Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Systematic Review Article

Role of Nanobacteria in the Development of Nephrolithiasis: A Systematic Study

Author(s): Effat Alemzadeh, Tahereh Farkhondeh, Michael Aschner, Ali Mohammad Pourbagher-Shahri, Esmat Alemzadeh, Hamid Salehinia, Bardia Zamani Ranjbar Garmroodi, Milad Bideh, Farshid Abedi and Saeed Samarghandian*

Volume 19, Issue 2, 2023

Published on: 01 September, 2022

Page: [209 - 219] Pages: 11

DOI: 10.2174/1573413718666220614103733

Price: $65

Abstract

Background & Aims: Nanobacteria are unconventional agents that are 100-fold smaller than common bacteria. It has been hypothesized that nanobacteria are responsible for kidney stone formation. This systematic review was designed to address this question related to the role of nanobacteria in the development of nephrolithiasis.

Methods: Keywords related to nanobacteria and nephrolithiasis on MeSH were identified and searched in PubMed, Scopus, Google Scholar, and Web of Science until Oct 2021. The full text of identified papers was obtained and assessed based on exclusion and inclusion criteria. The reviews is based on articles that have focused on the role of nanobacteria in nephrolithiasis.

Result: A total of 17 studies were identified based on the inclusion criteria; however, nine studies qualified for this systematic review. The findings of the 9 articles indicated the role of nanobacteria in nephrolithiasis. After assessing the quality of the study, 7 papers were included in this systematic study.

Conclusion: Regarding the limitation of the short number of evidence to recognize how nanobacteria cause kidney stones, nevertheless it is obvious that high concentrations of nanobacteria are directly related to initiating crystal nucleation in the kidney and lead to nephrolithiasis; some variables like physiochemical factors, gender and so on could certainly affect crystallization in kidneys. Also, therapeutic decisions for these issues are limited to antibiotics. Our findings, by focusing on the impact of nanobacteria on kidneys, bring a new overview to the study of the factors related to them.

Keywords: Nanobacteria, Nephrolithiasis, Kidney stone, Systematic study.

Graphical Abstract

[1]
Kajander, E.O.; Ciftcioglu, N.; Miller-Hjelle, M.A.; Hjelle, J.T. Nanobacteria: Controversial pathogens in nephrolithiasis and polycystic kidney disease. Curr. Opin. Nephrol. Hypertens., 2001, 10(3), 445-452.
[http://dx.doi.org/10.1097/00041552-200105000-00023 ] [PMID: 11342811]
[2]
Qian, B.; Hao, Z.; Wang, Y.; Yang, H.; Li, Y.; Tan, M. Comparative study of a nano-bacterial rat kidney stone model and the traditional ethylene glycol rat kidney stone model. Eur. PMC, 2020, 2020., PPR121014.
[http://dx.doi.org/10.21203/rs.3.rs-16816/v1]
[3]
Habibipour, R.; Zarrini, G.; Yarizadeh, S. Isolation and characterization of hyperthermophilic nanobacteria from a hot spring in Ardabil, Iran. Med. Laboratory J., 2017, 11(3), 20-24.
[4]
Raoult, D.; Drancourt, M.; Azza, S.; Nappez, C.; Guieu, R.; Rolain, J-M.; Fourquet, P.; Campagna, B.; La Scola, B.; Mege, J.L.; Mansuelle, P.; Lechevalier, E.; Berland, Y.; Gorvel, J.P.; Renesto, P. Nanobacteria are Mineralo fetuin complexes. PLoS Pathog., 2008, 4(2), e41
[http://dx.doi.org/10.1371/journal.ppat.0040041 ] [PMID: 18282102]
[5]
Cisar, J.O.; Xu, D.Q.; Thompson, J.; Swaim, W.; Hu, L.; Kopecko, D.J. An alternative interpretation of nanobacteria-induced biomineralization. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11511-11515.
[http://dx.doi.org/10.1073/pnas.97.21.11511 ] [PMID: 11027350]
[6]
Ciftcioglu, N.; McKay, D.S.; Mathew, G.; Kajander, E.O. Nanobacteria: Fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J. Investig. Med., 2006, 54(7), 385-394.
[http://dx.doi.org/10.2310/6650.2006.06018 ] [PMID: 17169260]
[7]
Miller, V.M.; Rodgers, G.; Charlesworth, J.A.; Kirkland, B.; Severson, S.R.; Rasmussen, T.E.; Yagubyan, M.; Rodgers, J.C.; Cockerill, F.R., III; Folk, R.L.; Rzewuska-Lech, E.; Kumar, V.; Farell-Baril, G.; Lieske, J.C. Evidence of nanobacterial-like structures in calcified human arteries and cardiac valves. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(3), H1115-H1124.
[http://dx.doi.org/10.1152/ajpheart.00075.2004 ] [PMID: 15142839]
[8]
Wood, H.M.; Shoskes, D.A. The role of nanobacteria in urologic disease. World J. Urol., 2006, 24(1), 51-54.
[http://dx.doi.org/10.1007/s00345-005-0041-3 ] [PMID: 16402263]
[9]
Ciftçioglu, N.; Björklund, M.; Kuorikoski, K.; Bergström, K.; Kajander, E.O. Nanobacteria: An infectious cause for kidney stone formation. Kidney Int., 1999, 56(5), 1893-1898.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00755.x ] [PMID: 10571799]
[10]
Wen, Y.; Li, Y.G.; Yang, Z.L.; Wang, X.J.; Wei, H.; Liu, W.; Miao, X.Y.; Wang, Q.W.; Huang, S.F.; Yang, J.; Kajander, E.O.; Ciftcioglu, N. Detection of nanobacteria in serum, bile and gallbladder mucosa of patients with cholecystolithiasis. Chin. Med. J. (Engl.), 2005, 118(5), 421-424.
[PMID: 15780215]
[11]
Hudelist, G.; Singer, C.F.; Kubista, E.; Manavi, M.; Mueller, R.; Pischinger, K.; Czerwenka, K. Presence of nanobacteria in psammoma bodies of ovarian cancer: Evidence for pathogenetic role in intratumoral biomineralization. Histopathology, 2004, 45(6), 633-637.
[http://dx.doi.org/10.1111/j.1365-2559.2004.02030.x ] [PMID: 15569055]
[12]
Qian, B.; Pokhrel, G.; Wang, Q.; Liu, J. Establishment of a male Wistar rat model of nanobacteria-induced kidney stones. Trop. J. Pharm. Res., 2019, 18(5), 1061-1068.
[http://dx.doi.org/10.4314/tjpr.v18i5.21]
[13]
Ansari, H.; Akhavan Sepahi, A.; Akhavan Sepahi, M. Different approaches to detect “Nanobacteria” in patients with kidney stones: An infectious cause or a subset of life? Urol. J., 2017, 14(5), 5001-5007.
[PMID: 28853105]
[14]
Sardarabadi, H.; Mashreghi, M.; Jamialahmadi, K.; Dianat, T. Resistance of nanobacteria isolated from urinary and kidney stones to broad-spectrum antibiotics. Iran. J. Microbiol., 2014, 6(4), 230-233.
[PMID: 25802705]
[15]
Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Advances in urology, 2018, 2018, 3068365
[http://dx.doi.org/10.1155/2018/3068365]
[16]
Hong, X.; Wang, X.; Wang, T.; Yu, C.; Li, H. Role of nanobacteria in the pathogenesis of kidney stone formation. Am. J. Transl. Res., 2016, 8(7), 3227-3234.
[PMID: 27508044]
[17]
Shiekh, F.A.; Khullar, M.; Singh, S.K. Lithogenesis: Induction of renal calcifications by nanobacteria. Urol. Res., 2006, 34(1), 53-57.
[http://dx.doi.org/10.1007/s00240-005-0034-0 ] [PMID: 16425019]
[18]
Bjorklund, M.; Ciftcioglu, N.; Kajander, E.O. Extraordinary survival of nanobacteria under extreme conditions. Instruments, Methods, and Missions for Astrobiology; International Society for Optics and Photonics, 1998.
[19]
Sirriyeh, R.; Lawton, R.; Gardner, P.; Armitage, G. Reviewing studies with diverse designs: The development and evaluation of a new tool. J. Eval. Clin. Pract., 2012, 18(4), 746-752.
[http://dx.doi.org/10.1111/j.1365-2753.2011.01662.x ] [PMID: 21410846]
[20]
Tellez-Plaza, M.; Navas-Acien, A.; Crainiceanu, C.M.; Guallar, E. Cadmium exposure and hypertension in the 1999-2004 national health and nutrition examination survey (NHANES). Environ. Health Perspect., 2008, 116(1), 51-56.
[http://dx.doi.org/10.1289/ehp.10764 ] [PMID: 18197299]
[21]
Mordukhovich, I.; Wright, R.O.; Hu, H.; Amarasiriwardena, C.; Baccarelli, A.; Litonjua, A.; Sparrow, D.; Vokonas, P.; Schwartz, J. Associations of toenail arsenic, cadmium, mercury, manganese, and lead with blood pressure in the normative aging study. Environ. Health Perspect., 2012, 120(1), 98-104.
[http://dx.doi.org/10.1289/ehp.1002805 ] [PMID: 21878420]
[22]
Shiue, I.; Hristova, K. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3-19% of the population attributable risk for high blood pressure: US NHANES, 2009-2012. Hypertens. Res., 2014, 37(12), 1075-1081.
[http://dx.doi.org/10.1038/hr.2014.121 ] [PMID: 25077919]
[23]
Franceschini, N.; Fry, R.C.; Balakrishnan, P.; Navas-Acien, A.; Oliver-Williams, C.; Howard, A.G.; Cole, S.A.; Haack, K.; Lange, E.M.; Howard, B.V.; Best, L.G.; Francesconi, K.A.; Goessler, W.; Umans, J.G.; Tellez-Plaza, M. Cadmium body burden and increased blood pressure in middle-aged American Indians: The strong heart study. J. Hum. Hypertens., 2017, 31(3), 225-230.
[http://dx.doi.org/10.1038/jhh.2016.67 ] [PMID: 27629244]
[24]
Park, S.K.; Zhao, Z.; Mukherjee, B. Construction of environmental risk score beyond standard linear models using machine learning methods: Application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ. Health, 2017, 16(1), 102.
[http://dx.doi.org/10.1186/s12940-017-0310-9 ] [PMID: 28950902]
[25]
Gao, Y.; Zhu, X.; Shrubsole, M.J.; Fan, L.; Xia, Z.; Harris, R.C.; Hou, L.; Dai, Q. The modifying effect of kidney function on the association of cadmium exposure with blood pressure and cardiovascular mortality: NHANES 1999-2010. Toxicol. Appl. Pharmacol., 2018, 353, 15-22.
[http://dx.doi.org/10.1016/j.taap.2018.05.032 ] [PMID: 29842852]
[26]
Noor, N.; Zong, G.; Seely, E.W.; Weisskopf, M.; James-Todd, T. Urinary cadmium concentrations and metabolic syndrome in U.S. adults: The national health and nutrition examination survey 2001-2014. Environ. Int., 2018, 121(Pt 1), 349-356.
[http://dx.doi.org/10.1016/j.envint.2018.08.029 ] [PMID: 30243183]
[27]
Oliver-Williams, C.; Howard, AG; Navas-Acien, A.; Howard, BV; Tellez-Plaza, M.; Franceschini, N. Cadmium body burden, hypertension, and changes in blood pressure over time: Results from a prospective cohort study in American Indians. J. Am. Soc. Hypertens., 2018, 12(6), 426-437.
[http://dx.doi.org/10.1016/j.jash.2018.03.002]
[28]
Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res., 2019, 169, 180-188.
[http://dx.doi.org/10.1016/j.envres.2018.11.009 ] [PMID: 30466011]
[29]
Staessen, J.A.; Kuznetsova, T.; Roels, H.A.; Emelianov, D.; Fagard, R. Exposure to cadmium and conventional and ambulatory blood pressures in a prospective population study. Am. J. Hypertens., 2000, 13(2), 146-156.
[http://dx.doi.org/10.1016/S0895-7061(99)00187-9 ] [PMID: 10701814]
[30]
Schutte, R.; Nawrot, T.; Richart, T.; Thijs, L.; Roels, H.A.; Van Bortel, L.M.; Struijker-Boudier, H.; Staessen, J.A. Arterial structure and function and environmental exposure to cadmium. Occup. Environ. Med., 2008, 65(6), 412-419.
[http://dx.doi.org/10.1136/oem.2007.035576 ] [PMID: 17951338]
[31]
Pizent, A.; Jurasovie, J.; Telišman, S. Blood pressure in relation to dietary calcium intake, alcohol consumption, blood lead, and blood cadmium in female nonsmokers. J. Trace Elem. Med. Biol., 2001, 15(2-3), 123-130.
[http://dx.doi.org/10.1016/S0946-672X(01)80055-9 ] [PMID: 11787977]
[32]
Telišman, S.; Jurasović, J.; Pizent, A.; Cvitković, P. Blood pressure in relation to biomarkers of lead, cadmium, copper, zinc, and selenium in men without occupational exposure to metals. Environ. Res., 2001, 87(2), 57-68.
[http://dx.doi.org/10.1006/enrs.2001.4292 ] [PMID: 11683589]
[33]
Kelishadi, R.; Askarieh, A.; Motlagh, M.E.; Tajadini, M.; Heshmat, R.; Ardalan, G. Association of blood cadmium level with cardiometabolic risk factors and liver enzymes in a nationally representative sample of adolescents: The CASPIAN-III study. J. Environ. Public Health, 2013, 2013, 142856
[http://dx.doi.org/10.1155/2013/142856]
[34]
Hjelle, J.T.; Miller-Hjelle, M.A.A.; Poxton, I.R.; Kajander, E.O.; Ciftcioglu, N.; Jones, M.L.; Caughey, R.C.; Brown, R.; Millikin, P.D.; Darras, F.S. Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int., 2000, 57(6), 2360-2374.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00096.x ] [PMID: 10844606]
[35]
Ciftçioğlu, N.; Vejdani, K.; Lee, O.; Mathew, G.; Aho, K.M.; Kajander, E.O.; McKay, D.S.; Jones, J.A.; Stoller, M.L. Association between Randall’s plaque and calcifying nanoparticles. Int. J. Nanomedicine, 2008, 3(1), 105-115.
[http://dx.doi.org/10.2147/IJN.S2553 ] [PMID: 18488421]
[36]
Akerman, K.; Kuikka, J.T.; Ciftcioglu, N.; Parkkinen, J.; Bergstroem, K.A.; Kuronen, I.; Kajander, E.O. Radiolabeling and in vivo distribu ion of nanobacteria in rabbit. Proc. SPIE, 1997, 3111, 436-442.
[http://dx.doi.org/10.1117/12.278798]
[37]
Cíftçíoglu, N.; Miller-Hjelle, M.A.; Hjelle, J.T.; Kajander, E.O. Inhibition of nanobacteria by antimicrobial drugs as measured by a modified microdilution method. Antimicrob. Agents Chemother., 2002, 46(7), 2077-2086.
[http://dx.doi.org/10.1128/AAC.46.7.2077-2086.2002 ] [PMID: 12069958]
[38]
Aggarwal, K.P.; Narula, S.; Kakkar, M.; Tandon, C. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed Res. Int., 2013, 2013, 292953
[http://dx.doi.org/10.1155/2013/292953 ] [PMID: 24151593]
[39]
Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the (13)C2]oxalate absorption test. J. Urol., 2006, 175(5), 1711-1715.
[http://dx.doi.org/10.1016/S0022-5347(05)01001-3 ] [PMID: 16600737]
[40]
Martel, J.; Peng, H.H.; Young, D.; Wu, C.Y.; Young, J.D. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: Facts, fancy and future. Nanomedicine (Lond.), 2014, 9(4), 483-499.
[http://dx.doi.org/10.2217/nnm.13.221 ] [PMID: 24787439]
[41]
Wu, J.; Tao, Z.; Deng, Y.; Liu, Q.; Liu, Y.; Guan, X.; Wang, X. Calcifying nanoparticles induce cytotoxicity mediated by ROS-JNK signaling pathways. Urolithiasis, 2019, 47(2), 125-135.
[http://dx.doi.org/10.1007/s00240-018-1048-8 ] [PMID: 29511793]
[42]
Abrol, N.; Panda, A.; Kekre, N.S.; Devasia, A. Nanobacteria in the pathogenesis of urolithiasis: Myth or reality? Indian J. Urol., 2015, 31(1), 3-7.
[http://dx.doi.org/10.4103/0970-1591.134235 ] [PMID: 25624568]
[43]
Daudon, M.; Frochot, V.; Bazin, D.; Jungers, P. Drug-induced kidney stones and crystalline nephropathy: Pathophysiology, prevention and treatment. Drugs, 2018, 78(2), 163-201.
[http://dx.doi.org/10.1007/s40265-017-0853-7 ] [PMID: 29264783]
[44]
Rodgers, A.L. Physicochemical mechanisms of stone formation. Urolithiasis, 2017, 45(1), 27-32.
[http://dx.doi.org/10.1007/s00240-016-0942-1 ] [PMID: 27928586]
[45]
Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent advances on the mechanisms of kidney stone formation. (Review). Int. J. Mol. Med., 2021, 48(2), 149.
[http://dx.doi.org/10.3892/ijmm.2021.4982 ] [PMID: 34132361]
[46]
Singhto, N.; Kanlaya, R.; Nilnumkhum, A.; Thongboonkerd, V. Roles of macrophage exosomes in immune response to calcium oxalate monohydrate crystals. Front. Immunol., 2018, 9, 316.
[http://dx.doi.org/10.3389/fimmu.2018.00316 ] [PMID: 29535716]
[47]
Singhto, N.; Thongboonkerd, V. Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. J. Proteomics, 2018, 185, 64-76.
[http://dx.doi.org/10.1016/j.jprot.2018.06.015 ] [PMID: 29953960]
[48]
Khan, S.R.; Canales, B.K.; Dominguez-Gutierrez, P.R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat. Rev. Nephrol., 2021, 17(6), 417-433.
[http://dx.doi.org/10.1038/s41581-020-00392-1 ] [PMID: 33514941]
[49]
Evan, A.P.; Coe, F.L.; Lingeman, J.; Bledsoe, S.; Worcester, E.M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Renal Physiol., 2018, 315(5), F1236-F1242.
[http://dx.doi.org/10.1152/ajprenal.00035.2018 ] [PMID: 30066583]
[50]
Qindeel, M.; Barani, M.; Rahdar, A.; Arshad, R.; Cucchiarini, M. Nanomaterials for the diagnosis and treatment of urinary tract infections. Nanomaterials (Basel), 2021, 11(2), 546.
[http://dx.doi.org/10.3390/nano11020546 ] [PMID: 33671511]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy