Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Dry Deposition above Smooth Surfaces - A Numerical Investigation for the Concentration Boundary Layer

Author(s): Zaid Bakri, Omar Al Jaghbeir and Tareq Hussein*

Volume 19, Issue 2, 2023

Published on: 09 June, 2022

Page: [202 - 208] Pages: 7

DOI: 10.2174/1573413718666220405133654

Price: $65

Abstract

Objective: Dry deposition velocity towards a surface is commonly investigated by modelling. However, there is still a lack of understanding about the nature of the concentration boundary layer (CBL).

Methods: We aimed at acquiring an in-depth description of the particle concentration profile within the CBL by investigating the layer height and the concentration profile. The particle concentration, as a solution to the particle flux equation, is obtained and modeled numerically by performing the left Riemann sum using MATLAB software. The friction velocity u* and the particle diameter Dp are the major parameters taken into consideration when characterizing the concentration boundary layer above a surface. The particle concentration profile depends on the friction velocity; the concentration gradient starts from zero at the surface and reaches its maximum in the middle of the layer and then reaches zero again at the top of the boundary layer.

Results: The concentration profile is slightly altered with a sudden increase in the concentration gradient at the surface when considering large particles or when the friction velocity has extreme values.

Conclusion: The boundary layer height (y+ cbl) varied with the particle diameter, and a proper value is 100 to ensure accurate calculations for the dry deposition velocity (diameter 0.01 – 100 μm) above a smooth surface. From a numerical point of view, the numerical setup of the calculation required y+ divisions to be more than 1000 for all particle diameters included in the investigation. In addition, y+ max = 104 is important for ultrafine particles (diameter smaller than 0.1 μm). Nevertheless, y+ maxdoes not need to be investigated beyond 100 when the friction velocity is below 10 cm/s.

Keywords: Three-layer deposition model, brownian diffusion, eddy diffusion, friction velocity, concentration boundary layer, boundary layer depth.

[1]
Bozlaker, A.; Muezzinoglu, A.; Odabasi, M. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J. Hazard. Mater., 2008, 153(3), 1093-1102.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.064 ] [PMID: 17977652]
[2]
El-Batsh, H. Modelling Particle Deposition on Compressor and Turbine Blades., PhD Thesis, Vienna University of Technology: Vienna, 2001.
[3]
Liu, B.Y.H.; Ahn, K. ho Particle deposition on semiconductor wafers. Aerosol Sci. Technol., 1987, 6(3), 215-224.
[http://dx.doi.org/10.1080/02786828708959135]
[4]
Lobo, P.; Durdina, L.; Brem, B.T.; Crayford, A.P.; Johnson, M.P.; Smallwood, G.J.; Siegerist, F.; Williams, P.I.; Black, E.A.; Llamedo, A.; Thomson, K.A.; Trueblood, M.B.; Yu, Z.; Hagen, D.E.; Whitefield, P.D.; Miake-Lye, R.C.; Rindlisbacher, T. Comparison of standardized sampling and measurement reference systems for aircraft engine non-volatile particulate matter emissions. J. Aerosol Sci., 2019, 2020(145), 105557.
[5]
Pui, D.Y.H.; Ye, Y.; Liu, B.Y.H. Experimental study of particle deposition on semiconductor wafers. Aerosol Sci. Technol., 1990, 12(4), 795-804.
[http://dx.doi.org/10.1080/02786829008959393]
[6]
Song, L.; Elimelech, M. Particle deposition onto a permeable surface in laminar flow. J. Colloid Interface Sci., 1995, 173(1), 165-180.
[http://dx.doi.org/10.1006/jcis.1995.1310]
[7]
Tong, X.; Dong, J.; Shang, Y.; Inthavong, K.; Tu, J. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput. Biol. Med., 2016, 77(77), 40-48.
[http://dx.doi.org/10.1016/j.compbiomed.2016.08.002 ] [PMID: 27509293]
[8]
Tong, Z.X.; Li, M.J.; He, Y.L.; Tan, H.Z. Simulation of real time particle deposition and removal processes on tubes by coupled numerical method. Appl. Energy, 2017, 185, 2181-2193.
[http://dx.doi.org/10.1016/j.apenergy.2016.01.043]
[9]
Hussein, T.; Smolik, J.; Kerminen, V.M.; Kulmala, M. Modeling dry deposition of aerosol particles onto rough surfaces. Aerosol Sci. Technol., 2012, 46(1), 44-59.
[http://dx.doi.org/10.1080/02786826.2011.605814]
[10]
Guha, A. A unified eulerian theory of turbulent deposition to smooth and rough surfaces. J. Aerosol Sci., 1997, 28(8), 1517-1537.
[http://dx.doi.org/10.1016/S0021-8502(97)00028-1]
[11]
Corner, J.; Pendlebury, E.D. The coagulation and deposition of a stirred aerosol. Proc. Phys. Soc. B, 1951, 64(8), 645-654.
[http://dx.doi.org/10.1088/0370-1301/64/8/304]
[12]
Lai, A. C. K.; Nazaroff, W. W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J. Aerosol Sci., 2000, 31(4), 463-476.
[13]
Zhao, B.; Wu, J. Modeling particle deposition from fully developed turbulent flow in ventilation. Duct. Atmos. Environ., 2006, 40(3), 457-466.
[http://dx.doi.org/10.1016/j.atmosenv.2005.09.043]
[14]
Hussein, T.; Ibrahim, S.; Malek, S. Basic concepts and development of dry deposition modelling. Jordan J. Phys., 2019, 12(2), 113-132.
[15]
Zhao, B.; Wu, J. Modeling particle deposition onto rough walls in ventilation Duct. Atmos. Environ., 2006, 40(36), 6918-6927.
[http://dx.doi.org/10.1016/j.atmosenv.2006.06.015]
[16]
Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 1987, 1987(177), 133-166.
[http://dx.doi.org/10.1017/S0022112087000892]
[17]
Johansen, S.T. The deposition of particles on vertical walls. Int. J. Multiph. Flow, 1991, 17(3), 355-376.
[http://dx.doi.org/10.1016/0301-9322(91)90005-N]
[18]
Crump, J.G.; Flagan, R.C.; Seinfeld, J.H. Particle wall loss rates in vessels. Aerosol Sci. Technol., 1982, 2(3), 303-309.
[http://dx.doi.org/10.1080/02786828308958636]
[19]
McMurry, P.H.; Rader, D.J. Aerosol wall losses in electrically charged chambers. Aerosol Sci. Technol., 1985, 4(3), 249-268.
[http://dx.doi.org/10.1080/02786828508959054]
[20]
Nazaro, W.W.; Cass, G.R.. Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Technol., 1984, 23(2), 157-166.
[http://dx.doi.org/10.1021/es00179a003]
[21]
Bejan, A. Convection heat transfer, 2nd ed; Wiley & Sons: New York, 1995.
[22]
Kallio, G.A.; Reeks, M.W. A numerical simulation of particle deposition in turbulent boundary layers. Int. J. Multiph. Flow, 1989, 15(3), 433-446.
[http://dx.doi.org/10.1016/0301-9322(89)90012-8]
[23]
Hinze, J.O. Turbulence, 2nd ed; McGraw-Hill: New York, 1975.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy