[http://dx.doi.org/10.1152/advan.00002.2004 ] [PMID: 15149959]
[75]
Ochman, H.; Gerber, A.S.; Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 120(3), 621-623.
[http://dx.doi.org/10.1093/genetics/120.3.621 ] [PMID: 2852134]
[76]
Arnheim, N.; Erlich, H. Polymerase chain reaction strategy. Annu. Rev. Biochem., 1992, 61, 131-156.
[http://dx.doi.org/10.1146/annurev.bi.61.070192.001023 ] [PMID: 1379788]
[77]
Erlich, H.A.; Gelfand, D.; Sninsky, J.J. Recent advances in the polymerase chain reaction. Science, 1991, 252(5013), 1643-1651.
[http://dx.doi.org/10.1126/science.2047872 ] [PMID: 2047872]
[78]
Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239(4839), 487-491.
[http://dx.doi.org/10.1126/science.2448875 ] [PMID: 2448875]
[79]
Wang, L.; Gu, H.; Lu, X. A rapid low-cost real-time PCR for the detection of Klebsiella pneumonia carbapenemase genes. Ann. Clin. Microbiol. Antimicrob., 2012, 11(1), 9.
[http://dx.doi.org/10.1186/1476-0711-11-9 ] [PMID: 22545713]
[80]
Pui, C.F.; Wong, W.C.; Chai, L.C.; Lee, H.Y.; Noorlis, A.; Zainazor, T.C.; Tang, J.Y.; Ghazali, F.M.; Cheah, Y.K.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella typhi and Salmonella typhimurium. Trop. Med. Health, 2011, 39(1), 9-15.
[http://dx.doi.org/10.2149/tmh.2010-20 ] [PMID: 22028607]
[81]
Ahmet, G.; Fadime, E.; Ismail, S.K. Detection of Plasmodium vivax by Nested PCR and Real-Time PCR. Korean J. Parasitol., 2010, 48(2), 99-103.
[82]
Rajalakshmi, S. Different types of PCR techniques and its applications. Int. J. Pharm. Chem. Biol. Sci., 2017, 7, 3.
[83]
Gariyan, L.; Avashia, N. Research techniques made simple-PCR. J. Invest. Dermatol., 2013, 133(3), 6.
[84]
Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 2012, 13, 134.
[http://dx.doi.org/10.1186/1471-2105-13-134 ] [PMID: 22708584]
[85]
Sridhar Rao, P. N-Polymerase chain Reaction CPCR. Available from: www.micro rao
[86]
Pusterla, N.; Madigan, J.E.; Leutenegger, C.M. Real-time polymerase chain reaction: A novel molecular diagnostic tool for equine infectious diseases. J. Vet. Intern. Med., 2006, 20(1), 3-12.
[http://dx.doi.org/10.1111/j.1939-1676.2006.tb02817.x ] [PMID: 16496917]
[87]
Atawodi, S.E.; Atawodi, J.C.; Dzikwi, A.A. polymerase chain reaction: Theory, practice and application: A Review. Sahel Med. J., 2010, 13(2), 64834.
[http://dx.doi.org/10.4314/smj2.v13i2.64834]
[88]
Ishino, S.; Ishino, Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front. Microbiol., 2014, 5, 465.
[http://dx.doi.org/10.3389/fmicb.2014.00465 ] [PMID: 25221550]
[89]
Brock, T.D.; Freeze, H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol., 1969, 98(1), 289-297.
[http://dx.doi.org/10.1128/jb.98.1.289-297.1969 ] [PMID: 5781580]
[90]
Myers, T.W.; Gelfand, D.H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 1991, 30(31), 7661-7666.
[http://dx.doi.org/10.1021/bi00245a001 ] [PMID: 1714296]
[91]
Eckert, K.A.; Kunkel, T.A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res., 1990, 18(13), 3739-3744.
[http://dx.doi.org/10.1093/nar/18.13.3739 ] [PMID: 2374708]
[92]
Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5′----3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA, 1991, 88(16), 7276-7280.
[http://dx.doi.org/10.1073/pnas.88.16.7276 ] [PMID: 1871133]
[93]
Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; Jervey, S.R. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci., 2020, 6(5), 591-605.
[http://dx.doi.org/10.1021/acscentsci.0c00501]
[94]
Tan, R. COVID-19 diagnostics explained. Asian Sci; , 2020. Available from: https://www.asianscientist.com/2020/04/features/covid-19-diagnostics-explained/
[95]
Yu, M.; Cao, Y.; Ji, Y. The principle and application of new PCR Technologies. IOP Conf. Ser. Earth Environ. Sci., 2017, 100(1), 012065.
[http://dx.doi.org/10.1088/1755-1315/100/1/012065]
[96]
Wikipedia. Variants of PCR., Available from: https://en.wikipedia.org/wiki/Variants_of_PCR
[97]
Yongkai, T.; Juhua, Y.; Run, X. Real-time quantitative PCR technique and its applicationin aquaculture. China Agric. Sci. Bull., 2010, 21, 422-426.
[98]
Wu, X. LPS. Cloning and differential expression analysis of immune related genes in grouper Epinephelus; Hainan University: Haikou, 2011.
[99]
Joyce, C. Quantitative RT-PCR. In: RT-PCR Protocols; Humana Press: USA, 2002; pp. 83-92.
[http://dx.doi.org/10.1385/1-59259-283-X:083]
[100]
Kang, X.P.; Jiang, T.; Li, Y.Q.; Lin, F.; Liu, H.; Chang, G.H.; Zhu, Q.Y.; Qin, E.D.; Qin, C.F.; Yang, Y.H. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus. Virol. J., 2010, 7(1), 113.
[http://dx.doi.org/10.1186/1743-422X-7-113 ] [PMID: 20515509]
[101]
Bustin, S.A.; Benes, V.; Nolan, T.; Pfaffl, M.W. Quantitative real-time RT-PCR--a perspective. J. Mol. Endocrinol., 2005, 34(3), 597-601.
[http://dx.doi.org/10.1677/jme.1.01755 ] [PMID: 15956331]
[102]
Grunenwald, H. Direct PCR from a single bacterial colony without DNA extraction using the FailSafe™ PCR system. Epicentre Forum, 2000, 6, p. 12.
[103]
Mullis, K.B. The unusual origin of the polymerase chain reaction. Sci. Am., 1990, 262(4), 56-61, 64-65.
[http://dx.doi.org/10.1038/scientificamerican0490-56 ] [PMID: 2315679]
[104]
Don, R.H.; Cox, P.T.; Wainwright, B.J.; Baker, K.; Mattick, J.S. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res., 1991, 19(14), 4008.
[http://dx.doi.org/10.1093/nar/19.14.4008 ] [PMID: 1861999]
[105]
Docker, M.F.; Devlin, R.H.; Richard, J.; Khattra, J.; Kent, M.L. Sensitive and specific polymerase chain reaction assay for detection of Loma salmonae (Microsporea). Dis. Aquat. Organ., 1997, 29(1), 41-48.
[http://dx.doi.org/10.3354/dao029041]
[106]
Chou, Q.; Russell, M.; Birch, D.E.; Raymond, J.; Bloch, W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res., 1992, 20(7), 1717-1723.
[http://dx.doi.org/10.1093/nar/20.7.1717 ] [PMID: 1579465]
[107]
Rowther, F.B.; Kardooni, H.; Warr, T. TOUCH-UP gradient amplification method. J. Biomol. Tech., 2012, 23(1), 1-3.
[http://dx.doi.org/10.7171/jbt.12-2301-004 ] [PMID: 22468135]
[108]
Gyllensten, U.B.; Erlich, H.A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA, 1988, 85(20), 7652-7656.
[http://dx.doi.org/10.1073/pnas.85.20.7652 ] [PMID: 3174659]
[109]
Citartan, M.; Tang, T.H.; Tan, S.C.; Hoe, C.H.; Saini, R.; Tominaga, J.; Gopinath, S.C. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production. Songklanakarin J. Sci. Technol., 2012, 34(2), 125.
[110]
Wooddell, C.I.; Burgess, R.R. Use of asymmetric PCR to generate long primers and single-stranded DNA for incorporating cross-linking analogs into specific sites in a DNA probe. Genome Res., 1996, 6(9), 886-892.
[http://dx.doi.org/10.1101/gr.6.9.886 ] [PMID: 8889557]
[111]
Sanchez, J.A.; Pierce, K.E.; Rice, J.E.; Wangh, L.J. Linear-after-the-exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 1933-1938.
[http://dx.doi.org/10.1073/pnas.0305476101 ] [PMID: 14769930]
[112]
Pierce, K.E.; Rice, J.E.; Sanchez, J.A.; Wangh, L.J. Detection of cystic fibrosis alleles from single cells using molecular beacons and a novel method of asymmetric real-time PCR. Mol. Hum. Reprod., 2003, 9(12), 815-820.
[http://dx.doi.org/10.1093/molehr/gag100 ] [PMID: 14614044]
[113]
Sano, T.; Smith, C.L.; Cantor, C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 1992, 258(5079), 120-122.
[http://dx.doi.org/10.1126/science.1439758 ] [PMID: 1439758]
[114]
Tiwari, S.K.; Singh, A.K.; Singh, A. In-silico primer designing and PCR for detection of novel coronavirus-19. J. Infect. Public Health, 2020, 13(12), 1885-1886.
[http://dx.doi.org/10.1016/j.jiph.2020.10.010 ] [PMID: 33158805]
[115]
Schuler, G.D. Sequence mapping by electronic PCR. Genome Res., 1997, 7(5), 541-550.
[http://dx.doi.org/10.1101/gr.7.5.541 ] [PMID: 9149949]
[116]
Lexa, M.; Horak, J.; Brzobohaty, B. Virtual PCR. Bioinformatics, 2001, 17(2), 192-193.
[http://dx.doi.org/10.1093/bioinformatics/17.2.192 ] [PMID: 11238077]
[117]
Rotmistrovsky, K.; Jang, W.; Schuler, G.D. A web server for performing electronic PCR. Nucleic Acids Res., 2004, 32(Suppl. 2), W108-W112.
[http://dx.doi.org/10.1093/nar/gkh450 ] [PMID: 15215361]
[118]
Bikandi, J.; San Millán, R.; Rementeria, A.; Garaizar, J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics, 2004, 20(5), 798-799.
[http://dx.doi.org/10.1093/bioinformatics/btg491 ] [PMID: 14752001]
[119]
Perkel, J. Guiding our PCR experiments. Biotechniques, 2015, 58(5), 217-221.
[http://dx.doi.org/10.2144/000114283 ] [PMID: 25967899]
[120]
Duewer, D.L.; Kline, M.C.; Romsos, E.L.; Toman, B. Evaluating droplet digital PCR for the quantification of human genomic DNA: Converting copies per nanoliter to nanograms nuclear DNA per microliter. Anal. Bioanal. Chem., 2018, 410(12), 2879-2887.
[http://dx.doi.org/10.1007/s00216-018-0982-1 ] [PMID: 29556737]
[121]
Golder, S.; Loke, Y.K.; Bland, M. Meta-analyses of adverse effects data derived from randomised controlled trials as compared to observational studies: Methodological overview. PLoS Med., 2011, 8(5), e1001026.
[http://dx.doi.org/10.1371/journal.pmed.1001026 ] [PMID: 21559325]
[122]
Schütz, E.; Fischer, A.; Beck, J.; Harden, M.; Koch, M.; Wuensch, T.; Stockmann, M.; Nashan, B.; Kollmar, O.; Matthaei, J.; Kanzow, P.; Walson, P.D.; Brockmöller, J.; Oellerich, M. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: A prospective, observational, multicenter cohort study. PLoS Med., 2017, 14(4), e1002286.
[http://dx.doi.org/10.1371/journal.pmed.1002286 ] [PMID: 28441386]
[123]
Skibo, S. Has tumor profiling caught up to cancer? In: Diagnostics Oncology; , 2018. Available from: https://benthamscience.com/journal/references.php?journalID=cpa#ifa
[124]
Fred, R. Guidelines highlight ‘best practices’ for liquid biopsy during treatment of non-small cell lung cancer. Hemonc today; , 2018. Available from: https://www.healio.com/news/hematology-oncology/20180727/gui delines-highlight-best-practices-for-liquid-biopsy-during-treatment-of-nonsmall-cell-lung-cancer
[125]
Robin, J.D.; Ludlow, A.T.; LaRanger, R.; Wright, W.E.; Shay, J.W. Comparison of DNA quantification methods for next generation sequencing. Sci. Rep., 2016, 6(1), 24067.
[http://dx.doi.org/10.1038/srep24067 ] [PMID: 27048884]
[126]
Lee, S.Y.; Hwang, S.Y. Application of digital polymerase chain reaction technology for noninvasive prenatal test. J. Genet. Med., 2015, 12(2), 72-78.
[http://dx.doi.org/10.5734/JGM.2015.12.2.72]
[127]
Wood-Bouwens, C.M.; Ji, H.P. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping. In: Digital PCR; Humana Press: New York, NY, 2018; pp. 323-333.
[128]
Shen, C.; Zhang, Z. An overview of nanoparticle‐assisted polymerase chain reaction technology. Biomed. Health Sci., 2013, 18, 97-106.
[http://dx.doi.org/10.1002/9781118451915.ch5]
[129]
Shen, C.; Yang, W.; Ji, Q.; Maki, H.; Dong, A.; Zhang, Z. NanoPCR observation: Different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions. Nanotechnology, 2009, 20(45), 455103.
[http://dx.doi.org/10.1088/0957-4484/20/45/455103 ] [PMID: 19822925]
[130]
Isenbarger, T.A.; Finney, M.; Ríos-Velázquez, C.; Handelsman, J.; Ruvkun, G. Miniprimer PCR, a new lens for viewing the microbial world. Appl. Environ. Microbiol., 2008, 74(3), 840-849.
[http://dx.doi.org/10.1128/AEM.01933-07 ] [PMID: 18083877]
[131]
Alwine, J.C.; Kemp, D.J.; Stark, G.R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5350-5354.
[http://dx.doi.org/10.1073/pnas.74.12.5350 ] [PMID: 414220]
[132]
Streit, S.; Michalski, C.W.; Erkan, M.; Kleeff, J.; Friess, H. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat. Protoc., 2009, 4(1), 37-43.
[http://dx.doi.org/10.1038/nprot.2008.216 ] [PMID: 19131955]
[133]
Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol., 2002, 29(1), 23-39.
[http://dx.doi.org/10.1677/jme.0.0290023 ] [PMID: 12200227]
[134]
Schmittgen, T.D.; Zakrajsek, B.A.; Mills, A.G.; Gorn, V.; Singer, M.J.; Reed, M.W. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods. Anal. Biochem., 2000, 285(2), 194-204.
[http://dx.doi.org/10.1006/abio.2000.4753 ] [PMID: 11017702]
[135]
Mueller, P.R.; Wold, B. In vivo footprinting at a developmentally regulated enhancer. Science, 1989, 246, 780-786.
[http://dx.doi.org/10.1126/science.2814500 ] [PMID: 2814500]
[136]
Hartl, D.L.; Ochman, H. Inverse Polymerase Chain Reaction. In: Basic DNA and RNA Protocols; Humana Press: USA, 1996; pp. 293-301.
[137]
Richard, G.F.; Kerrest, A.; Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev., 2008, 72(4), 686-727.
[http://dx.doi.org/10.1128/MMBR.00011-08 ] [PMID: 19052325]
[138]
Gulcher, J. Microsatellite markers for linkage and association studies. Cold Spring Harb. Protoc., 2012, 2012(4), 425-432.
[http://dx.doi.org/10.1101/pdb.top068510 ] [PMID: 22474656]
[139]
Gupta, M.; Chyi, Y.S.; Romero-Severson, J.; Owen, J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet., 1994, 89(7-8), 998-1006.
[http://dx.doi.org/10.1007/BF00224530 ] [PMID: 24178116]
[140]
Meyer, W.; Mitchell, T.G.; Freedman, E.Z.; Vilgalys, R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol., 1993, 31(9), 2274-2280.
[http://dx.doi.org/10.1128/jcm.31.9.2274-2280.1993 ] [PMID: 8408543]
[141]
Wu, K.S.; Jones, R.; Danneberger, L.; Scolnik, P.A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res., 1994, 22(15), 3257-3258.
[http://dx.doi.org/10.1093/nar/22.15.3257 ] [PMID: 8065948]
[142]
Vincent, M.; Xu, Y.; Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep., 2004, 5(8), 795-800.
[http://dx.doi.org/10.1038/sj.embor.7400200 ] [PMID: 15247927]
[143]
Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun., 2001, 289(1), 150-154.
[http://dx.doi.org/10.1006/bbrc.2001.5921 ] [PMID: 11708792]
[144]
Hong, T.C.; Mai, Q.L.; Cuong, D.V.; Parida, M.; Minekawa, H.; Notomi, T.; Hasebe, F.; Morita, K. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol., 2004, 42(5), 1956-1961.
[http://dx.doi.org/10.1128/JCM.42.5.1956-1961.2004 ] [PMID: 15131154]
[145]
Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H.; Tanner, N. A Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv, 2020, 2020, 20028373.
[http://dx.doi.org/10.1101/2020.02.26.20028373]
[146]
Mariani, B.D.; Martin, D.S.; Chen, A.F.; Yagi, H.; Lin, S.S.; Tuan, R.S. Polymerase chain reaction molecular diagnostic technology for monitoring chronic osteomyelitis. J. Exp. Orthop., 2014, 1(1), 9.
[http://dx.doi.org/10.1186/s40634-014-0009-6 ] [PMID: 26914754]
[147]
Valones, M.A.; Guimarães, R.L.; Brandão, L.A.; de Souza, P.R.; de Albuquerque Tavares Carvalho, A.; Crovela, S. Principles and applications of polymerase chain reaction in medical diagnostic fields: A review. Braz. J. Microbiol., 2009, 40(1), 1-11.
[http://dx.doi.org/10.1590/S1517-83822009000100001 ] [PMID: 24031310]
[148]
Kryndushkin, D.S.; Alexandrov, I.M.; Ter-Avanesyan, M.D.; Kushnirov, V.V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem., 2003, 278(49), 49636-49643.
[http://dx.doi.org/10.1074/jbc.M307996200 ] [PMID: 14507919]
[149]
Russell, D.W.; Sambrook, J. Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 2001.
[150]
Wong, M.L.; Medrano, J.F. Real-time PCR for mRNA quantitation. Biotechniques, 2005, 39(1), 75-85.
[http://dx.doi.org/10.2144/05391RV01 ] [PMID: 16060372]
[151]
Klein, S.; Müller, T.G.; Khalid, D.; Sonntag-Buck, V.; Heuser, A.M.; Glass, B.; Meurer, M.; Morales, I.; Schillak, A.; Freistaedter, A.; Ambiel, I.; Winter, S.L.; Zimmermann, L.; Naumoska, T.; Bubeck, F.; Kirrmaier, D.; Ullrich, S.; Barreto Miranda, I.; Anders, S.; Grimm, D.; Schnitzler, P.; Knop, M.; Kräusslich, H.G.; Dao Thi, V.L.; Börner, K.; Chlanda, P. SARS-CoV-2 RNA extraction using magnetic beads for rapid large-scale testing by RT-qPCR and RT-LAMP. Viruses, 2020, 12(8), 863.
[http://dx.doi.org/10.3390/v12080863 ] [PMID: 32784757]
[152]
Rabaan, A.A.; Al-Ahmed, S.H.; Sah, R.; Al-Tawfiq, J.A.; Haque, S.; Harapan, H.; Arteaga-Livias, K.; Aldana, D.K.B.; Kumar, P.; Dhama, K.; Rodriguez-Morales, A.J. Genomic Epidemiology and Recent Update on Nucleic Acid-Based Diagnostics for COVID-19. Curr. Trop. Med. Rep., 2020, 2020, s40475.
[http://dx.doi.org/10.1007/s40475-020-00212-3 ] [PMID: 32989413]
[153]
360DX.. Coronavirus test tracker: Commercially available covid19 diagnostic tests 2020. Available from: https://www.360dx.com/coronavirus-test-tracker-launched-covid-19-tests (Accessed on: 4 November 2020).
[154]
US Food and Drug Administration. Emergency use authorization: Emergency Use Authorization (EUA) information and list of all current EUAs. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization
[155]
Foundation for Innovative New Diagnostics (FIND). Find evaluation update: SARS-CoV-2 molecular diagnostics, COVID-10 diagnostics resource centre. Available from: www.finddx.org/covid-19/sarscov2-evalmolecular/ (Accessed on: 11/19/2020).
[156]
Laboratory Corporation of America. LabCorp launches test for coronavirus disease, 2019. (COVID- 19) Available from: https://ir.labcorp.com/news-releases/news-release-details/labcorp-launches-test-coronavirus-disease-2019-covid-19 (Accessed on: 05/03/2020).
[157]
Hinton, D.M. Emergency use authorization for the 2019-nCoV Real-Time RT-PCR Diagnostic Panel (Centers for Disease Control and Prevention); U.S. Food & Drug Administration, 2020, pp. 1-12.
[159]
Seegene.. All plex TM 2019- nCoV Assay. 2019. Available from: www.see gene.com/assays/allplex_2019_ncov_assay (Accessed on: 04/29/2020).
[160]
Diagnostics, R. Cobas SARS-CoV-2 test (for the COVID-19 coronavirus). Available from: https://diagnostics.roche.com/in/en_gb/products/params/cobas-sars-cov-2-test.html
[161]
Xiao, A.T.; Tong, Y.X.; Gao, C.; Zhu, L.; Zhang, Y.J.; Zhang, S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. J. Clin. Virol., 2020, 127, 104346.
[http://dx.doi.org/10.1016/j.jcv.2020.104346 ] [PMID: 32361324]
[162]
Fakruddin, M.; Mannan, K.S.; Chowdhury, A.; Mazumdar, R.M.; Hossain, M.N.; Islam, S.; Chowdhury, M.A. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J. Pharm. Bioallied Sci., 2013, 5(4), 245-252.
[http://dx.doi.org/10.4103/0975-7406.120066 ] [PMID: 24302831]
[163]
Gorzalski, A.J.; Tian, H.; Laverdure, C.; Morzunov, S.; Verma, S.C.; VanHooser, S.; Pandori, M.W. High-throughput transcription-mediated amplification on the hologic panther is a highly sensitive method of detection for SARS-CoV-2. J. Clin. Virol., 2020, 129, 104501.
[http://dx.doi.org/10.1016/j.jcv.2020.104501 ] [PMID: 32619959]
[164]
Coronavirus Update. Hologic’s Molecular Test for the Novel Coronavirus. SARSCoV- 2; Hologic, Inc., 2020. Available from: hologic.com/coronavirus-test
[165]
The McGovern Institute for Brain Research. What is CRISPR? Massachusetts Institute of Technology 2019. Available from: Technology.mcgovern.mit.edu/2019/01/01/crispr-in-a-nutshell/
[166]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C.Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4 ] [PMID: 32300245]
[167]
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; Myhrvold, C.; Bhattacharyya, R.P.; Livny, J.; Regev, A.; Koonin, E.V.; Hung, D.T.; Sabeti, P.C.; Collins, J.J.; Zhang, F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336), 438-442.
[168]
Gupta, N.; Augustine, S.; Narayan, T.; O’Riordan, A.; Das, A.; Kumar, D.; Luong, J.H.T.; Malhotra, B.D. Point-of-Care PCR assays for COVID-19 detection. Biosensors (Basel), 2021, 11(5), 141.
[http://dx.doi.org/10.3390/bios11050141 ] [PMID: 34062874]
[169]
Krishnan, R.A.; Thomas, R.E.; Sukumaran, A.; Paul, J.K.; Vasudevan, D.M. COVID-19: Current trends in vitro diagnostics. Indian J. Clin. Biochem., 2020, 35(3), 285-289.
[170]
van Dongen, J.E.; Berendsen, J.T.W.; Steenbergen, R.D.M.; Wolthuis, R.M.F.; Eijkel, J.C.T.; Segerink, L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens. Bioelectron., 2020, 166, 112445.
[http://dx.doi.org/10.1016/j.bios.2020.112445 ] [PMID: 32758911]
[171]
Gerald, J.K. Goals, guidelines and principles for point-of-care testing. Clin. Chem., 2003, 49(8), 1424-1425.
[172]
Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev., 2018, 47(13), 4697-4709.
[http://dx.doi.org/10.1039/C7CS00837F ] [PMID: 29770813]
[173]
Manz, A.N.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems. Sens. Actuators B Chem., 1990, 1, 244.
[http://dx.doi.org/10.1016/0925-4005(90)80209-I]
[174]
Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 1993, 261(5123), 895-897.
[http://dx.doi.org/10.1126/science.261.5123.895 ] [PMID: 17783736]
[175]
Garibyan, L.; Avashia, N. Polymerase chain reaction. J. Invest. Dermatol., 2013, 133(3), 1-4.
[http://dx.doi.org/10.1038/jid.2013.1 ] [PMID: 23399825]
[176]
Woolley, A.T.; Hadley, D.; Landre, P.; deMello, A.J.; Mathies, R.A.; Northrup, M.A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem., 1996, 68(23), 4081-4086.
[http://dx.doi.org/10.1021/ac960718q ] [PMID: 8946790]
[177]
Belgrader, P.; Young, S.; Yuan, B.; Primeau, M.; Christel, L.A.; Pourahmadi, F.; Northrup, M.A. A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem., 2001, 73(2), 286-289.
[http://dx.doi.org/10.1021/ac000905v ] [PMID: 11199979]
[178]
Potrich, C.; Lunelli, L.; Forti, S.; Vozzi, D.; Pasquardini, L.; Vanzetti, L.; Panciatichi, C.; Anderle, M.; Pederzolli, C. Effect of materials for micro-electro-mechanical systems on PCR yield. Eur. Biophys. J., 2010, 39(6), 979-986.
[http://dx.doi.org/10.1007/s00249-009-0466-5 ] [PMID: 19455320]
[179]
Haeberle, S.; Mark, D.; von Stetten, F.; Zengerle, R. Microfluidic platforms for lab-on-a-chip applications. In: Microsystems and Nanotechnology; Zhou, Z.; Wang, Z.; Lin, L., Eds.; Springer: Berlin, Heidelberg, 2012; pp. 853-895.
[180]
Gates, B. Responding to Covid-19-a once-in-a-century pandemic? N. Engl. J. Med., 2020, 382(18), 1677-1679.
[http://dx.doi.org/10.1056/NEJMp2003762 ] [PMID: 32109012]
[181]
Farrar, J.S.; Wittwer, C.T. Extreme PCR: Efficient and specific DNA amplification in 15-60 seconds. Clin. Chem., 2015, 61(1), 145-153.
[http://dx.doi.org/10.1373/clinchem.2014.228304 ] [PMID: 25320377]
[182]
Neuzil, P.; Zhang, C.; Pipper, J.; Oh, S.; Zhuo, L. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res., 2006, 34(11), e77.
[http://dx.doi.org/10.1093/nar/gkl416 ] [PMID: 16807313]
[183]
Myrick, J.T.; Pryor, R.J.; Palais, R.A.; Ison, S.J.; Sanford, L.; Dwight, Z.L.; Huuskonen, J.J.; Sundberg, S.O.; Wittwer, C.T. Integrated extreme real-time PCR and high-speed melting analysis in 52 to 87 seconds. Clin. Chem., 2019, 65(2), 263-271.
[http://dx.doi.org/10.1373/clinchem.2018.296608 ] [PMID: 30459167]
[184]
Christensen, T.B.; Bang, D.D.; Wolff, A. Multiplex polymerase chain reaction (PCR) on a SU-8 chip. Microelectron. Eng., 2008, 85(5-6), 1278-1281.
[http://dx.doi.org/10.1016/j.mee.2008.01.066]
[185]
Wittwer, C.T.; Fillmore, G.C.; Hillyard, D.R. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res., 1989, 17(11), 4353-4357.
[http://dx.doi.org/10.1093/nar/17.11.4353 ] [PMID: 2740218]
[186]
Liu, W.; Zhang, M.; Liu, X.; Sharma, A.; Ding, X. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection. Biosens. Bioelectron., 2017, 96, 213-219.
[http://dx.doi.org/10.1016/j.bios.2017.04.047 ] [PMID: 28499198]
[187]
Zou, Z.Q.; Chen, X.; Jin, Q.H.; Yang, M.S.; Zhao, J.L. A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques. J. Micromech. Microeng., 2005, 15(8), 1476.
[http://dx.doi.org/10.1088/0960-1317/15/8/014]
[188]
Neuzil, P.; Pipper, J.; Hsieh, T.M. Disposable real-time microPCR device: Lab-on-a-chip at a low cost. Mol. Biosyst., 2006, 2(6-7), 292-298.
[http://dx.doi.org/10.1039/b605957k ] [PMID: 16880947]
[189]
Kuo, J.N.; Hsieh, C.C.; Yang, S.Y.; Lee, G.B. An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J. Micromech. Microeng., 2007, 17(4), 693.
[http://dx.doi.org/10.1088/0960-1317/17/4/004]
[190]
Moschou, D.; Vourdas, N.; Kokkoris, G.; Papadakis, G.; Parthenios, J.; Chatzandroulis, S.; Tserepi, A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens. Actuators B Chem., 2014, 199, 470-478.
[http://dx.doi.org/10.1016/j.snb.2014.04.007]
[191]
Li, H.; Zhang, H.; Xu, Y.; Tureckova, A.; Zahradník, P.; Chang, H.; Neuzil, P. Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sens. Actuators B Chem., 2019, 283, 677-684.
[http://dx.doi.org/10.1016/j.snb.2018.12.072]
[192]
Petrucci, G.; Caputo, D.; Lovecchio, N.; Costantini, F.; Legnini, I.; Bozzoni, I.; Nascetti, A.; de Cesare, G. Multifunctional system-on-glass for lab-on-chip applications. Biosens. Bioelectron., 2017, 93, 315-321.
[http://dx.doi.org/10.1016/j.bios.2016.08.060 ] [PMID: 27567262]
[193]
Cui, F.; Chen, W.; Wu, X.; Guo, Z.; Liu, W.; Zhang, W.; Chen, W. Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode. Microsyst. Technol., 2017, 23(8), 3069-3079.
[http://dx.doi.org/10.1007/s00542-016-3064-3]
[194]
Yang, J.; Liu, Y.; Rauch, C.B.; Stevens, R.L.; Liu, R.H.; Lenigk, R.; Grodzinski, P. High sensitivity PCR assay in plastic micro reactors. Lab Chip, 2002, 2(4), 179-187.
[http://dx.doi.org/10.1039/b208405h ] [PMID: 15100807]
[195]
van Midwoud, P.M.; Janse, A.; Merema, M.T.; Groothuis, G.M.; Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem., 2012, 84(9), 3938-3944.
[http://dx.doi.org/10.1021/ac300771z ] [PMID: 22444457]
[196]
Mata, A.; Fleischman, A.J.; Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices, 2005, 7(4), 281-293.
[http://dx.doi.org/10.1007/s10544-005-6070-2 ] [PMID: 16404506]
[197]
Liu, K.; Xiang, J.; Ai, Z.; Zhang, S.; Fang, Y.; Chen, T.; Zhou, Q.; Li, S.; Wang, S.; Zhang, N. PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Q. Microsyst. Technol., 2017, 23, 1937-1942.
[http://dx.doi.org/10.1007/s00542-016-2924-1]
[198]
Kodzius, R.; Xiao, K.; Wu, J.; Yi, X.; Gong, X.; Foulds, I.G.; Wen, W. Inhibitory effect of common microfluidic materials on PCR outcome. Sens. Actuat. Biol. Chem., 2012, 161(1), 349-358.
[http://dx.doi.org/10.1016/j.snb.2011.10.044]
[199]
Qin, K.; Lv, X.; Xing, Q.; Li, R.; Deng, Y. A BSA coated NOA81 PCR chip for gene amplification. Anal. Methods, 2016, 8(12), 2584-2591.
[http://dx.doi.org/10.1039/C5AY03233D]
[200]
Crabtree, H.J.; Lauzon, J.; Morrissey, Y.C.; Taylor, B.J.; Liang, T.; Johnstone, R.W.; Stickel, A.J.; Manage, D.P.; Atrazhev, A.; Backhouse, C.J.; Pilarski, L.M. Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid. Nanofluidics, 2012, 13(3), 383-398.
[http://dx.doi.org/10.1007/s10404-012-0968-9]
[201]
Trung, N.B.; Saito, M.; Takabayashi, H.; Viet, P.H.; Tamiya, E.; Takamura, Y. Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens. Actuators B Chem., 2010, 149(1), 284-290.
[http://dx.doi.org/10.1016/j.snb.2010.06.013]
[202]
Tachibana, H.; Saito, M.; Shibuya, S.; Tsuji, K.; Miyagawa, N.; Yamanaka, K.; Tamiya, E. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens. Bioelectron., 2015, 74(74), 725-730.
[http://dx.doi.org/10.1016/j.bios.2015.07.009 ] [PMID: 26210470]
[203]
Min, J.; Kim, J.H.; Lee, Y.; Namkoong, K. Im, H.C.; Kim, H.N.; Kim, H.Y.; Huh, N.; Kim, Y.R. Functional integration of DNA purification and concentration into a real time micro-PCR chip. Lab Chip, 2011, 11(2), 259-265.
[http://dx.doi.org/10.1039/C0LC00320D ] [PMID: 20967380]
[204]
Kim, S.C.; Clark, I.C.; Shahi, P.; Abate, A.R. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem., 2018, 90(2), 1273-1279.
[http://dx.doi.org/10.1021/acs.analchem.7b04050 ] [PMID: 29256243]
[205]
Kopp, M.U.; Mello, A.J.; Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science, 1998, 280(5366), 1046-1048.
[http://dx.doi.org/10.1126/science.280.5366.1046 ] [PMID: 9582111]
[206]
Ji, H.M.; Samper, V.; Chen, Y.; Heng, C.K.; Lim, T.M.; Yobas, L. Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices, 2008, 10(2), 251-257.
[http://dx.doi.org/10.1007/s10544-007-9131-x ] [PMID: 17914675]
[207]
Hui, W.C.; Yobas, L.; Samper, V.D.; Heng, C.K.; Liw, S.; Ji, H.; Chen, Y.; Cong, L.; Li, J.; Lim, T.M. Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sens. Actuat. A Phys., 2007, 133(2), 335-339.
[http://dx.doi.org/10.1016/j.sna.2006.06.031]
[208]
Crowley, T.A.; Pizziconi, V. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip, 2005, 5(9), 922-929.
[http://dx.doi.org/10.1039/b502930a ] [PMID: 16100575]
[209]
Yobas, L.; Ji, H.; Hui, W.C.; Chen, Y.; Lim, T.M.; Heng, C.K.; Kwong, D.L. Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms. IEEE J. Solid-State Circuits, 2007, 42(8), 1803-1813.
[http://dx.doi.org/10.1109/JSSC.2007.900232]
[210]
Ha, M.L.; Lee, N.Y. Miniaturized polymerase chain reaction device for rapid identification of genetically modified organisms. Food Control, 2015, 57, 238-245.
[http://dx.doi.org/10.1016/j.foodcont.2015.04.014]
[211]
Beyor, N.; Yi, L.; Seo, T.S.; Mathies, R.A. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal. Chem., 2009, 81(9), 3523-3528.
[http://dx.doi.org/10.1021/ac900060r] [PMID: 19341275]
[212]
Wang, J.H.; Chien, L.J.; Hsieh, T.M.; Luo, C.H.; Chou, W.P.; Chen, P.H.; Chen, P.J.; Lee, D.S.; Lee, G.B. A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sens. Actuat. Biol. Chem., 2009, 141(1), 329-337.
[http://dx.doi.org/10.1016/j.snb.2009.06.034]
[213]
Ahrberg, C.D.; Manz, A.; Neužil, P. Palm-sized device for point-of-care Ebola detection. Anal. Chem., 2016, 88(9), 4803-4807.
[http://dx.doi.org/10.1021/acs.analchem.6b00278 ] [PMID: 27064314]
[214]
Hassibi, A.; Singh, R.; Manickam, A.; Sinha, R.; Kuimelis, B.; Bolouki, S.; Naraghi-Arani, P.; Johnson, K.; McDermott, M.; Wood, N.; Savalia, P.; Gamini, N. A fullyintegrated CMOS fluorescence biochip for multiplex polymerase chainreaction (PCR) processes.2017 IEEE International Solid-State Circuits Conference (ISSCC); , 2017. Feb 5-9 San Francisco, CA, USA
[http://dx.doi.org/10.1109/ISSCC.2017.7870264]
[215]
Rival, A.; Jary, D.; Delattre, C.; Fouillet, Y.; Castellan, G.; Bellemin-Comte, A.; Gidrol, X. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip, 2014, 14(19), 3739-3749.
[http://dx.doi.org/10.1039/C4LC00592A ] [PMID: 25080028]
[216]
Neužil, P.; Campos, C.D.; Wong, C.C.; Soon, J.B.; Reboud, J.; Manz, A. From chip-in-a-lab to lab-on-a-chip: Towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC). Lab Chip, 2014, 14(13), 2168-2176.
[http://dx.doi.org/10.1039/C4LC00310A ] [PMID: 24828468]
[217]
Liu, R.H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem., 2004, 76(7), 1824-1831.
[http://dx.doi.org/10.1021/ac0353029 ] [PMID: 15053639]
[218]
Easley, C.J.; Karlinsey, J.M.; Bienvenue, J.M.; Legendre, L.A.; Roper, M.G.; Feldman, S.H.; Hughes, M.A.; Hewlett, E.L.; Merkel, T.J.; Ferrance, J.P.; Landers, J.P. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. USA, 2006, 103(51), 19272-19277.
[http://dx.doi.org/10.1073/pnas.0604663103 ] [PMID: 17159153]
[219]
Xu, G.; Hsieh, T.M.; Lee, D.Y.; Ali, E.M.; Xie, H.; Looi, X.L.; Koay, E.S.; Li, M.H.; Ying, J.Y. A self-contained all-in-one cartridge for sample preparation and real-time PCR in rapid influenza diagnosis. Lab Chip, 2010, 10(22), 3103-3111.
[http://dx.doi.org/10.1039/c005265e ] [PMID: 20865195]
[220]
Stumpf, F.; Schwemmer, F.; Hutzenlaub, T.; Baumann, D.; Strohmeier, O.; Dingemanns, G.; Simons, G.; Sager, C.; Plobner, L.; von Stetten, F.; Zengerle, R.; Mark, D. LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip, 2016, 16(1), 199-207.
[http://dx.doi.org/10.1039/C5LC00871A ] [PMID: 26610171]
[221]
Shin, D.J.; Trick, A.Y.; Hsieh, Y.H.; Thomas, D.L.; Wang, T.H. Sample-to-answer droplet magnetofluidic platform for point-of-care hepatitis C viral load quantitation. Sci. Rep., 2018, 8(1), 9793.
[http://dx.doi.org/10.1038/s41598-018-28124-3 ] [PMID: 29955160]
[222]
Liu, P.; Li, X.; Greenspoon, S.A.; Scherer, J.R.; Mathies, R.A. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip, 2011, 11(6), 1041-1048.
[http://dx.doi.org/10.1039/c0lc00533a ] [PMID: 21293830]
[223]
Echeverry, D.F.; Deason, N.A.; Davidson, J.; Makuru, V.; Xiao, H.; Niedbalski, J.; Kern, M.; Russell, T.L.; Burkot, T.R.; Collins, F.H.; Lobo, N.F. Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene. Malar. J., 2016, 15(1), 128.
[http://dx.doi.org/10.1186/s12936-016-1185-x ] [PMID: 26928594]
[224]
To, K.K.W.; Tsang, O.T-Y.; Leung, W-S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; Lau, D.P.; Choi, C.Y.; Chen, L.L.; Chan, W.M.; Chan, K.H.; Ip, J.D.; Ng, A.C.; Poon, R.W.; Luo, C.T.; Cheng, V.C.; Chan, J.F.; Hung, I.F.; Chen, Z.; Chen, H.; Yuen, K.Y. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis., 2020, 20(5), 565-574.
[http://dx.doi.org/10.1016/S1473-3099(20)30196-1 ] [PMID: 32213337]
[225]
Hsu, L.Y.; Lee, C.C.; Green, J.A.; Ang, B.; Paton, N.I.; Lee, L.; Villacian, J.S.; Lim, P.L.; Earnest, A.; Leo, Y.S. Severe acute respiratory syndrome (SARS) in Singapore: Clinical features of index patient and initial contacts. Emerg. Infect. Dis., 2003, 9(6), 713-717.
[http://dx.doi.org/10.3201/eid0906.030264 ] [PMID: 12781012]
[226]
Gadsby, N.J.; Russell, C.D.; McHugh, M.P.; Mark, H.; Conway Morris, A.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin. Infect. Dis., 2016, 62(7), 817-823.
[http://dx.doi.org/10.1093/cid/civ1214 ] [PMID: 26747825]
[227]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747 ] [PMID: 12690091]
[228]
Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev., 2000, 13(4), 559-570.
[http://dx.doi.org/10.1128/CMR.13.4.559 ] [PMID: 11023957]
[229]
Nash, M.; Ramapuram, J.; Kaiya, R.; Huddart, S.; Pai, M.; Baliga, S. Use of the GeneXpert tuberculosis system for HIV viral load testing in India. Lancet Glob. Health, 2017, 5(8), e754-e755.
[http://dx.doi.org/10.1016/S2214-109X(17)30247-4 ] [PMID: 28716346]
[230]
Gilbert, J.A.; Long, E.F.; Brooks, R.P.; Friedland, G.H.; Moll, A.P.; Townsend, J.P.; Galvani, A.P.; Shenoi, S.V. Integrating community-based interventions to reverse the convergent TB/HIV epidemics in rural South Africa. PLoS One, 2015, 10(5), e0126267.
[http://dx.doi.org/10.1371/journal.pone.0126267 ] [PMID: 25938501]
[231]
Semper, A.E.; Broadhurst, M.J.; Richards, J.; Foster, G.M.; Simpson, A.J.; Logue, C.H.; Kelly, J.D.; Miller, A.; Brooks, T.J.; Murray, M.; Pollock, N.R. Performance of the GeneXpert Ebola assay for diagnosis of Ebola virus disease in Sierra Leone: A field evaluation study. PLoS Med., 2016, 13(3), e1001980.
[http://dx.doi.org/10.1371/journal.pmed.1001980 ] [PMID: 27023868]
[232]
Gay-Andrieu, F.; Magassouba, N.; Picot, V.; Phillips, C.L.; Peyrefitte, C.N.; Dacosta, B.; Doré, A.; Kourouma, F.; Ligeon-Ligeonnet, V.; Gauby, C.; Longuet, C.; Scullion, M.; Faye, O.; Machuron, J.L.; Miller, M. Clinical evaluation of the BioFireFilmArray® bioThreat-E test for the diagnosis of Ebola virus disease in Guinea. J. Clin. Virol., 2017, 92, 20-24.
[http://dx.doi.org/10.1016/j.jcv.2017.04.015 ] [PMID: 28505570]
[233]
Ejazi, S.; Ghosh, S.; Ali, N. Antibody detection assays for COVID19 diagnosis: An early overview 2020. Available from: https://onlinelibrary.wiley.com/doi/10.1111/imcb.12397 (Accessed on: 6 November 2020).
[234]
Melchers, W.J.G.; Kuijpers, J.; Sickler, J.J.; Rahamat-Langendoen, J. Lab-in-a-tube: Real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol., 2017, 89(8), 1382-1386.
[http://dx.doi.org/10.1002/jmv.24796 ] [PMID: 28213975]
[235]
Kanwar, N.; Michael, J.; Doran, K.; Montgomery, E.; Selvarangan, R. Comparison of the ID Now influenza A & B 2, Cobas influenza A/B, and Xpert Xpress Flu point-of-care nucleic acid amplification tests for influenza A/B virus detection in children. J. Clin. Microbiol., 2020, 58(3), e01611-e01619.
[http://dx.doi.org/10.1128/JCM.01611-19 ] [PMID: 31941689]
[236]
Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg. Microbes Infect., 2020, 9(1), 747-756.
[http://dx.doi.org/10.1080/22221751.2020.1745095 ] [PMID: 32196430]
[237]
Yang, H.; Chen, Z.; Cao, X.; Li, Z.; Stavrakis, S.; Choo, J.; deMello, A.J.; Howes, P.D.; He, N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal. Bioanal. Chem., 2018, 410(27), 7019-7030.
[http://dx.doi.org/10.1007/s00216-018-1335-9 ] [PMID: 30155705]
[238]
U.S.F.D.A. Emergency Use Authorizations. Approved kits and tests for SARS; , 2020. Available from: https://www.fda.gov/medical-devices/emergency-situations-medical-devices/emergency-use-authorizations-medical-devices
[239]
FDA. Abbott RealTime SARS-CoV-2., 2020. Available from: https://www.fda.gov/media/136258/download (Accessed on: 5 November 2020).
[240]
ABL SA. UltraGene Combo2Screen SARS-CoV-2 Assay., 2020. Available from: https://www.ablsa.com/laboratory-applications/ultragene-combo2screen/ (Accessed on: 5 November 2020).
[241]
van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.B.E.M.; Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol., 2020, 128, 104412.
[http://dx.doi.org/10.1016/j.jcv.2020.104412 ] [PMID: 32416600]
[242]
Anatoliageneworks.com. Bosphore Novel Coronavirus (2019-nCoV) Detection Kit 2019. Available from: http://www.anatoliageneworks.com/en/kitler.asp?id=360&baslik=Bosphore%20Novel%20Coronavirus%20(2019nCoV)%20 Detection%20Kit&bas=Bosphore%20Novel%20Coronavirus%20(2019-nCoV)%20Detection%20Kit (Accessed on: 5 November 2020).
[243]
Atilabiosystems.com. iAMP COVID-19 DetectionKit (isothermal amplification). 2020. Available from: https://atilabiosystems.com/ (Accessed on: 5 November 2020).
[244]
FDA. BioGX SARS-CoV-2 Reagents (for BD MAXTM System). 2020. Available from: https://www.fda.gov/media/136653/download (Accessed on: 5 November 2020).
[245]
Lieberman, J.A.; Pepper, G.; Naccache, S.N.; Huang, M.L.; Jerome, K.R.; Greninger, A.L. Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J. Clin. Microbiol., 2020, 58(8), e00821-e20.
[http://dx.doi.org/10.1128/JCM.00821-20 ] [PMID: 32350048]
[246]
EurobioPlex. SARS-CoV-2MultiplexTecomedical.com. 2020. Available from: https://www.tecomedical.com/downloadfile?item_file_id=4410&item_file_code=809d320979&file_key=0 (Accessed on: 5 November 2020).
[247]
FDA. EURO RealTime SARS-CoV-2., 2020. Available from: https://www.fda.gov/media/138761/download (Accessed on: 5 November 2020).
[248]
Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G.J. Clinical Evaluation of Three Sample-to-Answer Platforms for Detection of SARS-CoV-2. J. Clin. Microbiol., 2020, 58(8), e00783-e20.
[http://dx.doi.org/10.1128/JCM.00783-20 ] [PMID: 32332061]
[249]
FDA. Panther Fusion_ SARS-CoV-2 Assay. 2020. Available from: https://www.fda.gov/media/136156/download (Accessed on: 5 November 2020).
[250]
FDA. TaqPathTM COVID-19 ComboKit2020. 2020. Available from: https://www.fda.gov/media/136112/download (Accessed on: 5 November 2020).
[251]
FDA. OPTI SARS-CoV-2 RT-PCR Test., 2020. Available from: https://www.fda.gov/media/137739/download (Accessed on: 5 November 2020).
[252]
Quidel.com. Lyra SARS-CoV-2 Assay., 2020. Available from: https://www.quidel.com/molecular-diagnostics/lyra-sars-cov-2-assay (Accessed on: 5 November 2020).
[253]
Roche.com. Roche’s cobas SARS-CoV-2 Test., 2020. Available from: https://www.roche.com/media/releases/med-cor-2020-03-13.htm (Accessed on: 5 November 2020).
[254]
FDA. Novel Coronavirus (2019-nCoV) Nucleic Acid Diagnostic Kit (PCRFluorescence Probing) 2019. Available from: https://www.fda.gov/media/137652/download (Accessed on: 4 November 2020).
[255]
FDA. STANDARD M nCoV Real-Time Detection kit., 2020. Available from: https://www.fda.gov/media/137302/download (Accessed on: 4 November 2020).
[256]
FDA. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RTPCR Diagnostic Panel. 2019. Available from: https://www.fda.gov/media/134922/download (Accessed on: 5 November 2020).
[257]
Dialog.roche.com. LightMix_ Modular SARSCoV (COVID19)COVID-19 Overview. 2020. Available from: https://dialog.roche.com/global/en_us/covid/overview.html (Accessed on: 5 November 2020).
[258]
Youseq.com. YouSeq Multiplex Covid19 qPCR Kit test., 2020. Available from: https://youseq.com/product/sars-cov-2-qpcr-test/9 (Accessed on: 5 November 2020).
[259]
FDA. BioFire COVID-19 test., 2020. Available from: https://www.fda.gov/media/136356/download (Accessed on: 5 November 2020).
[260]
WHO. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/
[261]
Esbin, M.N.; Whitney, O.N.; Chong, S.; Maurer, A.; Darzacq, X.; Tjian, R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA, 2020, 26(7), 771-783.
[http://dx.doi.org/10.1261/rna.076232.120 ] [PMID: 32358057]
[262]
Lombardino, A.J.; Hertel, M.; Li, X.C.; Haripal, B.; Martin-Harris, L.; Pariser, E.; Nottebohm, F. Expression profiling of intermingled long-range projection neurons harvested by laser capture microdissection. J. Neurosci. Methods, 2006, 157(2), 195-207.
[http://dx.doi.org/10.1016/j.jneumeth.2006.04.026 ] [PMID: 16750569]
[263]
Emmert-Buck, M.R.; Bonner, R.F.; Smith, P.D.; Chuaqui, R.F.; Zhuang, Z.; Goldstein, S.R.; Weiss, R.A.; Liotta, L.A. Laser capture microdissection. Science, 1996, 274(5289), 998-1001.
[http://dx.doi.org/10.1126/science.274.5289.998 ] [PMID: 8875945]
[264]
Espina, V.; Heiby, M.; Pierobon, M.; Liotta, L.A. Laser capture microdissection technology. Expert Rev. Mol. Diagn., 2007, 7(5), 647-657.
[http://dx.doi.org/10.1586/14737159.7.5.647 ] [PMID: 17892370]
[265]
Morrison, T.; Hurley, J.; Garcia, J.; Yoder, K.; Katz, A.; Roberts, D.; Cho, J.; Kanigan, T.; Ilyin, S.E.; Horowitz, D.; Dixon, J.M.; Brenan, C.J. Nanoliter high throughput quantitative PCR. Nucleic Acids Res., 2006, 34(18), e123.
[http://dx.doi.org/10.1093/nar/gkl639 ] [PMID: 17000636]
[266]
Ottesen, E.A.; Hong, J.W.; Quake, S.R.; Leadbetter, J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science, 2006, 314(5804), 1464-1467.
[http://dx.doi.org/10.1126/science.1131370 ] [PMID: 17138901]
[267]
El-Tholoth, M.; Bau, H.H.; Song, J. A single and two-stage, closed-tube, molecular test for the 2019 novel Coronavirus (COVID-19) at home, clinic, and points of entry. ChemRxiv, 2020, 2020, 11860137.v1.
[http://dx.doi.org/10.26434/chemrxiv.11860137.v1]
[268]
Yang, T.; Wang, Y.C.; Shen, C.F.; Cheng, C.M. Point-of-care RNA-based diagnostic device for COVID-19. Diagnostics (Basel), 2020, 10(3), 165.
[http://dx.doi.org/10.3390/diagnostics10030165 ] [PMID: 32197339]

© 2024 Bentham Science Publishers | Privacy Policy