Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Lyophilization of Molecular Biology Reactions: A Review

Author(s): Nayra Oliveira Prado, Larissa Araújo Lalli, Lucas Blanes, Dalila Lucíola Zanette and Mateus Nóbrega Aoki*

Volume 23, Issue 4, 2023

Published on: 26 September, 2022

Page: [480 - 496] Pages: 17

DOI: 10.2174/1389557522666220802144057

Price: $65

Abstract

Molecular biology is a widely used and widespread technique in research and as a laboratory diagnostic tool, aiming to investigate targets of interest from the obtainment, identification, and analysis of genetic material. In this context, methods, such as Polymerase Chain Reaction (PCR), Reverse Transcription Polymerase Chain Reaction (RT-PCR), real-time PCR, loopmediated isothermal amplification (LAMP), and loop-mediated isothermal amplification with reverse transcription (RT-LAMP), can be cited. Such methods use enzymes, buffers, and thermosensitive reagents, which require specific storage conditions. In an attempt to solve this problem, the lyophilization procedure (dehydration process by sublimation) can be applied, aiming to preserve and prolong the useful life of the reaction components in cases of temperature variation. In this review, we present a synthesis of the lyophilization process, describing the events of each step of the procedure and providing general information about the technique. Moreover, we selected lyophilization protocols found in the literature, paying attention to the conditions chosen by the authors for each step of the procedure, and structured the main data in tables, facilitating access to information for researchers who need material to produce new functional protocols.

Keywords: Lyophilization, Polymerase chain reaction, Loop-mediated isothermal amplification, Protectants, Freeze-dried, Point-of-Care, Storage.

Graphical Abstract

[1]
Rostami, A.; Karanis, P.; Fallahi, S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection, 2018, 46(3), 303-315.
[http://dx.doi.org/10.1007/s15010-017-1111-3] [PMID: 29330674]
[2]
Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep., 2020, 47(5), 4065-4075.
[http://dx.doi.org/10.1007/s11033-020-05413-7] [PMID: 32248381]
[3]
Feng, W.; Newbigging, A.M.; Le, C.; Pang, B.; Peng, H.; Cao, Y.; Wu, J.; Abbas, G.; Song, J.; Wang, D.B.; Cui, M.; Tao, J.; Tyrrell, D.L.; Zhang, X.E.; Zhang, H.; Le, X.C. Molecular diagnosis of COVID-19: Challenges and research needs. Anal. Chem., 2020, 92(15), 10196-10209.
[http://dx.doi.org/10.1021/acs.analchem.0c02060] [PMID: 32573207]
[4]
Koga, Y.; Yasunaga, M.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Kozu, T.; Baba, H.; Matsumura, Y. Detection of colorectal cancer cells from feces using quantitative real-time RT-PCR for colorectal cancer diagnosis. Cancer Sci., 2008, 99(10), 1977-1983.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00954.x] [PMID: 19016757]
[5]
Shafaat, M.; Hashemi, M.; Majd, A.; Abiri, M.; Zeinali, S. Genetic testing of Mucopolysaccharidoses disease using multiplex PCR- based panels of STR markers: In silico analysis of novel mutations. Metab. Brain Dis., 2019, 34(5), 1447-1455.
[http://dx.doi.org/10.1007/s11011-019-00434-z] [PMID: 31236806]
[6]
Murphy, J.; Bustin, S.A. Reliability of real-time reverse-transcription PCR in clinical diagnostics: Gold standard or substandard? Expert Rev. Mol. Diagn., 2009, 9(2), 187-197.
[http://dx.doi.org/10.1586/14737159.9.2.187] [PMID: 19298142]
[7]
Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.P.; De Beer, T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine, 2015, 33(42), 5507-5519.
[http://dx.doi.org/10.1016/j.vaccine.2015.08.085] [PMID: 26364685]
[8]
Ahlford, A.; Kjeldsen, B.; Reimers, J.; Lundmark, A.; Romani, M.; Wolff, A.; Syvänen, A-C.; Brivio, M. Dried reagents for multiplex genotyping by tag-array minisequencing to be used in microfluidic devices. Analyst (Lond.), 2010, 135(9), 2377-2385.
[http://dx.doi.org/10.1039/c0an00321b] [PMID: 20668755]
[9]
Fissore, D.; McCoy, T. Editorial: Freeze-drying and process analytical technology for pharmaceuticals. Front Chem., 2018, 6, 622.
[http://dx.doi.org/10.3389/fchem.2018.00622] [PMID: 30619830]
[10]
Thirion, L.; Dubot-Peres, A.; Pezzi, L.; Corcostegui, I.; Touinssi, M.; de Lamballerie, X.; Charrel, R.N. Lyophilized matrix containing ready-to-use primers and probe solution for standardization of real-time PCR and RT-QPCR diagnostics in virology. Viruses, 2020, 12(2), 159.
[http://dx.doi.org/10.3390/v12020159] [PMID: 32019076]
[11]
Nail, S.L.; Jiang, S.; Chongprasert, S.; Knopp, S.A. Fundamentals of freeze-drying. Pharm. Biotechnol., 2002, 14, 281-360.
[http://dx.doi.org/10.1007/978-1-4615-0549-5_6] [PMID: 12189727]
[12]
Adams, G.D.J.; Cook, I.; Ward, K.R. The principles of freeze-drying. Methods Mol. Biol., 2015, 1257, 121-143.
[http://dx.doi.org/10.1007/978-1-4939-2193-5_4] [PMID: 25428004]
[13]
Wang, W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm., 2000, 203(1-2), 1-60.
[http://dx.doi.org/10.1016/S0378-5173(00)00423-3] [PMID: 10967427]
[14]
Patapoff, T.W.; Overcashier, D.E. Importance of freezing on lyophilization development. BioPharm, 2002, 15(3), 16-21.
[15]
Franks, F. Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm., 1998, 45(3), 221-229.
[http://dx.doi.org/10.1016/S0939-6411(98)00004-6] [PMID: 9653626]
[16]
Tang, X.; Pikal, M.J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res., 2004, 21(2), 191-200.
[http://dx.doi.org/10.1023/B:PHAM.0000016234.73023.75] [PMID: 15032301]
[17]
Kasper, J.C.; Friess, W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm., 2011, 78(2), 248-263.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.010] [PMID: 21426937]
[18]
Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res., 2015, 18(5), 422-436.
[http://dx.doi.org/10.1089/rej.2014.1656] [PMID: 25826677]
[19]
Lee, J.; Lin, E.W.; Lau, U.Y.; Hedrick, J.L.; Bat, E.; Maynard, H.D. Trehalose glycopolymers as excipients for protein stabilization. Biomacromolecules, 2013, 14(8), 2561-2569.
[http://dx.doi.org/10.1021/bm4003046] [PMID: 23777473]
[20]
Xu, J.; Wang, J.; Zhong, Z.; Su, X.; Yang, K.; Chen, Z.; Zhang, D.; Li, T.; Wang, Y.; Zhang, S.; Ge, S.; Zhang, J.; Xia, N. Room-temperature-storable PCR mixes for SARS-CoV-2 detection. Clin. Biochem., 2020, 84, 73-78.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.06.013] [PMID: 32592724]
[21]
Diaz-Dussan, D.; Peng, Y.Y.; Sengupta, J.; Zabludowski, R.; Adam, M.K.; Acker, J.P.; Ben, R.N.; Kumar, P.; Narain, R. Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds. Biomacromolecules, 2020, 21(3), 1264-1273.
[http://dx.doi.org/10.1021/acs.biomac.0c00018] [PMID: 31913606]
[22]
Klatser, P.R.; Kuijper, S.; van Ingen, C.W.; Kolk, A.H.J. Stabilized, freeze-dried PCR mix for detection of mycobacteria. J. Clin. Microbiol., 1998, 36(6), 1798-1800.
[http://dx.doi.org/10.1128/JCM.36.6.1798-1800.1998] [PMID: 9620427]
[23]
Elnagar, A.; Pikalo, J.; Beer, M.; Blome, S.; Hoffmann, B. Swift and reliable “easy lab” methods for the sensitive molecular detection of African swine fever virus. Int. J. Mol. Sci., 2021, 22(5), 2307.
[http://dx.doi.org/10.3390/ijms22052307] [PMID: 33669073]
[24]
Tomlinson, J.A.; Boonham, N.; Hughes, K.J.D.; Griffin, R.L.; Barker, I. On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl. Environ. Microbiol., 2005, 71(11), 6702-6710.
[http://dx.doi.org/10.1128/AEM.71.11.6702-6710.2005] [PMID: 16269700]
[25]
Passot, S.; Fonseca, F.; Barbouche, N.; Marin, M.; Alarcon-Lorca, M.; Rolland, D.; Rapaud, M. Effect of product temperature during primary drying on the long-term stability of lyophilized proteins. Pharm. Dev. Technol., 2007, 12(6), 543-553.
[http://dx.doi.org/10.1080/10837450701563459] [PMID: 18161627]
[26]
Nail, S.L.; Akers, M.J. Development and Manufacture of Protein Pharmaceuticals; Springer: New York, 2012.
[27]
Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids, 2007, 33(4), 587-605.
[http://dx.doi.org/10.1007/s00726-007-0506-3] [PMID: 17357829]
[28]
Balakrishna, K.; Sreerohini, S.; Parida, M. Ready-to-use single tube quadruplex PCR for differential identification of mutton, chicken, pork and beef in processed meat samples. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2019, 36(10), 1435-1444.
[http://dx.doi.org/10.1080/19440049.2019.1633477] [PMID: 31305225]
[29]
Arunrut, N.; Kiatpathomchai, W.; Ananchaipattana, C. Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products. Food Sci. Biotechnol., 2018, 27(3), 867-875.
[http://dx.doi.org/10.1007/s10068-017-0286-9] [PMID: 30263813]
[30]
Aradhya, S.; Ramlal, S.; Madalgi, R.; Murali, H.S.; Mondal, B.; Monda, A. l, G.S.; Kulkarni, R.D.; Batra, H.V. Simultaneous identification of diarrheagenic Escherichia coli using thermostabilized multiplex PCR formulation shruthi. Int. J. Sci. Res. Biol. Sci. Vol, 2020, 7(5)
[31]
Chua, A.L.; Elina, H.T.; Lim, B.H.; Yean, C.Y.; Ravichandran, M.; Lalitha, P. Development of a dry reagent-based triplex PCR for the detection of toxigenic and non-toxigenic Vibrio cholerae. J. Med. Microbiol., 2011, 60(Pt 4), 481-485.
[http://dx.doi.org/10.1099/jmm.0.027433-0] [PMID: 21183596]
[32]
Khazani, N. A.; Noor, N. Z. N. M.; Yean, C. Y.; Hasan, H.; Suraiya, S.; Mohamad, S. A A thermostabilized, one-step PCR assay for simultaneous detection of Klebsiella pneumoniae and Haemophilus influenzae. J. Trop. Med., 2017, 2017
[33]
Jeong, Y.E.; Jeon, M.J.; Cho, J.E.; Han, M.G.; Choi, H.J.; Shin, M.Y.; Park, H.J.; Kim, W.; Moon, B.C.; Park, J.S.; Park, B.; Ju, Y.R. Development and field evaluation of a nested RT-PCR kit for detecting Japanese encephalitis virus in mosquitoes. J. Virol. Methods, 2011, 171(1), 248-252.
[http://dx.doi.org/10.1016/j.jviromet.2010.11.009] [PMID: 21093484]
[34]
Petrauskene, O.V.; Schumaker, M.A.; Thorstenson, Y.; Fearnley, C.; Pavlidis, T.; Liew, S-N.; Cork, J.; Furtado, M.R.; Wakeley, P.R.; Slomka, M.J. New highly sensitive and accurate lyophilized real-time RT-PCR tests for early detection of avian influenza. Avian Dis., 2010, 54(1)(Suppl.), 686-689.
[http://dx.doi.org/10.1637/8797-040109-ResNote.1] [PMID: 20521716]
[35]
Panpradist, N.; Wang, Q.; Ruth, P.S.; Kotnik, J.H.; Oreskovic, A.K.; Miller, A.; Stewart, S.W.A.; Vrana, J.; Han, P.D.; Beck, I.A.; Starita, L.M.; Frenkel, L.M.; Lutz, B.R. Simpler and faster Covid-19 testing: Strategies to streamline SARS-CoV-2 molecular assays. EBioMedicine, 2021, 64, 103236.
[http://dx.doi.org/10.1016/j.ebiom.2021.103236] [PMID: 33582488]
[36]
Hammerling, M.J.; Warfel, K.F.; Jewett, M.C. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol. J., 2021, 16(7), e2000572.
[http://dx.doi.org/10.1002/biot.202000572] [PMID: 33964860]
[37]
Kendrick, B.S.; Chang, B.S.; Arakawa, T.; Peterson, B.; Randolph, T.W.; Manning, M.C.; Carpenter, J.F. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: Role in restricted conformational mobility and compaction of native state. Proc. Natl. Acad. Sci. USA, 1997, 94(22), 11917-11922.
[http://dx.doi.org/10.1073/pnas.94.22.11917] [PMID: 9342337]
[38]
Imamura, K.; Ogawa, T.; Sakiyama, T.; Nakanishi, K. Effects of types of sugar on the stabilization of protein in the dried state. J. Pharm. Sci., 2003, 92(2), 266-274.
[http://dx.doi.org/10.1002/jps.10305] [PMID: 12532376]
[39]
Kim, Y.S.; Jones, L.S.; Dong, A.; Kendrick, B.S.; Chang, B.S.; Manning, M.C.; Randolph, T.W.; Carpenter, J.F. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci., 2003, 12(6), 1252-1261.
[http://dx.doi.org/10.1110/ps.0242603] [PMID: 12761396]
[40]
Agel, E.; Sagcan, H. Optimization of lyophilized LAMP and RT-PCR reaction mixes for detection of tuberculosis. EuroBiotech J., 2020, 4(4), 230-236.
[http://dx.doi.org/10.2478/ebtj-2020-0027]
[41]
Yang, S.; Wen, W. Lyophilized ready-to-use mix for the real-time polymerase chain reaction diagnosis. ACS Appl. Bio Mater., 2021, 4(5), 4354-4360.
[http://dx.doi.org/10.1021/acsabm.1c00131] [PMID: 35006847]
[42]
Akers, M.J.; Milton, N.; Byrn, S.R.; Nail, S.L. Glycine crystallization during freezing: The effects of salt form, pH, and ionic strength. Pharm. Res., 1995, 12(10), 1457-1461.
[http://dx.doi.org/10.1023/A:1016223101872] [PMID: 8584480]
[43]
Pikal, M.J. Freeze-drying of proteins: Process, formulation, and stability.Formulation and Delivery of Proteins and Peptides; Cleland, J.L.; Langer, R., Eds.; American Chemical Society: Washington, USA, 1994, pp. 120-133.
[http://dx.doi.org/10.1021/bk-1994-0567.ch008]
[44]
Gombotz, W.R.; Pankey, S.C.; Phan, D.; Drager, R.; Donaldson, K.; Antonsen, K.P.; Hoffman, A.S.; Raff, H.V. The stabilization of a human IgM monoclonal antibody with poly(vinylpyrrolidone). Pharm. Res., 1994, 11(5), 624-632.
[http://dx.doi.org/10.1023/A:1018903624373] [PMID: 8058628]
[45]
Kamau, E.; Alemayehu, S.; Feghali, K.C.; Juma, D.W.; Blackstone, G.M.; Marion, W.R.; Obare, P.; Ogutu, B.; Ockenhouse, C.F. Sample-ready multiplex qPCR assay for detection of malaria. Malar. J., 2014, 13(1), 158.
[http://dx.doi.org/10.1186/1475-2875-13-158] [PMID: 24767409]
[46]
Matejtschuk, P. Lyophilization of proteins. Methods Mol. Biol., 2007, 368, 59-72.
[http://dx.doi.org/10.1007/978-1-59745-362-2_4] [PMID: 18080462]
[47]
Wang, A.; Jia, R.; Liu, Y.; Zhou, J.; Qi, Y.; Chen, Y.; Liu, D.; Zhao, J.; Shi, H.; Zhang, J.; Zhang, G. Development of a novel quantitative real-time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transbound. Emerg. Dis., 2020, 67(1), 284-297.
[http://dx.doi.org/10.1111/tbed.13350] [PMID: 31483566]
[48]
Luo, Y.; Atim, S.A.; Shao, L.; Ayebazibwe, C.; Sun, Y.; Liu, Y.; Ji, S.; Meng, X.Y.; Li, S.; Li, Y.; Masembe, C.; Ståhl, K.; Widén, F.; Liu, L.; Qiu, H.J. Development of an updated PCR assay for detection of African swine fever virus. Arch. Virol., 2017, 162(1), 191-199.
[http://dx.doi.org/10.1007/s00705-016-3069-3] [PMID: 27714502]
[49]
Jadhav, T.R.; Moon, R.S. Review on lyophilization technique. World J. Pharm. Pharm. Sci., 2015, 4(5), 1906-1928.
[50]
Chen, H.W.; Weissenberger, G.; Ching, W.M. Development of lyophilized loop-mediated isothermal amplification reagents for the detection of leptospira. Mil. Med., 2016, 181(5)(Suppl.), 227-231.
[http://dx.doi.org/10.7205/MILMED-D-15-00149] [PMID: 27168577]
[51]
Chen, H.W.; Ching, W.M. Evaluation of the stability of lyophilized loop-mediated isothermal amplification reagents for the detection of Coxiella burnetii. Heliyon, 2017, 3(10), e00415.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00415] [PMID: 29057336]
[52]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12), E63.
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[53]
Beissner, M.; Phillips, R.O.; Battke, F.; Bauer, M.; Badziklou, K.; Sarfo, F.S.; Maman, I.; Rhomberg, A.; Piten, E.; Frimpong, M.; Huber, K.L.; Symank, D.; Jansson, M.; Wiedemann, F.X.; Banla Kere, A.; Herbinger, K.H.; Löscher, T.; Bretzel, G. Loop-mediated isothermal amplification for laboratory confirmation of buruli ulcer disease-towards a point-of-care test. PLoS Negl. Trop. Dis., 2015, 9(11), e0004219.
[http://dx.doi.org/10.1371/journal.pntd.0004219] [PMID: 26566026]
[54]
Chen, H.W.; Ching, W.M. Development of loop-mediated isothermal amplification assays for rapid and easy detection of Coxiella burnetii. J. Microbiol. Methods, 2014, 107, 176-181.
[http://dx.doi.org/10.1016/j.mimet.2014.07.039] [PMID: 25449632]
[55]
Saleki-Gerhardt, A.; Zografi, G. Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res., 1994, 11(8), 1166-1173.
[http://dx.doi.org/10.1023/A:1018945117471] [PMID: 7971719]
[56]
Carter, C.; Akrami, K.; Hall, D.; Smith, D.; Aronoff-Spencer, E. Lyophilized visually readable loop-mediated isothermal reverse transcriptase nucleic acid amplification test for detection Ebola Zaire RNA. J. Virol. Methods, 2017, 244, 32-38.
[http://dx.doi.org/10.1016/j.jviromet.2017.02.013] [PMID: 28242293]
[57]
Benzine, J.W.; Brown, K.M.; Agans, K.N.; Godiska, R.; Mire, C.E.; Gowda, K.; Converse, B.; Geisbert, T.W.; Mead, D.A.; Chander, Y. Molecular diagnostic field test for point-of-care detection of Ebola virus directly from blood. J. Infect. Dis., 2016, 214(Suppl. 3), S234-S242.
[http://dx.doi.org/10.1093/infdis/jiw330] [PMID: 27638947]
[58]
Kumar, S.; Sharma, S.; Bhardwaj, N.; Pande, V.; Savargaonkar, D.; Anvikar, A.R. Advanced Lyophilised Loop Mediated Isothermal Amplification (L-LAMP) based point of care technique for the detection of dengue virus. J. Virol. Methods, 2021, 293, 114168.
[http://dx.doi.org/10.1016/j.jviromet.2021.114168] [PMID: 33887278]
[59]
Howson, E.L.A.; Armson, B.; Madi, M.; Kasanga, C.J.; Kandusi, S.; Sallu, R.; Chepkwony, E.; Siddle, A.; Martin, P.; Wood, J.; Mioulet, V.; King, D.P.; Lembo, T.; Cleaveland, S.; Fowler, V.L. Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings. Transbound. Emerg. Dis., 2017, 64(3), 861-871.
[http://dx.doi.org/10.1111/tbed.12451] [PMID: 26617330]
[60]
Hymas, W.; Stevenson, J.; Taggart, E.W.; Hillyard, D. Use of lyophilized standards for the calibration of a newly developed real time PCR assay for human herpes type six (HHV6) variants A and B. J. Virol. Methods, 2005, 128(1-2), 143-150.
[http://dx.doi.org/10.1016/j.jviromet.2005.05.003] [PMID: 15950293]
[61]
García-Ruíz, D.; Martínez-Guzmán, M.A.; Cárdenas-Vargas, A.; Marino-Marmolejo, E.; Gutiérrez-Ortega, A.; González-Díaz, E.; Morfin-Otero, R.; Rodríguez-Noriega, E.; Pérez-Gómez, H.; Elizondo-Quiroga, D. Detection of dengue, west Nile virus, rickettsiosis and leptospirosis by a new real-time PCR strategy. Springerplus, 2016, 5(1), 671.
[http://dx.doi.org/10.1186/s40064-016-2318-y] [PMID: 27350908]
[62]
Brivio, M.; Li, Y.; Ahlford, A.; Kjeldsen, B.G.; Reimers, J.L.; Bu, M.; Syvänen, A-C.; Bang, D.D.; Wolff, A. A simple and efficient method for on-chip storage of reagents: Towards lab-on-a-chip system for point-of-care DNA diagnostics. Micro Total Anal. Syst., 2007, 59-61.
[63]
Wang, Y.; Qi, W.; Wang, L.; Lin, J.; Liu, Y. Magnetic bead chain-based continuous-flow DNA extraction for microfluidic PCR detection of Salmonella. Micromachines (Basel), 2021, 12(4), 384.
[http://dx.doi.org/10.3390/mi12040384] [PMID: 33916235]
[64]
Huang, E.; Wang, Y.; Yang, N.; Shu, B.; Zhang, G.; Liu, D. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Anal. Bioanal. Chem., 2021, 413(7), 1787-1798.
[http://dx.doi.org/10.1007/s00216-021-03171-4] [PMID: 33492406]
[65]
de Campos-Stairiker, K.; Pidathala, A.S.; Gill, R.K.; Gelimson, I.; Varankovich, N.; Gill, S.S.; Slyadnev, M.; Kapur, S. Validation of microchip RT-PCR COVID-19 detection system. J. Biosci. Med., 2021, 9(9), 8-24.
[66]
Cojocaru, R.; Yaseen, I.; Unrau, P.J.; Lowe, C.F.; Ritchie, G.; Romney, M.G.; Sin, D.D.; Gill, S.; Slyadnev, M. Microchip RT-PCR detection of nasopharyngeal SARS-CoV-2 samples. J. Mol. Diagn., 2021, 23(6), 683-690.
[http://dx.doi.org/10.1016/j.jmoldx.2021.02.009] [PMID: 33706009]
[67]
Chen, H.; Liu, K.; Li, Z.; Wang, P. Point of care testing for infectious diseases. Clin. Chim. Acta, 2019, 493, 138-147.
[http://dx.doi.org/10.1016/j.cca.2019.03.008] [PMID: 30853460]
[68]
Tomaszewicz Brown, A.; McAloose, D.; Calle, P.P.; Auer, A.; Posautz, A.; Slavinski, S.; Brennan, R.; Walzer, C.; Seimon, T.A. Development and validation of a portable, point-of-care canine distemper virus qPCR test. PLoS One, 2020, 15(4), e0232044.
[http://dx.doi.org/10.1371/journal.pone.0232044] [PMID: 32320441]
[69]
Takekawa, J.Y.; Hill, N.J.; Schultz, A.K.; Iverson, S.A.; Cardona, C.J.; Boyce, W.M.; Dudley, J.P. Rapid diagnosis of avian influenza virus in wild birds: Use of a portable RRT-PCR and freeze-dried reagents in the field. J. Vis. Exp. JoVE, 2011, 54, 2829.
[70]
Capron, A.; Stewart, D.; Hrywkiw, K.; Allen, K.; Feau, N.; Bilodeau, G.; Tanguay, P.; Cusson, M.; Hamelin, R.C. In situ processing and efficient environmental detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS One, 2020, 15(4), e0226863.
[http://dx.doi.org/10.1371/journal.pone.0226863] [PMID: 32240194]
[71]
Sokhna, C.; Mediannikov, O.; Fenollar, F.; Bassene, H.; Diatta, G.; Tall, A.; Trape, J.F.; Drancourt, M.; Raoult, D. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl. Trop. Dis., 2013, 7(1), e1999.
[http://dx.doi.org/10.1371/journal.pntd.0001999] [PMID: 23350001]
[72]
Trinh, K.T.L.; Stabler, R.A.; Lee, N.Y. Fabrication of a foldable all-in-one point-of-care molecular diagnostic microdevice for the facile identification of multiple pathogens. Sens. Actuators B Chem., 2020, 314, 128057.
[http://dx.doi.org/10.1016/j.snb.2020.128057]
[73]
Wilkes, R.P.; Lee, P-Y.A.; Tsai, Y-L.; Tsai, C-F.; Chang, H.H.; Chang, H.F.; Wang, H.T. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need. J. Virol. Methods, 2015, 220, 35-38.
[http://dx.doi.org/10.1016/j.jviromet.2015.04.007] [PMID: 25889355]
[74]
Chang, H.F.G.; Tsai, Y.L.; Tsai, C.F.; Lin, C.K.; Lee, P.Y.; Teng, P.H.; Su, C.; Jeng, C.C. A thermally baffled device for highly stabilized convective PCR. Biotechnol. J., 2012, 7(5), 662-666.
[http://dx.doi.org/10.1002/biot.201100453] [PMID: 22241586]
[75]
Njiru, Z.K. Loop-mediated isothermal amplification technology: Towards point of care diagnostics. PLoS Negl. Trop. Dis., 2012, 6(6), e1572.
[http://dx.doi.org/10.1371/journal.pntd.0001572] [PMID: 22745836]
[76]
Chander, Y.; Koelbl, J.; Puckett, J.; Moser, M.J.; Klingele, A.J.; Liles, M.R.; Carrias, A.; Mead, D.A.; Schoenfeld, T.W. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol., 2014, 5, 395.
[http://dx.doi.org/10.3389/fmicb.2014.00395] [PMID: 25136338]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy