Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Editorial

Nano-Biosensors: A New Future for Diagnosis and Modern Analysis

Author(s): Divya Shikha, Vikramdeep Monga and Rohit Bhatia*

Volume 18, Issue 8, 2022

Published on: 18 August, 2022

Page: [739 - 744] Pages: 6

DOI: 10.2174/1573412918666220602122727

Price: $65

Next »
[1]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel), 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[2]
Liu, Q.; Wu, C.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chem. Rev., 2014, 114(12), 6423-6461.
[http://dx.doi.org/10.1021/cr2003129] [PMID: 24905074]
[3]
Pejcic, B.; Marco, R.D.; Parkinson, G. The role of biosensors in the detection of emerging infectious diseases. Analyst (Lond.), 2006, 131(10), 1079-1090.
[http://dx.doi.org/10.1039/b603402k] [PMID: 17003853]
[4]
Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol., 2003, 32(1), 3-13.
[http://dx.doi.org/10.1016/S0141-0229(02)00232-6]
[5]
Yan, C.; Dong, F.; Chun-yuan, B.; Si-rong, Z.; Jian-guo, S. Recent progress of commercially available biosensors in china and their applications in fermentation processes. J. Northeast Agric. Univ., 2014, 21(4), 73-85.
[http://dx.doi.org/10.1016/S1006-8104(15)30023-4]
[6]
Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A. Biosensor technology: Recent advances in threat agent detection and medicine. Chem. Soc. Rev., 2013, 42(22), 8733-8768.
[http://dx.doi.org/10.1039/c3cs60141b] [PMID: 23852443]
[7]
Malitesta, C.; Palmisano, F.; Torsi, L.; Zambonin, P.G. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem., 1990, 62(24), 2735-2740.
[http://dx.doi.org/10.1021/ac00223a016] [PMID: 2096737]
[8]
Wadhera, T.; Kakkar, D.; Wadhwa, G.; Raj, B. Recent advances and progress in development of the field effect transistor biosensor: A review. J. Electron. Mater., 2019, 48(12), 7635-7646.
[http://dx.doi.org/10.1007/s11664-019-07705-6]
[9]
Singh, K.R. Introduction to nanomaterials: An overview toward broad-spectrum applications; Nanomaterials in Bionanotechnology, 2021, pp. 1-35.
[http://dx.doi.org/10.1201/9781003139744-1]
[10]
Nasir, M.; Nawaz, M.H.; Latif, U.; Yaqub, M.; Hayat, A.; Rahim, A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim. Acta, 2017, 184(2), 323-342.
[http://dx.doi.org/10.1007/s00604-016-2036-8]
[11]
Sharifi, M.; Avadi, M.R.; Attar, F.; Dashtestani, F.; Ghorchian, H.; Rezayat, S.M.; Saboury, A.A.; Falahati, M. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens. Bioelectron., 2019, 126, 773-784.
[http://dx.doi.org/10.1016/j.bios.2018.11.026] [PMID: 30554099]
[12]
Malik, P. Nanobiosensors: Concepts and variations. Int. Sch. Res. Notices, 2013.
[http://dx.doi.org/10.1155/2013/327435]
[13]
Diculescu, V.C.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Applications of a DNA-electrochemical biosensor. Trends Analyt. Chem., 2016, 79, 23-36.
[http://dx.doi.org/10.1016/j.trac.2016.01.019]
[14]
Nabaei, V.; Chandrawati, R.; Heidari, H. Magnetic biosensors: Modelling and simulation. Biosens. Bioelectron., 2018, 103, 69-86.
[http://dx.doi.org/10.1016/j.bios.2017.12.023] [PMID: 29278815]
[15]
Gupta, S.; Murthy, C.N.; Prabha, C.R. Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol., 2018, 108, 687-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.038] [PMID: 29223757]
[16]
Doucey, M.A.; Carrara, S. Nanowire sensors in cancer. Trends Biotechnol., 2019, 37(1), 86-99.
[http://dx.doi.org/10.1016/j.tibtech.2018.07.014] [PMID: 30126620]
[17]
Chen, C. Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst (Lond.), 2020, 145(5), 1605-1628.
[http://dx.doi.org/10.1039/C9AN01998G] [PMID: 31970360]
[18]
Ghorbani, F.; Abbaszadeh, H.; Mehdizadeh, A.; Ebrahimi-Warkiani, M.; Rashidi, M.R.; Yousefi, M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: A review. Mikrochim. Acta, 2019, 186(12), 838.
[http://dx.doi.org/10.1007/s00604-019-3844-4] [PMID: 31760523]
[19]
Christopher, F.C.; Kumar, P.S.; Christopher, F.J.; Joshiba, G.J.; Madhesh, P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J. Clean. Prod., 2020, 269, 122356.
[http://dx.doi.org/10.1016/j.jclepro.2020.122356]
[20]
Asiri, A.M. Nanosensor Technologies for Environmental Monitoring; Springer, 2020.
[21]
Negrete, J.C. Nanotechnology an option in Mexican agriculture; J Biotechnol Bioinforma Res, 2020, p. 3.
[http://dx.doi.org/10.47363/JBBR/2020(2)106]
[22]
Cui, H.F.; Wu, W.W.; Li, M.M.; Song, X.; Lv, Y.; Zhang, T.T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens. Bioelectron., 2018, 99, 223-229.
[http://dx.doi.org/10.1016/j.bios.2017.07.068] [PMID: 28763783]
[23]
Xu, Y.; Dhaouadi, Y.; Stoodley, P.; Ren, D. Sensing the unreachable: Challenges and opportunities in biofilm detection. Curr. Opin. Biotechnol., 2020, 64, 79-84.
[http://dx.doi.org/10.1016/j.copbio.2019.10.009] [PMID: 31766008]
[24]
Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry, 2019, 127, 163-170.
[http://dx.doi.org/10.1016/j.bioelechem.2019.02.003] [PMID: 30831354]
[25]
Iqbal, M.; Umar, S. Nano-fertilization to enhance nutrient use efficiency and productivity of crop plants. In: Nanomaterials and plant potential; Springer, 2019; pp. 473-505.
[http://dx.doi.org/10.1007/978-3-030-05569-1_19]
[26]
Li, Z.; Yu, Y.; Li, Z.; Wu, T. A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal. Bioanal. Chem., 2015, 407(10), 2711-2726.
[http://dx.doi.org/10.1007/s00216-015-8530-8] [PMID: 25694149]
[27]
Guo, R.; Huang, F.; Cai, G.; Zheng, L.; Xue, L.; Li, Y.; Liao, M.; Wang, M.; Lin, J. A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification. Mikrochim. Acta, 2020, 187(4), 197.
[http://dx.doi.org/10.1007/s00604-020-4169-z] [PMID: 32125533]
[28]
Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron., 2018, 102, 540-552.
[http://dx.doi.org/10.1016/j.bios.2017.11.069] [PMID: 29220802]
[29]
Zhang, F.; Zhang, Q.; Zhang, D.; Lu, Y.; Liu, Q.; Wang, P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens. Bioelectron., 2014, 54, 385-392.
[http://dx.doi.org/10.1016/j.bios.2013.11.020] [PMID: 24292144]
[30]
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[31]
Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Opo, F.A.D.M. An electrochemical approach for the selective detection of cancer metabolic creatine biomarker with porous nano-formulated CMNO materials decorated glassy carbon electrode. Sensors (Basel), 2020, 20(24), 7060.
[http://dx.doi.org/10.3390/s20247060] [PMID: 33321693]
[32]
Mai, H.H.; Pham, V.T.; Nguyen, V.T.; Sai, C.D.; Hoang, C.H.; Nguyen, T.B. Non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. J. Electron. Mater., 2017, 46(6), 3714-3719.
[http://dx.doi.org/10.1007/s11664-017-5300-8]
[33]
Banigo, A. Nanobiosensors: Applications in biomedical technology. IOP Conference Series: Materials Science and Engineering, IOP Publishing. 2020.
[http://dx.doi.org/10.1088/1757-899X/805/1/012028]
[34]
Khan, M.; Cantù, E.; Tonello, S.; Serpelloni, M.; Lopomo, N.; Sardini, E. A review on biomaterials for 3D conductive scaffolds for stimulating and monitoring cellular activities. Appl. Sci. (Basel), 2019, 9(5), 961.
[http://dx.doi.org/10.3390/app9050961]
[35]
Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv., 2010, 28(2), 232-254.
[http://dx.doi.org/10.1016/j.biotechadv.2009.12.004] [PMID: 20006978]
[36]
Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol., 2014, 24(3), 297-312.
[http://dx.doi.org/10.4014/jmb.1310.10013] [PMID: 24375418]
[37]
Oh, S.Y.; Heo, N.S.; Shukla, S.; Cho, H.J.; Vilian, A.T.E.; Kim, J.; Lee, S.Y.; Han, Y.K.; Yoo, S.M.; Huh, Y.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci. Rep., 2017, 7(1), 10130.
[http://dx.doi.org/10.1038/s41598-017-10188-2] [PMID: 28860462]
[38]
Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol., 2011, 22(11), 625-639.
[http://dx.doi.org/10.1016/j.tifs.2011.04.001]
[39]
Wang, Z.; Zhang, J.; Guo, Y.; Wu, X.; Yang, W.; Xu, L.; Chen, J.; Fu, F. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosens. Bioelectron., 2013, 45, 108-113.
[http://dx.doi.org/10.1016/j.bios.2013.02.007] [PMID: 23455049]
[40]
Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787.
[http://dx.doi.org/10.1039/D0NA00472C]
[41]
Guo, Q.; Shen, X.; Li, Y.; Xu, S. Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci., 2017, 37(5), 635-641.
[http://dx.doi.org/10.1007/s11596-017-1783-z] [PMID: 29058274]
[42]
Gdowski, A.; Ranjan, A.P.; Mukerjee, A.; Vishwanatha, J.K. Nanobiosensors: Role in cancer detection and diagnosis. Adv. Exp. Med. Biol., 2014, 807, 33-58.
[http://dx.doi.org/10.1007/978-81-322-1777-0_4] [PMID: 24619617]
[43]
Srivastava, A.K.; Dev, A.; Karmakar, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett., 2018, 16(1), 161-182.
[http://dx.doi.org/10.1007/s10311-017-0674-7]
[44]
Otles, S.; Yalcin, B. Review on the application of nanobiosensors in food analysis. Acta Sci. Pol. Technol. Aliment., 2012, 11(1), 7-18.
[PMID: 22230970]
[45]
Shawon, Z.B.Z.; Hoque, M.E.; Chowdhury, S.R. Nanosensors and nanobiosensors: Agricultural and food technology aspects. In: Nanofabrication for Smart Nanosensor Applications; Elsevier, 2020; pp. 135-161.
[http://dx.doi.org/10.1016/B978-0-12-820702-4.00006-4]
[46]
Rai, V.; Acharya, S.; Dey, N. Implications of nanobiosensors in agriculture., 2012.
[http://dx.doi.org/10.4236/jbnb.2012.322039]
[47]
Mandal, N.; Adhikary, S.; Rakshit, R. Nanobiosensors: Recent developments in soil health assessment. Soil Analysis: Recent Trends and Applications 2020.
[http://dx.doi.org/10.1007/978-981-15-2039-6_15]
[48]
Riu, J.; Maroto, A.; Rius, F. Nanosensors in environmental analysis. Talanta, 2006, 69(2), 288-301.
[http://dx.doi.org/10.1016/j.talanta.2005.09.045] [PMID: 18970568]
[49]
Xu, H.B.; Ye, R-F.; Yang, S-Y.; Li, R.; Yang, X. Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples. Chin. Chem. Lett., 2014, 25(1), 29-34.
[http://dx.doi.org/10.1016/j.cclet.2013.10.011]
[50]
Sreekanth, S.P.; Alodhayb, A.; Assaifan, A.K.; Alzahrani, K.E.; Muthuramamoorthy, M.; Alkhammash, H.I.; Pandiaraj, S.; Alswieleh, A.M.; Van Le, Q.; Mangaiyarkarasi, R.; Grace, A.N.; Raghavan, V. Multi-walled carbon nanotube-based nanobiosensor for the detection of cadmium in water. Environ. Res., 2021, 197, 111148.
[http://dx.doi.org/10.1016/j.envres.2021.111148] [PMID: 33878318]

© 2024 Bentham Science Publishers | Privacy Policy