Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Overview of Treatment Guidelines and Methods of Synthesis of Drugs Used in Leprosy Chemotherapy

Author(s): Luiz C.S. Pinheiro*, Julio C. Borges, Vinicius R. Campos and Leonardo C. Dantas

Volume 23, Issue 4, 2023

Published on: 23 September, 2022

Page: [497 - 512] Pages: 16

DOI: 10.2174/1389557522666220415233627

Price: $65

Abstract

Leprosy is a Neglected Tropical Disease (NTDs) caused by Mycobacterium leprae (M. leprae). The treatment is considered effective, however, the high dose Multidrug Therapy (MDT) for a long period and its adverse effects result in the abandonment of the treatment by patients. Indeed, antimicrobial resistance is still an obstacle that must be overcome in the treatment of leprosy. In the present article, we reviewed the WHO guidelines for the chemotherapy of leprosy and the methods of synthesis of these drugs.

Keywords: Leprosy, rifampicin, clofazimine, dapsone, clarithromycin, minocycline, ofloxacin.

« Previous
[1]
World Health Organization (WHO). Available from: https://www.who.int/news-room/fact-sheets/detail/leprosy (Accessed on: September 08, 2021).
[2]
Irgens, L.M. The discovery of the leprosy bacillus. Tidsskr. Nor. Laegeforen., 2002, 122(7), 708-709.
[PMID: 11998735]
[3]
Bechler, R.G. Hansen versus Neisser: Scientific controversies over the ‘discovery’ of the bacillus of leprosy. Hist. Cienc. Saude Manguinhos, 2012, 19(3), 815-842.
[http://dx.doi.org/10.1590/S0104-59702012000300003] [PMID: 23070374]
[4]
International Leprosy Association. Available from: https://leprosyhistory.org/database/person1 (Accessed on: September 09, 2021).
[5]
World health organization (WHO). Regional office for south-east asia. ( 2018) . Guidelines for the diagnosis, treatment and prevention of leprosy. World health organization. Regional office for southeast asia. 2018. Available from: https://apps.who.int/iris/handle/10665/274127 (Accessed on: September 09, 2021).
[6]
Acebrón-García-de-Eulate, M.; Blundell, T.L.; Vedithi, S.C. Strategies for drug target identification in Mycobacterium leprae. Drug Discov. Today, 2021, 26(7), 1569-1573.
[http://dx.doi.org/10.1016/j.drudis.2021.03.026] [PMID: 33798649]
[7]
Ploemacher, T.; Faber, W.R.; Menke, H.; Rutten, V.; Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis., 2020, 14(4), e0008276.
[http://dx.doi.org/10.1371/journal.pntd.0008276] [PMID: 32339201]
[8]
Alemu Belachew, W.; Naafs, B. Position statement: LEPROSY: Diagnosis, treatment and follow-up. J. Eur. Acad. Dermatol. Venereol., 2019, 33(7), 1205-1213.
[http://dx.doi.org/10.1111/jdv.15569] [PMID: 30945360]
[9]
Mungroo, M.R.; Khan, N.A.; Siddiqui, R. Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microb. Pathog., 2020, 149, 104475.
[http://dx.doi.org/10.1016/j.micpath.2020.104475] [PMID: 32931893]
[10]
Thakur, S.; Chauhan, V. State of the globe: “Hansen’s disease – Down but not out in the SARS-CoV-2 era. J. Glob. Infect. Dis., 2020, 12(4), 165-166.
[http://dx.doi.org/10.4103/jgid.jgid_396_20] [PMID: 33888954]
[11]
World Health Organization (WHO). Regional Office for SouthEast Asia, Global Leprosy Programme. Global Leprosy Strategy 2016–2020: Accelerating towards a leprosy-free world. New Delhi: WHO Regional Office for South-East Asia. 2016. Available from: http://apps.who.int/iris/bitstream/handle/10665/208824/9789290225096_en.pdf (Accessed on: September 08, 2021).
[12]
Ahmed, M.M.H. Anuradha; Wadhwa, P. A review on agents for the treatment of leprosy infection. Asian J. Pharm. Clin. Res., 2021, 14(3), 25-29.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i3.40373]
[13]
Blok, D.J.; de Vlas, S.J.; Geluk, A.; Richardus, J.H. Minimum requirements and optimal testing strategies of a diagnostic test for leprosy as a tool towards zero transmission: A modeling study. PLoS Negl. Trop. Dis., 2018, 12(5), e0006529.
[http://dx.doi.org/10.1371/journal.pntd.0006529] [PMID: 29799844]
[14]
Gaschignard, J.; Grant, A.V.; Thuc, N.V.; Orlova, M.; Cobat, A.; Huong, N.T.; Ba, N.N.; Thai, V.H.; Abel, L.; Schurr, E.; Alcaïs, A. Pauci-and multibacillary leprosy: Two Distinct, genetically neglected diseases. PLoS Negl. Trop. Dis., 2016, 10(5), e0004345.
[http://dx.doi.org/10.1371/journal.pntd.0004345] [PMID: 27219008]
[15]
Adams, L.B. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol. Rev., 2021, 301(1), 157-174.
[http://dx.doi.org/10.1111/imr.12960] [PMID: 33660297]
[16]
World Health Organization (WHO). Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. 2019, 95, 4417-4440. Available from: https://www.who.int/publications/i/item/who-wer9536 (Accessed on: September 09, 2021).
[17]
World Health Organization (WHO). World Health Assembly, Elimination of leprosy: resolution of the 44th resolution 44.9 1991. Available from: https://www.who.int/neglected_diseases/mediacentre/WHA_44.9_Eng.pdf (Accessed on: September 08, 2021).
[18]
Lockwood, D.N.J.; Suneetha, S. Leprosy: too complex a disease for a simple elimination paradigma., Available from: https://www.who.int/bulletin/volumes/83/3/230.pdf (Accessed on: September 08, 2021).
[19]
Cambau, E.; Saunderson, P.; Matsuoka, M.; Cole, S.T.; Kai, M.; Suffys, P.; Rosa, P.S.; Williams, D.; Gupta, U.D.; Lavania, M.; Cardona-Castro, N.; Miyamoto, Y.; Hagge, D.; Srikantam, A.; Hongseng, W.; Indropo, A.; Vissa, V.; Johnson, R.C.; Cauchoix, B.; Pannikar, V.K.; Cooreman, E.A.W.D.; Pemmaraju, V.R.R.; Gillini, L. WHO surveillance network of antimicrobial resistance in leprosy. Antimicrobial resistance in leprosy: Results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin. Microbiol. Infect., 2018, 24(12), 1305-1310.
[http://dx.doi.org/10.1016/j.cmi.2018.02.022] [PMID: 29496597]
[20]
Considerations for implementing mass treatment, active case‐ finding and population-based surveys for neglected tropical diseases in the context of the COVID-19 pandemic: Interim guidance. 2020. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-neglected-tropical-diseases-2020-1 (Accessed on: September 14, 2021).
[21]
World Health Organization (WHO) . WHO Expert Committee on leprosy: eighth report. World Health Organization (2012) 2012. Available from: https://apps.who.int/iris/handle/10665/75151 (Accessed on: September 15, 2021).
[22]
Gillini, L.; Cooreman, E.; Wood, T.; Pemmaraju, V.R.; Saunderson, P. Global practices in regard to implementation of preventive measures for leprosy. PLoS Negl. Trop. Dis., 2017, 11(5), e0005399.
[http://dx.doi.org/10.1371/journal.pntd.0005399] [PMID: 28472183]
[23]
Parajuli, N.; Poudyal, Y. Leprosy postexposure prophylaxis with single-dose rifampicin: Nepalese dermatologist’s dilemma. PLoS Negl. Trop. Dis., 2021, 15(4), e0009039.
[http://dx.doi.org/10.1371/journal.pntd.0009039] [PMID: 33830989]
[24]
Chen, X.; He, J.; Liu, J.; You, Y.; Yuan, L.; Wen, Y. Nested PCR and the TaqMan SNP Genotyping Assay enhanced the sensitivity of drug resistance testing of Mycobacterium leprae using clinical specimens of leprosy patients. PLoS Negl. Trop. Dis., 2019, 13(12), e0007946.
[http://dx.doi.org/10.1371/journal.pntd.0007946] [PMID: 31881061]
[25]
van Brakel, W.H.; Nicholls, P.G.; Wilder-Smith, E.P.; Das, L.; Barkataki, P.; Lockwood, D.N.J. INFIR Study Group. Early diagnosis of neuropathy in leprosy-comparing diagnostic tests in a large prospective study (the INFIR cohort study). PLoS Negl. Trop. Dis., 2008, 2(4), e212.
[http://dx.doi.org/10.1371/journal.pntd.0000212] [PMID: 18382604]
[26]
Lockwood, D.N.J.; Lambert, S.; Srikantam, A.; Darlong, J.; Pai, V.V.; Butlin, C.R.; de Barros, B.; Negera, E.; Walker, S.L. Three drugs are unnecessary for treating paucibacillary leprosy-A critique of the WHO guidelines. PLoS Negl. Trop. Dis., 2019, 13(10), e0007671.
[http://dx.doi.org/10.1371/journal.pntd.0007671] [PMID: 31671087]
[27]
Smith, C.S.; Aerts, A.; Saunderson, P.; Kawuma, J.; Kita, E.; Virmond, M. Multidrug therapy for leprosy: A game changer on the path to elimination. Lancet Infect. Dis., 2017, 17(9), e293-e297.
[http://dx.doi.org/10.1016/S1473-3099(17)30418-8] [PMID: 28693853]
[28]
National Leprosy Eradication Programme I. Guidelines for Post Exposure Prophylaxis 2016.. 2016. Available from: http://nlep.nic.in/pdf/OG_PEP_F.pdf (Accessed on: 10 August 2021).
[29]
Towards zero leprosy. Global leprosy ( Hansen’s Disease) strategy 2021-2030. Available from: http://www.who.int/publications/i/item/9789290228509 (Accessed on: September 16, 2021).
[30]
Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030. Geneva: World Health Organization, 2020. Licence: CC BY-NC-SA 3.0 IGO. 2020. Available from: https://www.who.int/publications/i/item/9789240010352 (Accessed on: September 14, 2021).
[31]
Lockwood, D.N.J.; Krishnamurthy, P.; Kumar, B.; Penna, G. Single-dose rifampicin chemoprophylaxis protects those who need it least and is not a cost-effective intervention. PLoS Negl. Trop. Dis., 2018, 12(6), e0006403.
[http://dx.doi.org/10.1371/journal.pntd.0006403] [PMID: 29879118]
[32]
Beltrán-Alzate, C.; López Díaz, F.; Romero-Montoya, M.; Sakamuri, R.; Li, W.; Kimura, M.; Brennan, P.; Cardona-Castro, N. Leprosy drug resistance surveillance in Colombia: The experience of a sentinel country. PLoS Negl. Trop. Dis., 2016, 10(10), e0005041.
[http://dx.doi.org/10.1371/journal.pntd.0005041] [PMID: 27706165]
[33]
da Silva Rocha, A.; Cunha, Md.; Diniz, L.M.; Salgado, C.; Aires, M.A.P.; Nery, J.A.; Gallo, E.N.; Miranda, A.; Magnanini, M.M.; Matsuoka, M.; Sarno, E.N.; Suffys, P.N.; de Oliveira, M.L. Drug and multidrug resistance among Mycobacterium leprae isolates from Brazilian relapsed leprosy patients. J. Clin. Microbiol., 2012, 50(6), 1912-1917.
[http://dx.doi.org/10.1128/JCM.06561-11] [PMID: 22495562]
[34]
Yu, M.; Wu, K.; Pei, B.; Yang, D.; Wang, Q.; Wang, H.; Shen, J.; Yan, L.; Zhang, G. Rifampicin-resistant Mycobacterium leprae in an elderly leprosy patient in the people’s Republic of China. Clin. Interv. Aging, 2013, 8, 1097-1099.
[http://dx.doi.org/10.2147/CIA.S49653] [PMID: 23986632]
[35]
Yokoyama, K.; Kim, H.; Mukai, T.; Matsuoka, M.; Nakajima, C.; Suzuki, Y. Impact of amino acid substitutions in B subunit of DNA gyrase in Mycobacterium leprae on fluoroquinolone resistance. PLoS Negl. Trop. Dis., 2012, 6(10), e1838.
[http://dx.doi.org/10.1371/journal.pntd.0001838] [PMID: 23071850]
[36]
Andrade, E.S.N.; Brandão, J.G.; da Silva, J.S.; Kurizky, P.S.; Rosa, P.S.; de Araújo, W.N.; Gomes, C.M. A systematic review and meta-analysis of studies on the diagnostic accuracy and screening of tests to detect antimicrobial resistance in leprosy. Diagn. Microbiol. Infect. Dis., 2021, 100(1), 115325.
[http://dx.doi.org/10.1016/j.diagmicrobio.2021.115325] [PMID: 33556650]
[37]
Chaves, L.L.; Patriota, Y.; Soares-Sobrinho, J.L.; Vieira, A.C.C.; Lima, S.A.C.; Reis, S. Drug delivery systems on leprosy therapy: Moving towards eradication? Pharmaceutics, 2020, 12(12), 1202.
[http://dx.doi.org/10.3390/pharmaceutics12121202] [PMID: 33322356]
[38]
Ministry of health. Health surveillance department. Department of communicable disease surveillance. Practical guide on leprosy. 2017. Available from: https://portalarquivos2.saude.gov.br/images/pdf/2017/novembro/22/Guia-Pratico-de-Hanseniase-WEB.pdf (Accessed on: September 14, 2021).
[39]
Souza, C.D.F.; Paiva, J.P.S.; Leal, T.C.; Urashima, G.D.S. Leprosy in Brazil in the 21st century: analysis of epidemiological and operational indicators using inflection point regression. An. Bras. Dermatol., 2020, 95(6), 743-747.
[http://dx.doi.org/10.1016/j.abd.2019.09.031] [PMID: 33010990]
[40]
Bera, S.; Mondal, D. Insights of synthetic analogues of anti-leprosy agents. Bioorg. Med. Chem., 2019, 27(13), 2689-2717.
[http://dx.doi.org/10.1016/j.bmc.2019.04.032] [PMID: 31103404]
[41]
Floss, H.G.; Yu, T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev., 2005, 105(2), 621-632.
[http://dx.doi.org/10.1021/cr030112j] [PMID: 15700959]
[42]
Fischer, M. Leprosy - an overview of clinical features, diagnosis, and treatment. J. Dtsch. Dermatol. Ges., 2017, 15(8), 801-827.
[http://dx.doi.org/10.1111/ddg.13301] [PMID: 28763601]
[43]
Shouli, X.; Li, X.; Mingshan, D.; Jian, H.; Xueqing, D.; Lingxiang, S. One-pot processing method for synthesizing rifampicin. C.N. Patent 1690059A, November 02, 2005.
[44]
Guangwen, C.; Zhenghui, W.; Mei, H. Method for continuously preparing benzoxazine rifamycin. C.N. Patent 110684037A, January 14, 2020.
[45]
Maggi, N.; Sensi, P. Mannich bases of rifamycin SV. U.S. Patent 3349082A, October 24, 1967.
[46]
Maggi, N.; Sensi, P. Derivatives of rifamycin SV. U.S. Patent 3342810A, September 19, 1967.
[47]
Bruzzesse, T. Process for the preparation of rifampicin. U.S. Patent 4174320A, November 13, 1979.
[48]
Li, X.; Liu, Z.; Qi, H.; Fang, Z.; Huang, S.; Miao, S.; Guo, K. Continuous preparation for rifampicin. J. Flow Chem., 2018, 8, 129-138.
[http://dx.doi.org/10.1007/s41981-018-0017-2]
[49]
Cruz, R.C.D.S.; Bührer-Sékula, S.; Penna, M.L.F.; Penna, G.O.; Talhari, S. Leprosy: Current situation, clinical and laboratory aspects, treatment history and perspective of the uniform multidrug therapy for all patients. An. Bras. Dermatol., 2017, 92(6), 761-773.
[http://dx.doi.org/10.1590/abd1806-4841.20176724] [PMID: 29364430]
[50]
Barr, J. A short history of dapsone, or an alternative model of drug development. J. Hist. Med. Allied Sci., 2011, 66(4), 425-467.
[http://dx.doi.org/10.1093/jhmas/jrq068] [PMID: 20966036]
[51]
Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J., 2002, 8(1), 2.
[http://dx.doi.org/10.5070/D330M4B5KR] [PMID: 12165212]
[52]
Allegrini, P.; Mantegazza, S. Process for the preparation of sulfonamide compounds. U.S. Patent 2014303402A1, October 09, 2014.
[53]
Buckles, R.E. A synthesis of bis(p-aminophenyl)sulfone for laboratory classes. J. Chem. Educ., 1954, 31(1), 36-37.
[http://dx.doi.org/10.1021/ed031p36]
[54]
Yang, Y.; Chen, Z.; Rao, Y. The synthesis of diarylsulfones with simple arenes and K2S2O8 through double C-S bond formation. Chem. Commun. (Camb.), 2014, 50(95), 15037-15040.
[http://dx.doi.org/10.1039/C4CC05964F] [PMID: 25327213]
[55]
Gopal, M.; Padayatchi, N.; Metcalfe, J.Z.; O’Donnell, M.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2013, 17(8), 1001-1007.
[http://dx.doi.org/10.5588/ijtld.12.0144] [PMID: 23541151]
[56]
Chauhan, S.M.S.; Singh, R. Geetanjali. An Improved Synthesis of N-Substituted-2-nitroanilines. Synth. Commun., 2003, 33(16), 2899-2906.
[http://dx.doi.org/10.1081/SCC-120022180]
[57]
Loos, P.; Alex, H.; Hassfeld, J.; Lovis, K.; Platzek, J.; Steinfeldt, N.; Huebner, S. Selective hydrogenation of halogenated nitroaromatics to haloanilines in batch and flow. Org. Process Res. Dev., 2016, 20(2), 452-464.
[http://dx.doi.org/10.1021/acs.oprd.5b00170]
[58]
Bing, Y. Method for synthesizing key clofazimine intermediate N- (4-chlorphenyl)-1,2-phenylenediamine. W.O. Patent 2019037161A1, February 28, 2019.
[59]
Barry, V.C.; Dublin, R.; Belton, J.G.; Conalty, M.L.; O’sullivan, J.F.; Ernst, H. New phenazine derivatives. U.S. Patent 2948726A, August 06, 1960.
[60]
O’Sullivan, J.F.; Conalty, M.L.; Morrison, N.E. Clofazimine analogues active against a clofazimine-resistant organism. J. Med. Chem., 1988, 31(3), 567-572.
[http://dx.doi.org/10.1021/jm00398a013] [PMID: 3279207]
[61]
Xiaoying, L.; Junzheng, H.; Xiaowen, G.; Luning, H.; Hong, G. Preparation method for clofazimine intermediate. C.N. Patent 106916069A, July 04, 2017.
[62]
Woo, S.H.; Park, G.; Chang, S.; Lim, G. Intermediate for producing phenazine derivative, and method for producing same. W.O. Patent 2020166984A1, August 20, 2020.
[63]
Hassounah, I.A.; Shehata, N.A.; Kimsawatde, G.C.; Hudson, A.G.; Sriranganathan, N.; Joseph, E.G.; Mahajan, R.L. Designing and testing single tablet for tuberculosis treatment through electrospinning.Fabrication and Self-Assembly of Nanobiomaterials. Applications of Nanobiomaterials; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, 2016, pp. 335-365.
[http://dx.doi.org/10.1016/B978-0-323-41533-0.00011-8]
[64]
Sturgill, M.G.; Rapp, R.P. Clarithromycin: Review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. Ann. Pharmacother., 1992, 26(9), 1099-1108.
[http://dx.doi.org/10.1177/106002809202600912] [PMID: 1421677]
[65]
Neu, H.C. The development of macrolides: Clarithromycin in perspective. J. Antimicrob. Chemother., 1991, 27(Suppl. A), 1-9.
[http://dx.doi.org/10.1093/jac/27.suppl_A.1] [PMID: 1827094]
[66]
Vardanyan, R.S.; Hruby, V.J. Synthesis of Essential Drugs. In: Antibiotics, 1st ed; Vardanyan, R.S.; Hruby, V.J., Eds.; Elsevier Science: Amsterdam, Netherlands, 2006; pp. 425-498.
[http://dx.doi.org/10.1016/B978-044452166-8/50032-7]
[67]
Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J. Antibiot. (Tokyo), 1984, 37(2), 187-189.
[http://dx.doi.org/10.7164/antibiotics.37.187] [PMID: 6706855]
[68]
Yang, C.; Patel, H.H.; Ku, Y.; Liu, J. 2'-Protected 3'- dimethylamine, 9-etheroxime erythromycin A derivatives. U.S. Patent 5719272A, February 17, 1998.
[69]
Gasc, J.C.; d’Ambrieres, S.G.; Lutz, A.; Chantot, J.F. New ether oxime derivatives of erythromycin A. A structure-activity relationship study. J. Antibiot. (Tokyo), 1991, 44(3), 313-330.
[http://dx.doi.org/10.7164/antibiotics.44.313] [PMID: 1827435]
[70]
Rao, X.; Ding, Z.; Lou, H.; Wu, J.; Fang, Y.; Deng, B.; Baineng, D. Method of preparing clarithromycin. U.S. Patent 8288514B2, October 16, 2012.
[71]
Brogden, R.N.; Speight, T.M.; Avery, G.S. Minocycline: A review of its antibacterial and pharmacokinetic properties and therapeutic use. Drugs, 1975, 9(4), 251-291.
[http://dx.doi.org/10.2165/00003495-197509040-00005] [PMID: 1173232]
[72]
Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an antibiotic. Br. J. Pharmacol., 2013, 169(2), 337-352.
[http://dx.doi.org/10.1111/bph.12139] [PMID: 23441623]
[73]
Nettis, M.A. Minocycline in major depressive disorder: And overview with considerations on treatment-resistance and comparisons with other psychiatric disorders. Brain Behav. Immun. Health, 2021, 17, 100335.
[http://dx.doi.org/10.1016/j.bbih.2021.100335] [PMID: 34568852]
[74]
Martins, A.M.; Marto, J.M.; Johnson, J.L.; Graber, E.M. A review of systemic minocycline side effects and topical minocycline as a safer alternative for treating acne and rosacea. Antibiotics (Basel), 2021, 10(7), 757.
[http://dx.doi.org/10.3390/antibiotics10070757] [PMID: 34206485]
[75]
Saito, Y.; Kasai, M. Process for producing 7-amino-6-demethyl-6- deoxytetracycline. U.S. Patent 4849136A, July 18, 1989.
[76]
Gu, K.; Wang, X. Preparation method of minocycline. C.N. Patent 111892509A, November 16, 2020.
[77]
Chen, J.; Ren, Y.; Chen, Y. Method for synthesizing minocycline hydrochloride. C.N. Patent 112574057A, March 30, 2021.
[78]
Rubinstein, E. History of quinolones and their side effects. Chemotherapy, 2001, 47(3)(Suppl. 3), 3-8.
[http://dx.doi.org/10.1159/000057838] [PMID: 11549783]
[79]
Paris, J-M. 1.3 Chirality in antibacterial agents. In: Comprehensive Chirality; Carreira, E.M.; Yamamoto, H., Eds.; Elsevier: Amsterdam, Netherlands, 2012; pp. 30-53.
[http://dx.doi.org/10.1016/B978-0-08-095167-6.00109-9]
[80]
Appelbaum, P.C.; Hunter, P.A. The fluoroquinolone antibacterials: Past, present and future perspectives. Int. J. Antimicrob. Agents, 2000, 16(1), 5-15.
[http://dx.doi.org/10.1016/S0924-8579(00)00192-8] [PMID: 11185413]
[81]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[82]
Hayakawa, I.; Hiramitsu, T.; Tanaka, Y. Benzoxazine derivatives U.S. Patent 4382892A, May 10, 1983.
[83]
Wu, Z.; Yu, Y.; Yu, W. One-step synthesis method for levofloxacin and ofloxacin. W.O. Patent 2013189117A1, December 27, 2013.
[84]
Mitscher, L.A.; Chu, D.T. Process for preparation of racemate and optically active ofloxacin and related derivatives. U.S. Patent 4777253A, October 11, 1988.
[85]
Yang, H.; Mao, J.; Sun, X. Preparation method of novel ofloxacin intermediate. C.N. Patent 104402917A, March 11, 2015.
[86]
Yang, Z.; Yang, Q.; Chen, Q.; Wang, Y.; Wang, Z.; Zhang, W.; Han, D.; Wu, G.; Wang, J.; Jiao, G. Preparation method of ofloxacin. C.N. Patent 103360410A, October 23, 2013.
[87]
Lyu, X.; Zhang, T.; Zhou, S. Synthesizing method of ofloxacin and levofloxacin. C.N. Patent 108892676A, November 27, 2018.
[88]
Ye, W.; Zhang, W.; Yang, Z. Methods for preparation of levofloxacin and ofloxacin. W.O. Patent 2005123746A1, December 29, 2005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy