Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dendronized Porphyrins: Molecular Design and Synthesis

Author(s): Mireille Vonlanthen, Fabián Cuétara-Guadarrama, Pasquale Porcu, Kendra Sorroza-Martínez, Israel González-Méndez and Ernesto Rivera*

Volume 26, Issue 6, 2022

Published on: 14 March, 2022

Page: [606 - 637] Pages: 32

DOI: 10.2174/1385272826666220126121801

Price: $65

Abstract

In this review, we report different methods and strategies to synthesize flexible and rigid dendronized porphyrins. We will focus on porphyrin dendrimers that have been reported in the last 10 years. Particularly, in our research group, we have designed and synthesized different series of dendronized porphyrins (free base and metallated) with pyrene units at the periphery and Fréchet-type dendritic arms. The Lindsey methodology has allowed the synthesis of meso-substituted porphyrins with various substitution patterns, such as symmetric, dissymmetric, or unsymmetric. Porphyrin dendrimers have been prepared by different synthetic methodologies; one of the most reported being the convergent method, where the dendrons are first prepared and further linked to a meso-substituted functionalized porphyrin unit, which will constitute the core of the dendrimer. Another interesting synthetic approach is the use of a reactive dendron bearing a terminal aldehyde functional group to form the final porphyrin core. In this way, a two-armed dendronized dissymmetric porphyrin core can be prepared from a dendritic precursor and a dipyrromethene derivative. This strategy is very convenient to prepare low-generation dendritic porphyrins. The divergent approach is another well-known methodology for porphyrin dendrimer synthesis, mostly used for achieving highgeneration dendrimers. Click chemistry reaction has been advantageous for the development of more complex porphyrin dendritic structures. This reaction presents important advantages, such as high yields and mild reaction conditions, which permit the assembly of different multiporphyrin dendritic structures. In the constructs presented in this review, the emission of the porphyrin moiety has been observed, leading to potential applications in artificial photosynthesis, sensing, nanomedicine, and biological sciences.

Keywords: Porphyrin, metalloporphyrin, dendrimer synthesis, click chemistry, multiporphyrin, Fréchet-type dendrimer.

« Previous
Graphical Abstract

[1]
El-Khouly, M.E.; El-Mohsnawy, E.; Fukuzumi, S. Solar energy conversion: From natural to artificial photosynthesis. J. Photochem. Photobiol. Chem., 2017, 31, 36-83.
[http://dx.doi.org/10.1016/j.jphotochemrev.2017.02.001]
[2]
Jin, R-H.; Aida, T.; Inoue, S. ‘Caged’ porphyrin: The first dendritic molecule having a core photochemical functionality. J. Chem. Soc. Chem. Commun., 1993, (16), 1260-1262.
[http://dx.doi.org/10.1039/C39930001260]
[3]
Milgrom, L. The colors of life: An introduction to the chemistry of porphy-rin and related compounds; Oxford University Press: New York, 1997.
[4]
Momenteau, M.; Reed, C.A. Synthetic heme-dioxygen complexes. Chem. Rev., 1994, 94(3), 659-698.
[http://dx.doi.org/10.1021/cr00027a006]
[5]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macro-molecules. Polym. J., 1985, 17(1), 117-132.
[http://dx.doi.org/10.1295/polymj.17.117]
[6]
Newkome, G.R.; Yao, Z.; Baker, G.R.; Gupta, V.K. Micelles. Part 1. Cascade molecules: A new approach to micelles. A [27]-. Arborol. J. Org. Chem., 1985, 50(11), 2003-2004.
[http://dx.doi.org/10.1021/jo00211a052]
[7]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules, 1986, 19(9), 2466-2468.
[http://dx.doi.org/10.1021/ma00163a029]
[8]
Tsuda, K.; Dol, G.C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J.W.; Meijer, E.W.; De Schryver, F.C. Fluorescence from azobenzene functional-ized poly(Propylene Imine) dendrimers in self-assembled supramolecular structures. J. Am. Chem. Soc., 2000, 122(14), 3445-3452.
[http://dx.doi.org/10.1021/ja9919581]
[9]
Hecht, S.; Fréchet, J.M.J. Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science. Angew. Chem. Int. Ed. Engl., 2001, 40(1), 74-91.
[http://dx.doi.org/10.1002/1521-3773(20010105)40:1<74:AID-ANIE74>3.0.CO;2-C] [PMID: 11169692]
[10]
Fréchet, J.M.J. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 4782-4787.
[http://dx.doi.org/10.1073/pnas.082013899] [PMID: 11959930]
[11]
Golshan, M.; Rostami-Tapeh-Esmail, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. A review on synthesis, photophysical properties, and applica-tions of dendrimers with perylene core. Eur. Polym. J., 2020, 137, 109933.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109933]
[12]
Palmerston, M.L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[13]
Abd-El-Aziz, A.S.; Abdelghani, A.A.; Wagner, B.D.; Bissessur, R. Advances in light-emitting dendrimers. Macromol. Rapid Commun., 2019, 40(1), e1800711.
[http://dx.doi.org/10.1002/marc.201800711] [PMID: 30474179]
[14]
Dandliker, P.J.; Diederich, F.; Gross, M.; Knobler, C.B.; Louati, A.; Sanford, E.M. Dendritic porphyrins: Modulating redox potentials of electroactive chromophores with pendant multifunctionality. Angew. Chem. Int. Ed. Engl., 1994, 33(17), 1739-1742.
[http://dx.doi.org/10.1002/anie.199417391]
[15]
Dandliker, P.J.; Diederich, F.; Zingg, A.; Gisselbrecht, J.; Gross, M.; Louati, A.; Sanford, E. Dendrimers with porphyrin cores: Synthetic models for globular heme proteins. Helv. Chim. Acta, 1997, 80(6), 1773-1801.
[http://dx.doi.org/10.1002/hlca.19970800603]
[16]
Bhyrappa, P.; Young, J.K.; Moore, J.S.; Suslick, K.S. Dendrimer-metalloporphyrins: Synthesis and catalysis. J. Am. Chem. Soc., 1996, 118(24), 5708-5711.
[http://dx.doi.org/10.1021/ja953474k]
[17]
Baglia, R.A.; Zaragoza, J.P.T.; Goldberg, D.P. Biomimetic reactivity of oxy-gen-derived manganese and iron porphyrinoid complexes. Chem. Rev., 2017, 117(21), 13320-13352.
[http://dx.doi.org/10.1021/acs.chemrev.7b00180] [PMID: 28991451]
[18]
Anderson, H.L. Building molecular wires from the colours of life: Conjugat-ed porphyrin oligomers. Chem. Commun. (Camb.), 1999, (23), 2323-2330.
[http://dx.doi.org/10.1039/a904209a]
[19]
Harvey, P.D.; Stern, C.; Guilard, R. Bio-Inspired molecular devices based on systems found in photosynthetic bacteria. In: Handbook of Porphyrin Science; K, M.; Smith, Kadash; Guilard, R., Eds.; World Scientific: San Diego, CA, 2000; 11, pp. 1-179.
[20]
Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphy-rinoids for chemical sensor applications. Chem. Rev., 2017, 117(4), 2517-2583.
[http://dx.doi.org/10.1021/acs.chemrev.6b00361] [PMID: 28222604]
[21]
Sapra, R.; Verma, R.P.; Maurya, G.P.; Dhawan, S.; Babu, J.; Haridas, V. De-signer peptide and protein dendrimers: a cross-sectional analysis. Chem. Rev., 2019, 119(21), 11391-11441.
[http://dx.doi.org/10.1021/acs.chemrev.9b00153] [PMID: 31556597]
[22]
Park, J.M.; Hong, K-I.; Lee, H.; Jang, W-D. Bioinspired applications of porphyrin derivatives. Acc. Chem. Res., 2021, 54(9), 2249-2260.
[http://dx.doi.org/10.1021/acs.accounts.1c00114] [PMID: 33891405]
[23]
Shi, L.; Nguyen, C.; Daurat, M.; Dhieb, A.C.; Smirani, W.; Blanchard-Desce, M.; Gary-Bobo, M.; Mongin, O.; Paul-Roth, C.; Paul, F. Biocompatible con-jugated fluorenylporphyrins for two-photon photodynamic therapy and flu-orescence imaging. Chem. Commun. (Camb.), 2019, 55(81), 12231-12234.
[http://dx.doi.org/10.1039/C9CC05657B] [PMID: 31553001]
[24]
Zhang, X.; Hassine, S.B.; Richy, N.; Mongin, O.; Blanchard-Desce, M.; Paul, F.; Paul-Roth, C.O. New porphyrin dendrimers with fluorenyl-based con-nectors: A simple way to improving the optical properties over dendrimers featuring 1,3,5-phenylene connectors. New J. Chem., 2020, 44(10), 4144-4157.
[http://dx.doi.org/10.1039/C9NJ06166E]
[25]
Jiang, D-L.; Aida, T. Bioinspired molecular design of functional dendrimers. Prog. Polym. Sci., 2005, 30(3–4), 403-422.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.010]
[26]
Li, W-S.; Aida, T. Dendrimer porphyrins and phthalocyanines. Chem. Rev., 2009, 109(11), 6047-6076.
[http://dx.doi.org/10.1021/cr900186c] [PMID: 19769361]
[27]
Maes, W.; Dehaen, W. Synthetic aspects of porphyrin dendrimers. Eur. J. Org. Chem., 2009, 2009(28), 4719-4752.
[http://dx.doi.org/10.1002/ejoc.200900512]
[28]
Senge, M.O.; Sergeeva, N.N.; Hale, K.J. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem. Soc. Rev., 2021, 50(7), 4730-4789.
[http://dx.doi.org/10.1039/C7CS00719A] [PMID: 33623938]
[29]
Vicente, M.G.; Smith, K. Porphyrins and derivatives synthetic strategies and reactivity profiles. Curr. Org. Chem., 2000, 4(2), 139-174.
[http://dx.doi.org/10.2174/1385272003376346]
[30]
Fischer, H.; Zeile, K. Synthese des hämatoporphyrins, protoporphyrins und hämins. Justus Liebigs Ann. Chem., 1929, 468(1), 98-116.
[http://dx.doi.org/10.1002/jlac.19294680104]
[31]
Woodward, R.B.; Ayer, W.A.; Beaton, J.M.; Bickelhaupt, F.; Bonnett, R.; Buchschacher, P.; Closs, G.L.; Dutler, H.; Hannah, J.; Hauck, F.P. The total synthesis of chlorophyll. J. Am. Chem. Soc., 1960, 82(14), 3800-3802.
[http://dx.doi.org/10.1021/ja01499a093]
[32]
Eschenmoser, A. Corrin Syntheses. Part I. Helv. Chim. Acta, 2015, 98(11‐ 12), 1483-1600.
[http://dx.doi.org/10.1002/hlca.201400277]
[33]
Rothemund, P. A new porphyrin synthesis. The synthesis of porphin. J. Am. Chem. Soc., 1936, 58(4), 625-627.
[http://dx.doi.org/10.1021/ja01295a027]
[34]
Rothemund, P. Porphyrin studies. III. The structure of the porphine ring system. J. Am. Chem. Soc., 1939, 61(10), 2912-2915.
[http://dx.doi.org/10.1021/ja01265a096]
[35]
Adler, A.D.; Longo, F.R.; Finarelli, J.D.; Goldmacher, J.; Assour, J.; Korsa-koff, L. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem., 1967, 32(2), 476.
[http://dx.doi.org/10.1021/jo01288a053]
[36]
Adler, A.D.; Longo, F.R.; Shergalis, W. Mechanistic investigations of por-phyrin syntheses. I. Preliminary studies on MS -tetraphenylporphin. J. Am. Chem. Soc., 1964, 86(15), 3145-3149.
[http://dx.doi.org/10.1021/ja01069a035]
[37]
Lindsey, J.S.; Schreiman, I.C.; Hsu, H.C.; Kearney, P.C.; Marguerettaz, A.M. Rothemund and adler-longo reactions revisited: Synthesis of tetra-phenylporphyrins under equilibrium conditions. J. Org. Chem., 1987, 52(5), 827-836.
[http://dx.doi.org/10.1021/jo00381a022]
[38]
Lindsey, J.S.; Hsu, H.C.; Schreiman, I.C. Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Lett., 1986, 27(41), 4969-4970.
[http://dx.doi.org/10.1016/S0040-4039(00)85109-6]
[39]
Lindsey, J.S.; Wagner, R.W. Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J. Org. Chem., 1989, 54(4), 828-836.
[http://dx.doi.org/10.1021/jo00265a021]
[40]
Li, F.; Yang, K.; Tyhonas, J.S.; MacCrum, K.A.; Lindsey, J.S. Beneficial effects of salts on an acid-catalyzed condensation leading to porphyrin for-mation. Tetrahedron, 1997, 53(37), 12339-12360.
[http://dx.doi.org/10.1016/S0040-4020(97)00770-9]
[41]
Adler, A.D.; Longo, F.R.; Kampas, F.; Kim, J. On the preparation of metal-loporphyrins. J. Inorg. Nucl. Chem., 1970, 32(7), 2443-2445.
[http://dx.doi.org/10.1016/0022-1902(70)80535-8]
[42]
Lindsey, J.S.; Woodford, J.N. A simple method for preparing magnesium porphyrins. Inorg. Chem., 1995, 34(5), 1063-1069.
[http://dx.doi.org/10.1021/ic00109a011]
[43]
Taniguchi, M.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Comprehensive review of photophysical parameters (& &f, Ts) of tetraphenylporphyrin (H2TPP) and Zinc Tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol. Chem., 2021, 46, 100401.
[http://dx.doi.org/10.1016/j.jphotochemrev.2020.100401]
[44]
Magdaong, N.C.M.; Taniguchi, M.; Diers, J.R.; Niedzwiedzki, D.M.; Kir-maier, C.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Photophysical properties and electronic structure of zinc(II) porphyrins bearing 0-4 meso-phenyl sub-stituents: Zinc porphine to zinc tetraphenylporphyrin (ZnTPP). J. Phys. Chem. A, 2020, 124(38), 7776-7794.
[http://dx.doi.org/10.1021/acs.jpca.0c06841] [PMID: 32926787]
[45]
Park, J.M.; Lee, J.H.; Jang, W-D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev., 2020, 407, 213157.
[http://dx.doi.org/10.1016/j.ccr.2019.213157]
[46]
Lu, Y.; Cheng, Y.; Li, C.; Luo, J.; Tang, W.; Zhao, S.; Liu, Q.; Xie, Y. Effi-cient solar cells based on cosensitizing porphyrin dyes containing a wrapped donor, a wrapped &-framework and a substituted benzothiadiazole unit. Sci. China Chem., 2019, 62(8), 994-1000.
[http://dx.doi.org/10.1007/s11426-019-9471-y]
[47]
Guo, X.; Liu, F.; Yue, W.; Xie, Z.; Geng, Y.; Wang, L. Efficient tandem polymer photovoltaic cells with two subcells in parallel connection. Org. Electron., 2009, 10(6), 1174-1177.
[http://dx.doi.org/10.1016/j.orgel.2009.06.010]
[48]
Zeng, K.; Tang, W.; Li, C.; Chen, Y.; Zhao, S.; Liu, Q.; Xie, Y. Systematic optimization of the substituents on the phenothiazine donor of doubly strapped porphyrin sensitizers: An efficiency over 11% unassisted by any cosensitizer or coadsorbent. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(36), 20854-20860.
[http://dx.doi.org/10.1039/C9TA06911A]
[49]
Ding, Y.; Zhu, W-H.; Xie, Y. Development of ion chemosensors based on porphyrin analogues. Chem. Rev., 2017, 117(4), 2203-2256.
[http://dx.doi.org/10.1021/acs.chemrev.6b00021] [PMID: 27078087]
[50]
Norvaiša, K.; Kielmann, M.; Senge, M.O. Porphyrins as colorimetric and photometric biosensors in modern bioanalytical systems. ChemBioChem, 2020, 21(13), 1793-1807.
[http://dx.doi.org/10.1002/cbic.202000067] [PMID: 32187831]
[51]
Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics, 2012, 2(9), 916-966.
[http://dx.doi.org/10.7150/thno.4571] [PMID: 23082103]
[52]
Khurana, B.; Gierlich, P.; Meindl, A.; Gomes-da-Silva, L.C.; Senge, M.O. Hydrogels: Soft matters in photomedicine. Photochem. Photobiol. Sci., 2019, 18(11), 2613-2656.
[http://dx.doi.org/10.1039/C9PP00221A] [PMID: 31460568]
[53]
Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials (Basel), 2013, 6(3), 817-840.
[http://dx.doi.org/10.3390/ma6030817] [PMID: 28809342]
[54]
Rajora, M.A.; Lou, J.W.H.; Zheng, G. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem. Soc. Rev., 2017, 46(21), 6433-6469.
[http://dx.doi.org/10.1039/C7CS00525C] [PMID: 29048439]
[55]
Grayson, S.M.; Fréchet, J.M.J. Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev., 2001, 101(12), 3819-3868.
[http://dx.doi.org/10.1021/cr990116h] [PMID: 11740922]
[56]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38(6), 2168-2203.
[http://dx.doi.org/10.1039/c3nj01239e]
[57]
Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C-L.; Peng, L. Poly(Amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem., 2019, 13, 34-48.
[http://dx.doi.org/10.1016/j.mtchem.2019.04.004]
[58]
Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molec-ular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112(21), 7638-7647.
[http://dx.doi.org/10.1021/ja00177a027]
[59]
Hawker, C.J.; Frechet, J.M.J. Unusual macromolecular architectures: The convergent growth approach to dendritic polyesters and novel block copol-ymers. J. Am. Chem. Soc., 1992, 114(22), 8405-8413.
[http://dx.doi.org/10.1021/ja00048a009]
[60]
Wooley, K.L.; Hawker, C.J.; Frechet, J.M.J. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J. Am. Chem. Soc., 1991, 113(11), 4252-4261.
[http://dx.doi.org/10.1021/ja00011a031]
[61]
Newkome, G.R.; Shreiner, C.D. Poly(Amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1&2 branching mo-tifs: An overview of the divergent procedures. Polymer (Guildf.), 2008, 49(1), 1-173.
[http://dx.doi.org/10.1016/j.polymer.2007.10.021]
[62]
Newkome, G.R.; Shreiner, C. Dendrimers derived from 1 & 3 branching motifs. Chem. Rev., 2010, 110(10), 6338-6442.
[http://dx.doi.org/10.1021/cr900341m] [PMID: 20666373]
[63]
Smith, R.J.; Gorman, C.; Menegatti, S. Synthesis, structure, and function of internally functionalized dendrimers. J. Polym. Sci., 2021, 59(1), 10-28.
[http://dx.doi.org/10.1002/pol.20200721]
[64]
Hawker, C.; Fréchet, J.M.J. A new convergent approach to monodisperse dendritic macromolecules. J. Chem. Soc. Chem. Commun., 1990, (15), 1010-1013.
[http://dx.doi.org/10.1039/C39900001010]
[65]
Harth, E.M.; Hecht, S.; Helms, B.; Malmstrom, E.E.; Fréchet, J.M.J.; Hawker, C.J. The effect of macromolecular architecture in nanomaterials: A compari-son of site isolation in porphyrin core dendrimers and their isomeric linear analogues. J. Am. Chem. Soc., 2002, 124(15), 3926-3938.
[http://dx.doi.org/10.1021/ja025536u] [PMID: 11942830]
[66]
Dichtel, W.R.; Hecht, S.; Fréchet, J.M.J. Functionally layered dendrimers: A new building block and its application to the synthesis of multichromo-phoric light-harvesting systems. Org. Lett., 2005, 7(20), 4451-4454.
[http://dx.doi.org/10.1021/ol0516824] [PMID: 16178556]
[67]
Dichtel, W.R.; Serin, J.M.; Edder, C.; Fréchet, J.M.J.; Matuszewski, M.; Tan, L-S.; Ohulchanskyy, T.Y.; Prasad, P.N. Singlet oxygen generation via two-photon excited FRET. J. Am. Chem. Soc., 2004, 126(17), 5380-5381.
[http://dx.doi.org/10.1021/ja031647x] [PMID: 15113208]
[68]
Oar, M.A.; Dichtel, W.R.; Serin, J.M.; Fréchet, J.M.J.; Rogers, J.E.; Slagle, J.E.; Fleitz, P.A.; Tan, L-S.; Ohulchanskyy, T.Y.; Prasad, P.N. Light-harvesting chromophores with metalated porphyrin cores for tuned photo-sensitization of singlet oxygen via two-photon excited FRET. Chem. Mater., 2006, 18(16), 3682-3692.
[http://dx.doi.org/10.1021/cm0606070]
[69]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[70]
Fatemi, S.M.; Fatemi, S.J.; Abbasi, Z. PAMAM dendrimer-based macromole-cules and their potential applications: Recent advances in theoretical stud-ies. Polym. Bull., 2020, 77(12), 6671-6691.
[http://dx.doi.org/10.1007/s00289-019-03076-4]
[71]
Krieger, A.; Werner, J.P.F.; Mariani, G.; Gröhn, F. Functional supramolecular porphyrin–dendrimer assemblies for light harvesting and photocatalysis. Macromolecules, 2017, 50(9), 3464-3475.
[http://dx.doi.org/10.1021/acs.macromol.6b02435]
[72]
Pollak, K.W.; Sanford, E.M.; Fréchet, J.M.J. A comparison of two convergent routes for the preparation of metalloporphyrin-core dendrimers: Direct con-densation vs. chemical modification. J. Mater. Chem., 1998, 8(3), 519-527.
[http://dx.doi.org/10.1039/a705410f]
[73]
Hasobe, T.; Kashiwagi, Y.; Absalom, M.A.; Sly, J.; Hosomizu, K.; Crossley, M.J.; Imahori, H.; Kamat, P.V.; Fukuzumi, S. Supramolecular photovoltaic cells using porphyrin dendrimers and fullerene. Adv. Mater., 2004, 16(12), 975-979.
[http://dx.doi.org/10.1002/adma.200306519]
[74]
Li, W-S.; Jiang, D-L.; Suna, Y.; Aida, T. Cooperativity in chiroptical sensing with dendritic zinc porphyrins. J. Am. Chem. Soc., 2005, 127(21), 7700-7702.
[http://dx.doi.org/10.1021/ja0513335] [PMID: 15913359]
[75]
Choi, M-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Bioinspired molecular design of light-harvesting multiporphyrin arrays. Angew. Chem. Int. Ed., 2004, 43(2), 150-158.
[http://dx.doi.org/10.1002/anie.200301665] [PMID: 14695602]
[76]
Vonlanthen, M.; Cevallos-Vallejo, A.; Aguilar-Ortíz, E.; Ruiu, A.; Porcu, P.; Rivera, E. Synthesis, characterization and photophysical studies of novel pyrene labeled ruthenium (II) trisbipyridine complex cored dendrimers. Polymer (Guildf.), 2016, 99, 13-20.
[http://dx.doi.org/10.1016/j.polymer.2016.06.061]
[77]
Cevallos-Vallejo, A.; Vonlanthen, M.; Porcu, P.; Ruiu, A.; Rivera, E. New cyclen-cored dendrimers functionalized with pyrene: Synthesis characteriza-tion, optical and photophysical properties. Tetrahedron Lett., 2017, 58(13), 1319-1323.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.054]
[78]
Porcu, P.; Vonlanthen, M.; González-Méndez, I.; Ruiu, A.; Rivera, E. Design of novel pyrene-bodipy dyads: Synthesis, characterization, optical proper-ties, and FRET studies. Molecules, 2018, 23(9), 2289.
[http://dx.doi.org/10.3390/molecules23092289] [PMID: 30205469]
[79]
Porcu, P.; Vonlanthen, M.; Ruiu, A.; González-Méndez, I.; Rivera, E. Energy transfer in dendritic systems having pyrene peripheral groups as donors and different acceptor groups. Polymers (Basel), 2018, 10(10), 1062.
[http://dx.doi.org/10.3390/polym10101062] [PMID: 30960987]
[80]
García-Rodríguez, A.; Porcu, P.; Estrada-Montaño, A.S.; Vonlanthen, M.; Martínez-Serrano, R.D.; Zaragoza-Galán, G.; Rivera, E. Design of novel con-jugated systems bearing donor-acceptor groups (Pyrene-Bodipy): Optical, photophysical properties and energy transfer. Dyes Pigm., 2021, 185, 108925.
[http://dx.doi.org/10.1016/j.dyepig.2020.108925]
[81]
Zaragoza-Galán, G.; Fowler, M.A.; Duhamel, J.; Rein, R.; Solladié, N.; Rive-ra, E. Synthesis and characterization of novel pyrene-dendronized porphy-rins exhibiting efficient fluorescence resonance energy transfer: optical and photophysical properties. Langmuir, 2012, 28(30), 11195-11205.
[http://dx.doi.org/10.1021/la301284v] [PMID: 22738369]
[82]
Vonlanthen, M.; Gonzalez-Ortega, J.; Porcu, P.; Ruiu, A.; Rodríguez-Alba, E.; Cevallos-Vallejo, A.; Rivera, E. Pyrene-labeled dendrimers functional-ized with fullerene C60 or porphyrin core as light harvesting antennas. Synth. Met., 2018, 245, 195-201.
[http://dx.doi.org/10.1016/j.synthmet.2018.09.001]
[83]
Zaragoza-Galán, G.; Fowler, M.; Rein, R.; Solladié, N.; Duhamel, J.; Rivera, E. Fluorescence resonance energy transfer in partially and fully labeled py-rene dendronized porphyrins studied with model free analysis. J. Phys. Chem. C, 2014, 118(16), 8280-8294.
[http://dx.doi.org/10.1021/jp501445n]
[84]
Rojas-Montoya, S.M.; Vonlanthen, M.; Porcu, P.; Flores-Rojas, G.; Ruiu, A.; Morales-Morales, D.; Rivera, E. Synthesis and photophysical properties of novel pyrene-metalloporphyrin dendritic systems. Dalton Trans., 2019, 48(28), 10435-10447.
[http://dx.doi.org/10.1039/C9DT00855A] [PMID: 31123742]
[85]
Bañales-Leal, Y.; García-Rodríguez, A.; Cuétara-Guadarrama, F.; Vonlan-then, M.; Sorroza-Martínez, K.; Morales-Morales, D.; Rivera, E. Design of flexible dendritic systems bearing donor-acceptor groups (Pyrene-Porphyrin) for FRET applications. Dyes Pigm., 2021, 191, 109382.
[http://dx.doi.org/10.1016/j.dyepig.2021.109382]
[86]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[87]
Wu, P.; Feldman, A.K.; Nugent, A.K.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J.M.J.; Sharpless, K.B.; Fokin, V.V. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed., 2004, 43(30), 3928-3932.
[http://dx.doi.org/10.1002/anie.200454078] [PMID: 15274216]
[88]
Franc, G.; Kakkar, A.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev., 2010, 39(5), 1536-1544.
[http://dx.doi.org/10.1039/b913281n] [PMID: 20419208]
[89]
Arseneault, M.; Wafer, C.; Morin, J-F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules, 2015, 20(5), 9263-9294.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[90]
Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Click dendrimers and tria-zole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res., 2012, 45(4), 630-640.
[http://dx.doi.org/10.1021/ar200235m] [PMID: 22148925]
[91]
Sorroza-Martínez, K.; González-Méndez, I.; Martínez-Serrano, R.D.; Solano, J.D.; Ruiu, A.; Illescas, J.; Zhu, X.X.; Rivera, E. Efficient modification of PAMAM G1 dendrimer surface with &-Cyclodextrin Units by CuAAC: Im-pact on the water solubility and cytotoxicity. RSC Advances, 2020, 10(43), 25557-25566.
[http://dx.doi.org/10.1039/D0RA02574G]
[92]
Sorroza-Martínez, K.; González-Méndez, I.; Vonlanthen, M.; Moineau-Chane Ching, K.I.; Caminade, A-M.; Illescas, J.; Rivera, E. First class of phosphorus dendritic compounds containing &-cyclodextrin units in the periphery pre-pared by CuAAC. Molecules, 2020, 25(18), 4034.
[http://dx.doi.org/10.3390/molecules25184034] [PMID: 32899600]
[93]
González&Méndez, I.; Hameau, A.; Laurent, R.; Bijani, C.; Bourdon, V.; Caminade, A.; Rivera, E.; Ching, K.I.M. B&cyclodextrin PAMAM Den-drimer: How to overcome the tumbling process for getting fully available host cavities. Eur. J. Org. Chem., 2020, 2020(9), 1114-1121.
[http://dx.doi.org/10.1002/ejoc.201901823]
[94]
Aguilar-Ortíz, E.; Lévaray, N.; Vonlanthen, M.; Morales-Espinoza, E.G.; Rojas-Aguirre, Y.; Zhu, X.X.; Rivera, E. Synthesis and characterization of novel dendritic compounds bearing a porphyrin core and cholic acid units using “click chemistry.”. Dyes Pigm., 2016, 132, 110-120.
[http://dx.doi.org/10.1016/j.dyepig.2016.04.047]
[95]
Lal, S.; Díez-González, S. [CuBr(PPh3)3] for azide-alkyne cycloaddition reactions under strict Click conditions. J. Org. Chem., 2011, 76(7), 2367-2373.
[http://dx.doi.org/10.1021/jo200085j] [PMID: 21384852]
[96]
Arseneault, M.; Dufour, P.; Levesque, I.; Morin, J-F. Synthesis of a con-trolled three-faced PAMAM particle. Polym. Chem., 2011, 2(10), 2293-2298.
[http://dx.doi.org/10.1039/c1py00146a]
[97]
Anandkumar, D.; Raja, R.; Rajakumar, P. Synthesis, photophysical proper-ties and anticancer activity of micro-environment sensitive amphiphilic bile acid dendrimers. RSC Advances, 2016, 6(31), 25808-25818.
[http://dx.doi.org/10.1039/C5RA20147K]
[98]
Concellón, A.; Termine, R.; Golemme, A.; Romero, P.; Marcos, M.; Serrano, J.L. High hole mobility and light-harvesting in discotic nematic dendrimers prepared via ‘click’ chemistry. J. Mater. Chem. C Mater., 2019, 7(10), 2911-2918.
[http://dx.doi.org/10.1039/C8TC06142D]
[99]
Concellón, A.; Termine, R.; Golemme, A.; Romero, P.; Marcos, M.; Serrano, J.L. Semiconducting and electropolymerizable liquid crystalline carbazole-containing porphyrin-core dendrimers. Org. Chem. Front., 2020, 7(15), 2008-2015.
[http://dx.doi.org/10.1039/D0QO00537A]
[100]
Das, R.; Mukhopadhyay, B. Use of ‘Click Chemistry’ for the synthesis of carbohydrate-porphyrin dendrimers and their multivalent approach toward lectin sensing. Tetrahedron Lett., 2016, 57(16), 1775-1781.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.031]
[101]
Dai, X-H.; Yang, W-H.; Yan, W-L.; Hu, J-M.; Dai, Y-R.; Pan, J-M.; Yan, Y-S. Porphyrin-cored dendrimers consisting of novel siloxane-poly (amido amine) dendron-like arms: Synthesis, characterization, and photophysical properties. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 222-230.
[http://dx.doi.org/10.1016/j.colsurfa.2017.01.064]
[102]
Chang, D-D.; Yang, W-H.; Dai, X-H.; Wang, J-X.; Chen, L.; Pan, J-M.; Yan, Y-S.; Dai, Y-R. Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. J. Polym. Res., 2018, 25, 257.
[http://dx.doi.org/10.1007/s10965-018-1640-1]
[103]
Le Pleux, L.; Pellegrin, Y.; Blart, E.; Odobel, F.; Harriman, A. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry. J. Phys. Chem. A, 2011, 115(20), 5069-5080.
[http://dx.doi.org/10.1021/jp2012182] [PMID: 21534563]
[104]
Dogutan, D.K.; Zaidi, S.H.H.; Thamyongkit, P.; Lindsey, J.S. New route to ABCD-porphyrins via bilanes. J. Org. Chem., 2007, 72(20), 7701-7714.
[http://dx.doi.org/10.1021/jo701294d] [PMID: 17824652]
[105]
Jang, W-D.; Lee, C-H.; Choi, M-S.; Osada, M. Synthesis of multi-porphyrin dendrimer as artificial light-harvesting antennae. J. Porphyr. Phthalocyanines, 2009, 13(07), 787-793.
[http://dx.doi.org/10.1142/S1088424609000966]
[106]
Yim, D.; Sung, J.; Kim, S.; Oh, J.; Yoon, H.; Sung, Y.M.; Kim, D.; Jang, W-D. Guest-induced modulation of the energy transfer process in porphyrin-based artificial light harvesting dendrimers. J. Am. Chem. Soc., 2017, 139(2), 993-1002.
[http://dx.doi.org/10.1021/jacs.6b11804] [PMID: 27977172]
[107]
Uetomo, A.; Kozaki, M.; Suzuki, S.; Yamanaka, K.; Ito, O.; Okada, K. Effi-cient light-harvesting antenna with a multi-porphyrin cascade. J. Am. Chem. Soc., 2011, 133(34), 13276-13279.
[http://dx.doi.org/10.1021/ja2050343] [PMID: 21790118]
[108]
Schlundt, S.; Bauer, W.; Hirsch, A. Synthesis and atropisomerism of cascad-ed tetraphenylporphyrin-[60]fullerene hybrids. Chemistry, 2015, 21(35), 12421-12430.
[http://dx.doi.org/10.1002/chem.201501254] [PMID: 26235308]
[109]
Schlundt, S.; Kuzmanich, G.; Spänig, F.; de Miguel Rojas, G.; Kovacs, C.; Garcia-Garibay, M.A.; Guldi, D.M.; Hirsch, A. Dendritic porphyrin-fullerene conjugates: Efficient light-harvesting and charge-transfer events. Chemistry, 2009, 15(45), 12223-12233.
[http://dx.doi.org/10.1002/chem.200902161] [PMID: 19882598]
[110]
Bingel, C. Cyclopropanierung von Fullerenen. Chem. Ber., 1993, 126(8), 1957-1959.
[http://dx.doi.org/10.1002/cber.19931260829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy