Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Synopsis of Biomarkers of Atheromatous Plaque Formation, Rupture and Thrombosis in the Diagnosis of Acute Coronary Syndromes

Author(s): Ralapanawa Udaya* and Ramiah Sivakanesan

Volume 18, Issue 5, 2022

Published on: 08 June, 2022

Article ID: e110422203390 Pages: 10

DOI: 10.2174/1573403X18666220411113450

Price: $65

Abstract

Acute coronary syndrome is the main cause of mortality and morbidity worldwide and early diagnosis is a challenge for clinicians. Though cardiac Troponin, the most commonly used biomarker, is the gold standard for myocardial necrosis, it is blind for ischemia without necrosis. Therefore, ideal biomarkers are essential in the care of patients presenting with symptoms suggestive of cardiac ischemia.

The ideal biomarker or group of biomarkers of atheromatous plaque formation, rupture and thrombosis for timely and accurate diagnosis of acute coronary syndrome is a current need. Therefore, we discuss the existing understanding and future of biomarkers of atheromatous plaque formation, rupture and thrombosis of acute coronary syndrome in this review.

Keywords were searched from Medline, ISI, IBSS and Google Scholar databases. Further, the authors conducted a manual search of other relevant journals and reference lists of primary articles.

The development of high-sensitivity troponin assays facilitates earlier exclusion of acute coronary syndrome, contributing to a reduced length of stay at the emergency department, and earlier treatment resulting in better outcomes. Although researchers have investigated biomarkers of atheromatous plaque formation, rupture and thrombosis to help early diagnosis of cardiac ischemia, most of them necessitate validation from further analysis. Among these biomarkers, pregnancy-associated plasma protein-A, intercellular adhesion molecule-1, and endothelial cell-specific molecule- 1(endocan) have shown promising results in the early diagnosis of acute coronary syndrome but need further evaluation. However, the use of a combination of biomarkers representing varying pathophysiological mechanisms of cardiac ischemia will support risk assessment, diagnosis and prognosis in these patients and this is the way forward.

Keywords: Acute coronary syndrome, myocardial infarction, biological markers, atheromatous plaque formation, plaque rupture, thrombosis.

Graphical Abstract

[1]
Global status report on non-communicable diseases. Geneva, World Health Organization 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;sequence=1
[2]
Longmore M. Oxford handbook of clinical medicine (Oxford medical handbooks). 9th ed. Oxford University Press 2014; pp. 112-3.
[http://dx.doi.org/10.1093/med/9780199609628.001.0001]
[3]
Fox KAA. Management of acute coronary syndromes: An update. Heart 2004; 90(6): 698-706.
[http://dx.doi.org/10.1136/hrt.2003.020321] [PMID: 15145891]
[4]
Morrow DA, Cannon CP, Jesse RL, et al. National academy of clinical biochemistry laboratory medicine practice guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation 2007; 115(13): e356-75.
[PMID: 17384331]
[5]
Garg P, Morris P, Fazlanie AL, et al. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern Emerg Med 2017; 12(2): 147-55.
[http://dx.doi.org/10.1007/s11739-017-1612-1] [PMID: 28188579]
[6]
Saadeddin SM, Habbab MA, Ferns GA. Cardiac markers for assessing the acute coronary syndrome: A focus on cardiac troponins. Saudi Med J 2000; 21(3): 228-37.
[PMID: 11533790]
[7]
Rude RE, Poole WK, Muller JE, et al. Electrocardiographic and clinical criteria for recognition of acute myocardial infarction based on analysis of 3,697 patients. Am J Cardiol 1983; 52(8): 936-42.
[http://dx.doi.org/10.1016/0002-9149(83)90508-8] [PMID: 6356862]
[8]
Van Mieghem C, Sabbe M, Knockaert D. The clinical value of the ECG in noncardiac conditions. Chest 2004; 125(4): 1561-76.
[http://dx.doi.org/10.1378/chest.125.4.1561] [PMID: 15078775]
[9]
Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest 1955; 34(1): 126-31.
[http://dx.doi.org/10.1172/JCI103055] [PMID: 13221663]
[10]
Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med 2016; 4(10): 194.
[http://dx.doi.org/10.21037/atm.2016.05.19] [PMID: 27294090]
[11]
Task F. Task force on standardization of clinical nomenclature. Circulation 1979; 59: 607-9.
[http://dx.doi.org/10.1161/01.CIR.59.3.607] [PMID: 761341]
[12]
Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, Kübler W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol 1989; 21(12): 1349-53.
[http://dx.doi.org/10.1016/0022-2828(89)90680-9] [PMID: 2632816]
[13]
Panteghini M. Biochemical markers of cardiac diseases. Jugoslov Med Biohem 2004; 23(3): 201-11.
[http://dx.doi.org/10.2298/JMH0403201P]
[14]
Anderson JL, Adams CD, Antman EM, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: A report of the american college of cardiology/american heart association task force on practice guidelines (writing committee to revise the 2002 guidelines for the management of patients with unstable angina/non-st-elevation myocardial infarction) developed in collaboration with the american college of emergency physicians, the society for cardiovascular angiography and interventions, and the society of thoracic surgeons endorsed by the american association of cardiovascular and pulmonary rehabilitation and the Society for academic emergency medicine. J Am Coll Cardiol 2007; 50(7): e1-e157.
[http://dx.doi.org/10.1016/j.jacc.2007.02.013] [PMID: 17692738]
[15]
Ahmead MI, Sharma N. Biomarkers in acute myocardial infarction. J Clin Exp Cardiolog 2012; 3: 222.
[16]
Mair J, Artner-Dworzak E, Lechleitner P, et al. Early diagnosis of acute myocardial infarction by a newly developed rapid immunoturbidimetric assay for myoglobin. Br Heart J 1992; 68(5): 462-8.
[http://dx.doi.org/10.1136/hrt.68.11.462] [PMID: 1467029]
[17]
World Health Organization & International Programme on Chemical Safety Biomarkers and risk assessment: Concepts and principles/published under the joint sponsorship of the United Nations Environment Program, the International Labour Organisation, and the World Health Organization World Health Organization. 1993. Available from apps.who.int/iris/handle/10665/39037
[18]
World Health Organization & International Programme on Chemical Safety Biomarkers in risk assessment: Validity and validation World Health Organization Environmental health criteria. 2001. Available from apps.who.int/iris/handle/10665/42363
[19]
Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The biomarkers for acute myocardial infarction and heart failure. BioMed Res Int 2020; 20202018035
[http://dx.doi.org/10.1155/2020/2018035] [PMID: 32016113]
[20]
Shah AS, Newby DE, Mills NL. High sensitivity cardiac troponin in patients with chest pain. BMJ 2013; 347: f4222.
[http://dx.doi.org/10.1136/bmj.f4222] [PMID: 23878152]
[21]
Davies MJ. The pathophysiology of acute coronary syndromes. Heart 2000; 83(3): 361-6.
[http://dx.doi.org/10.1136/heart.83.3.361] [PMID: 10677422]
[22]
Vasan RS. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation 2006; 113(19): 2335-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.482570] [PMID: 16702488]
[23]
Shindo A, Tanemura H, Yata K, et al. Inflammatory biomarkers in atherosclerosis: Pentraxin 3 can become a novel marker of plaque vulnerability. PLoS One 2014; 9(6)e100045
[http://dx.doi.org/10.1371/journal.pone.0100045] [PMID: 24936646]
[24]
W van Lammeren G, Moll LF, Borst GJ, de Kleijn DPV, P M de Vries JP, Pasterkamp G. Atherosclerotic plaque biomarkers: Beyond the horizon of the vulnerable plaque. Curr Cardiol Rev 2011; 7(1): 22-7.
[http://dx.doi.org/10.2174/157340311795677680] [PMID: 22294971]
[25]
Cicha I, Urschel K. TNF-α in the cardiovascular system: From physiology to therapy. Int J Infereron Cytokine Mediator Res 2015; 7: 9-25.
[http://dx.doi.org/10.2147/IJICMR.S64894]
[26]
Sbarsi I, Falcone C, Boiocchi C, et al. Inflammation and atherosclerosis: The role of TNF and TNF receptors polymorphisms in coronary artery disease. Int J Immunopathol Pharmacol 2007; 20(1): 145-54.
[http://dx.doi.org/10.1177/039463200702000117] [PMID: 17346438]
[27]
Yuepeng J, Zhao X, Zhao Y, Li L. Gene polymorphism associated with TNF-α (G308A) IL-6 (C174G) and susceptibility to coronary atherosclerotic heart disease: A meta-analysis. Medicine (Baltimore) 2019; 98(2)e13813
[http://dx.doi.org/10.1097/MD.0000000000013813] [PMID: 30633155]
[28]
Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24(11): 2137-42.
[http://dx.doi.org/10.1161/01.ATV.0000143933.20616.1b] [PMID: 15345516]
[29]
Haft JI, al-Zarka AM. The origin and fate of complex coronary lesions. Am Heart J 1991; 121(4 Pt 1): 1050-61.
[http://dx.doi.org/10.1016/0002-8703(91)90662-2] [PMID: 2008826]
[30]
Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HB. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol 2017; 14(2): 135-50.
[PMID: 28491088]
[31]
Newby AC. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol 2015; 44-46: 157-66.
[http://dx.doi.org/10.1016/j.matbio.2015.01.015] [PMID: 25636537]
[32]
Gu W, Liu W, Yang X, et al. Cutis laxa: Analysis of metalloproteinases and extracellular matrix expression by immunohistochemistry and histochemistry. Eur J Dermatol 2011; 21(5): 717-21.
[http://dx.doi.org/10.1684/ejd.2011.1449] [PMID: 21719403]
[33]
Molloy KJ, Thompson MM, Jones JL, et al. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity. Circulation 2004; 110(3): 337-43.
[http://dx.doi.org/10.1161/01.CIR.0000135588.65188.14] [PMID: 15226217]
[34]
Kunte H, Amberger N, Busch MA, Rückert RI, Meiners S, Harms L. Markers of instability in high-risk carotid plaques are reduced by statins. J Vasc Surg 2008; 47(3): 513-22.
[http://dx.doi.org/10.1016/j.jvs.2007.11.045] [PMID: 18295103]
[35]
Wang LX, Lü SZ, Zhang WJ, Song XT, Chen H, Zhang LJ. Comparision of high sensitivity C-reactive protein and matrix metalloproteinase 9 in patients with unstable angina between with and without significant coronary artery plaques. Chin Med J 2011; 124(11): 1657-61.
[PMID: 21740772]
[36]
Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 2005; 25(6): 1102-11.
[http://dx.doi.org/10.1161/01.ATV.0000163262.83456.6d] [PMID: 15790935]
[37]
Yunoki K, Naruko T, Inaba M, et al. Gender-specific correlation between plasma myeloperoxidase levels and serum high-density lipoprotein-associated paraoxonase-1 levels in patients with stable and unstable coronary artery disease. Atherosclerosis 2013; 231(2): 308-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.08.037] [PMID: 24267244]
[38]
Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: A new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 2008; 2008135625
[http://dx.doi.org/10.1155/2008/135625] [PMID: 18382609]
[39]
Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003; 108(12): 1440-5.
[http://dx.doi.org/10.1161/01.CIR.0000090690.67322.51] [PMID: 12952835]
[40]
Kolodziej AR, Abo-Aly M, Elsawalhy E, Campbell C, Ziada KM, Abdel-Latif A. Prognostic role of elevated Myeloperoxidase in patients with acute coronary syndrome: A Systemic Review and Meta-Analysis. Mediators Inflamm 2019; 20192872607
[http://dx.doi.org/10.1155/2019/2872607] [PMID: 31341419]
[41]
Calmarza P, Lapresta C, Martínez M, Lahoz R, Povar J. Utility of myeloperoxidase in the differential diagnosis of acute coronary syndrome. Arch Cardiol Mex 2018; 88(5): 391-6.
[http://dx.doi.org/10.1016/j.acmx.2017.11.003] [PMID: 29233491]
[42]
Sinning C, Schnabel R, Peacock WF, Blankenberg S. Up-and-coming markers: Myeloperoxidase, a novel biomarker test for heart failure and acute coronary syndrome application? Congest Heart Fail 2008; 14(4)(Suppl. 1): 46-8.
[http://dx.doi.org/10.1111/j.1751-7133.2008.08334.x] [PMID: 18772634]
[43]
Roman R, Wendland A, Polanczyk C. Myeloperoxidase and coronary artery disease: From research to clinical practice. Arq Bras Cardiol 2008; 91(1): e11-8.
[http://dx.doi.org/10.1590/S0066-782X2008001300015] [PMID: 18660935]
[44]
Lund J, Qin QP, Ilva T, et al. Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation 2003; 108(16): 1924-6.
[http://dx.doi.org/10.1161/01.CIR.0000096054.18485.07] [PMID: 14530192]
[45]
Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Simoons ML, Zeiher AM. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes: Comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis. J Am Coll Cardiol 2005; 45(2): 229-37.
[http://dx.doi.org/10.1016/j.jacc.2004.09.060] [PMID: 15653020]
[46]
Wu XF, Yang M, Qu AJ, et al. Level of pregnancy-associatedplasma protein-a correlates with coronary thin-cap fibroatheromaburden in patients with coronary artery disease: Novel findings from 3-vessel virtual histology intravascularultrasound assessment. Medicine (Baltimore) 2016; 95(3)e2563
[http://dx.doi.org/10.1097/MD.0000000000002563] [PMID: 26817910]
[47]
Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes 2009; 345(14): 1022-9.
[48]
Wolf S, Lawson C. ICAM-1: Contribution to vascular inflammation and early atherosclerosis. Coronary Artery Disease - New Insights and Novel Approaches 2012; pp. 65-90.
[49]
Wang Y, Sun X, Xia B, et al. The role of OX40L and ICAM-1 in the stability of coronary atherosclerotic plaques and their relationship with sudden coronary death. BMC Cardiovasc Disord 2019; 19(1): 272.
[http://dx.doi.org/10.1186/s12872-019-1251-8] [PMID: 31783796]
[50]
Gross MD, Bielinski SJ, Suarez-Lopez JR, et al. Circulating soluble intercellular adhesion molecule 1 and subclinical atherosclerosis: The Coronary Artery Risk Development in Young Adults Study. Clin Chem 2012; 58(2): 411-20.
[http://dx.doi.org/10.1373/clinchem.2011.168559] [PMID: 22179741]
[51]
Fotis L, Agrogiannis G, Vlachos IS, et al. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo 2012; 26(2): 243-50.
[PMID: 22351665]
[52]
Hillis GS. Soluble integrin adhesion receptors and atherosclerosis: Much heat and a little light? J Hum Hypertens 2003; 17(7): 449-53.
[http://dx.doi.org/10.1038/sj.jhh.1001569] [PMID: 12821950]
[53]
Ridker PM. Intercellular adhesion molecule (ICAM-1) and the risks of developing atherosclerotic disease. Eur Heart J 1998; 19(8): 1119-21.
[PMID: 9740331]
[54]
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27(11): 2292-301.
[http://dx.doi.org/10.1161/ATVBAHA.107.149179] [PMID: 17673705]
[55]
Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest 2001; 107(10): 1209-10.
[http://dx.doi.org/10.1172/JCI13005] [PMID: 11375406]
[56]
Preiss DJ, Sattar N. Vascular cell adhesion molecule-1: A viable therapeutic target for atherosclerosis? Int J Clin Pract 2007; 61(4): 697-701.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01330.x] [PMID: 17394445]
[57]
Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes - Part II: Acute-phase reactants and biomarkers of endothelial cell activation. Circulation 2006; 113(7): e152-5.
[58]
Huo Y, Hafezi-Moghadam A, Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 2000; 87(2): 153-9.
[http://dx.doi.org/10.1161/01.RES.87.2.153] [PMID: 10904000]
[59]
Santos JCD, Cruz MS, Bortolin RH, et al. Relationship between circulating VCAM-1, ICAM-1, E-selection and MMP9 and the extent of coronary lesions. Clinics (São Paulo) 2018; 73e203
[http://dx.doi.org/10.6061/clinics/2018/e203] [PMID: 29846413]
[60]
Silva M, Videira PA, Sackstein R. E-selection ligands in the human mononuclear phagocyte system: Implications for infection, inflammation, and immunotherapy. Front Immunol 2018; 8: 1878.
[http://dx.doi.org/10.3389/fimmu.2017.01878] [PMID: 29403469]
[61]
Ley K. The role of selections in inflammation and disease. Trends Mol Med 2003; 9(6): 263-8.
[http://dx.doi.org/10.1016/S1471-4914(03)00071-6] [PMID: 12829015]
[62]
Peschel T, Niebauer J. Role of pro-atherogenic adhesion molecules and inflammatory cytokines in patients with coronary artery disease and diabetes mellitus type 2. Cytometry B Clin Cytom 2003; 53(1): 78-85.
[http://dx.doi.org/10.1002/cyto.b.10026] [PMID: 12717696]
[63]
Marino M, Del Bo’ C, Tucci M, Klimis-Zacas D, Riso P, Porrini M. Modulation of adhesion process, E-selection and VEGF production by anthocyanins and their metabolites in an in vitro model of atherosclerosis. Nutrients 2020; 12(3): 655.
[http://dx.doi.org/10.3390/nu12030655] [PMID: 32121223]
[64]
Park K. New biomedical polymer targeting E-selection to reduce atherosclerosis. J Control Release 2018; 288: 277.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.023] [PMID: 30290920]
[65]
Robin NP. Atherosclerosis: Integration of its pathogenesis as a self-perpetuating propagating inflammation: A review. Cardiovasc Endocrinol Metab 2019; 8(2): 51-61.
[http://dx.doi.org/10.1097/XCE.0000000000000172] [PMID: 31588428]
[66]
Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selections in atherosclerosis. J Clin Invest 1998; 102(1): 145-52.
[http://dx.doi.org/10.1172/JCI3001] [PMID: 9649568]
[67]
Macías C, Villaescusa R, del Valle L, et al. Endothelial adhesion molecules ICAM-1, VCAM-1 and E-selection in patients with acute coronary syndrome. Rev Esp Cardiol 2003; 56(2): 137-44.
[http://dx.doi.org/10.1016/S0300-8932(03)76837-7] [PMID: 12605758]
[68]
Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selection and cardiovascular disease. Eur Heart J 2003; 24(24): 2166-79.
[http://dx.doi.org/10.1016/j.ehj.2003.08.021] [PMID: 14659768]
[69]
Woollard KJ, Lumsden NG, Andrews KL, et al. Raised soluble P-selection moderately accelerates atherosclerotic plaque progression. PLoS One 2014; 9(5)e97422
[http://dx.doi.org/10.1371/journal.pone.0097422] [PMID: 24846287]
[70]
Burger PC, Wagner DD. Platelet P-selection facilitates atherosclerotic lesion development. Blood 2003; 101(7): 2661-6.
[http://dx.doi.org/10.1182/blood-2002-07-2209] [PMID: 12480714]
[71]
Zhao T, Kecheng Y, Zhao X, et al. The higher serum endocan levels may be a risk factor for the onset of cardiovascular disease: A meta-analysis. Medicine 2018; 97(49)e13407
[http://dx.doi.org/10.1097/MD.0000000000013407] [PMID: 30544417]
[72]
Abdelsalam N, Mohamed A, Abdellatif S, Eid E, Rizk E, Rizk M. Serum level of Endothelial Cell-Specific Molecule -1 (ESM -1) as a new potential biomarker for rheumatoid arthritis disease activity. Open Rheumatol J 2018; 12(1): 189-96.
[http://dx.doi.org/10.2174/1874312901812010189]
[73]
Cakirca M, Dae SA, Zorlu M, Kıskaç M, Tunç M, Karatoprak C. The relationship between the atherosclerotic cardiovascular disease risk score used in the prediction of cardiovascular disease risk and endocan. Niger J Clin Pract 2019; 22(5): 713-7.
[PMID: 31089028]
[74]
Kosir G, Jug B, Novakovic M, Mijovski MB, Ksela J. Endocanis an independent predictor of heart failure-related mortality and hospitalizations in patients with chronic stable heart failure. Dis Markers 2019; 20199134096
[http://dx.doi.org/10.1155/2019/9134096] [PMID: 31089401]
[75]
Drenjancevic I, Jukic I, Stupin A, Cosic A, Stupin M, Selthofer-Relatic K. The markers of endothelial activation endothelial dysfunction - old concepts and new challenges. IntechOpen Press 2018.
[http://dx.doi.org/10.5772/intechopen.74671]
[76]
Sun H, Fang F, Li K, et al. Circulating ESM-1 levels are correlated with the presence of coronary artery disease in patients with obstructive sleep apnea. Respir Res 2019; 20(1): 188.
[http://dx.doi.org/10.1186/s12931-019-1143-6] [PMID: 31429753]
[77]
Yang J, Sato K, Aprahamian T, et al. Endothelial overexpression of Fas ligand decreases atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004; 24(8): 1466-73.
[http://dx.doi.org/10.1161/01.ATV.0000134402.94963.2f] [PMID: 15178561]
[78]
Kavurma MM, Tan NY, Bennett MR. Death receptors and their ligands in atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28(10): 1694-702.
[http://dx.doi.org/10.1161/ATVBAHA.107.155143] [PMID: 18669890]
[79]
Zadelaar AS, von der Thüsen JH, Boesten LS, et al. Increased vulnerability of pre-existing atherosclerosis in ApoE-deficient mice following adenovirus-mediated Fas ligand gene transfer. Atherosclerosis 2005; 183(2): 244-50.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.03.044] [PMID: 15927188]
[80]
Szymanowski A, Li W, Lundberg A, et al. Soluble Fas ligand is associated with natural killer cell dynamics in coronary artery disease. Atherosclerosis 2014; 233(2): 616-22.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.01.030] [PMID: 24534457]
[81]
Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 2007; 27(1): 15-26.
[http://dx.doi.org/10.1161/01.ATV.0000251503.35795.4f] [PMID: 17082488]
[82]
Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 2003; 41(4)(Suppl. S): 15S-22S.
[http://dx.doi.org/10.1016/S0735-1097(02)02834-6] [PMID: 12644336]
[83]
Giannakopoulos T, Avgerinos E, Moulakakis K, et al. Biomarkers for diagnosis of the vulnerable atherosclerotic plaque. Interv Cardiol 2011; 3(2): 223-33.
[http://dx.doi.org/10.2217/ica.11.11]
[84]
Anand SX, Viles-Gonzalez JF, Badimon JJ, Cavusoglu E, Marmur JD. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost 2003; 90(3): 377-84.
[http://dx.doi.org/10.1160/TH03-05-0268] [PMID: 12958605]
[85]
Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes. Part IV: Matrix metalloproteinases and biomarkers of platelet activation. Vol. 113. Circulation 2006.
[86]
Sofogianni A, Alkagiet S, Tziomalos K. Lipoprotein-associated Phospholipase A2 and coronary heart disease. Curr Pharm Des 2018; 24(3): 291-6.
[http://dx.doi.org/10.2174/1381612824666180111110550] [PMID: 29332572]
[87]
Leitinger N, Watson AD, Hama SY, et al. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol 1999; 19(5): 1291-8.
[http://dx.doi.org/10.1161/01.ATV.19.5.1291] [PMID: 10323782]
[88]
Henderson WR Jr, Chi EY, Bollinger JG, et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 2007; 204(4): 865-77.
[http://dx.doi.org/10.1084/jem.20070029] [PMID: 17403936]
[89]
Nikolopoulos GK, Bagos PG, Tsangaris I, et al. The association between Plasminogen Activator Inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: A mendelian randomization meta-analysis. Clin Chem Lab Med 2014; 52(7): 937-50.
[http://dx.doi.org/10.1515/cclm-2013-1124] [PMID: 24695040]
[90]
Ploplis VA. Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease. Curr Drug Targets 2011; 12(12): 1782-9.
[http://dx.doi.org/10.2174/138945011797635803] [PMID: 21707474]
[91]
Jung RG, Motazedian P, Ramirez FD, et al. Association between plasminogen activator inhibitor-1 and cardiovascular events: A systematic review and meta-analysis. Thromb J 2018; 16(1): 12.
[http://dx.doi.org/10.1186/s12959-018-0166-4] [PMID: 29991926]
[92]
Takeshita K, Hayashi M, Iino S, et al. Increased expression of plasminogen activator inhibitor-1 in cardiomyocytes contributes to cardiac fibrosis after myocardial infarction. Am J Pathol 2004; 164(2): 449-56.
[http://dx.doi.org/10.1016/S0002-9440(10)63135-5] [PMID: 14742251]
[93]
Miles LA, Parmer RJ. PAI-1: Cardiac friend or foe? Blood 2010; 115(10): 1862-3.
[http://dx.doi.org/10.1182/blood-2010-01-261420] [PMID: 20223930]
[94]
Morange PE, Saut N, Alessi MC, et al. Association of plasminogen activator inhibitor (PAI)-1 (SERPINE1) SNPs with myocardial infarction, plasma PAI-1, and metabolic parameters: The HIFMECH study. Arterioscler Thromb Vasc Biol 2007; 27(10): 2250-7.
[http://dx.doi.org/10.1161/ATVBAHA.107.149468] [PMID: 17656673]
[95]
Gray RP, Yudkin JS, Patterson DL. Plasminogen activator inhibitor: A risk factor for myocardial infarction in diabetic patients. Br Heart J 1993; 69(3): 228-32.
[http://dx.doi.org/10.1136/hrt.69.3.228] [PMID: 8461220]
[96]
Spiel A, Gilbert J, Jilma B. VonWillebrand factor in cardiovascular disease. Circulation 2008; 117(11): 1449-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.722827] [PMID: 18347221]
[97]
Wang X, Zhao J, Zhang Y, et al. Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: A meta-analysis. Oncotarget 2017; 8(52): 90371-9.
[http://dx.doi.org/10.18632/oncotarget.20091] [PMID: 29163836]
[98]
Ray KK, Morrow DA, Gibson CM, Murphy S, Antman EM, Braunwald E. Predictors of the rise in vWF after ST elevation myocardial infarction: Implications for treatment strategies and clinical outcome: An ENTIRE-TIMI 23 substudy. Eur Heart J 2005; 26(5): 440-6.
[http://dx.doi.org/10.1093/eurheartj/ehi104] [PMID: 15673542]
[99]
Al-Masri AA, Habib SS, Hersi A, Al Zamil H. Effect of acute myocardial infarction on a disintegrin and metalloprotease with thrombospondin motif 13 and von Willebrand factor and their relationship with markers of inflammation. Int J Vasc Med 2020; 20204981092
[http://dx.doi.org/10.1155/2020/4981092] [PMID: 32095288]
[100]
Hassan SA, Amer S, Qureshi W, Alirhayim Z, Kuriakose P. Treating symptomatic coronary artery disease in patients with Von Willebrand disease. Hematol Oncol Stem Cell Ther 2013; 6(3-4): 101-4.
[http://dx.doi.org/10.1016/j.hemonc.2013.08.004] [PMID: 24096142]
[101]
Seaman CD, Yabes J, Comer DM, Ragni MV. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J Thromb Haemost 2015; 13(11): 1999-2003.
[http://dx.doi.org/10.1111/jth.13142] [PMID: 26368360]
[102]
Kyrle PA, Eichinger S. D-dimer for long-term risk prediction in patients after acute coronary syndrome. Circulation 2018; 138(7): 724-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033670] [PMID: 30359138]
[103]
Akgul O, Uyarel H. D-dimer: A novel predictive marker for cardiovascular disease. Int J Cardiol 2013; 168(5): 4930-1.
[http://dx.doi.org/10.1016/j.ijcard.2013.07.088] [PMID: 23916776]
[104]
Orak M, Ustündağ M, Güloğlu C, Alyan O, Sayhan MB. The role of serum D-dimer level in the diagnosis of patients admitted to the emergency department complaining of chest pain. J Int Med Res 2010; 38(5): 1772-9.
[http://dx.doi.org/10.1177/147323001003800523] [PMID: 21309492]
[105]
Reihani H, Sepehri SA, Keshmiri A. Diagnostic value of D-dimer in acute myocardial infarction among patients with suspected acute coronary syndrome. Cardiol Res 2018; 9(1): 17-21.
[http://dx.doi.org/10.14740/cr620w] [PMID: 29479381]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy