Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Electrical and Structural Properties of HDPE/MWCNT/PE-g-MAH Nanocomposites Prepared Using Solution Mixing and Hot Compaction Two-step Approach

Author(s): Mahmoud Al-Hussein*, Ali Jaffal and Rund Abu-Zuryak

Volume 19, Issue 2, 2023

Published on: 14 January, 2022

Page: [194 - 201] Pages: 8

DOI: 10.2174/1573413717666211108123943

Price: $65

Abstract

Background: MWCNTs tend to form agglomerates in nonpolar polymers due to their small size and large surface area. A promising approach to facilitate their dispersion within the polymeric matrix is based on employing a compatibilizer agent.

Objective: The current study aimed to investigate the effect of a compatibilizer agent based on maleic anhydride grafted HDPE (PE-g-MAH) on the electrical and morphological properties of highdensity polyethylene/multi-wall carbon nanotubes nanocomposites (HDPE/MWCNT/PE-g-MAH) prepared by solution mixing and hot compaction two-step approach.

Methods: A two-step approach based on solvent mixing and hot compaction was used to prepare nanocomposites of HDPE/MWCNT/PE-g-MAH with different MWCNTs and PE-g-MAH contents. The electrical, morphological, and HDPE crystalline structure properties of the nanocomposites were characterized by impedance spectroscopy, high-resolution field emission scanning electron microscopy, and X-ray diffraction, respectively.

Results: The results confirm the positive role of the PE-g-MAH compatibilizer in enhancing the dispersion of the MWCNTs and, in turn, the formation of more conductive pathways at low MWCNTs content in the nanocomposites. Adding 2 wt% of the compatibilizer to the nanocomposite of 1 wt% MWCNTs increases the electrical conductivity by more than three orders of magnitude. Increasing the MWCNTs concentration by more than 1 wt% leads to a limited enhancement in conductivity of the nanocomposite prepared using 2 wt% of PE-g-MAH compatibilizer. Meanwhile, the morphological characterization revealed that the limited increase in conductivity of nanocomposites with only 1 wt% compatibilizer is related to a substantial increase in the HDPE crystallinity (from 14.8 to 43.9%) induced by the enhanced nucleating effect of the dispersed MWCNTs. The excess HDPE crystalline regions suppress the formation of effective MWCNTs conducting pathways due to their confinement into smaller inter-crystallite regions in the nanocomposite.

Conclusion: Therefore, a balanced role of the compatibilizer between the dispersion of the MWCNTs and the nucleation of more HDPE crystallites has to be achieved by carefully selecting the compatibilizer type and concentration.

Keywords: HDPE, carbon nanotubes, PE-g-MAH compatibilizer, nanocomposites, electrical conductivity, crystallinity, critical concentration.

Graphical Abstract

[1]
Huang, X.; Zhi, Ch. Eds.; Polymer Nanocomposites, Electrical and Thermal Properties; Springer, 2016.
[2]
Paramane, A.S.; Kumar, K.S. A Review on nanocomposite based electrical insulations. Trans. Electr. Electron. Mater., 2016, 17, 239-251.
[http://dx.doi.org/10.4313/TEEM.2016.17.5.239]
[3]
Ma, P.C.; Liu, M.Y.; Zhang, H.; Wang, S.Q.; Wang, R.; Wang, K.; Wong, Y.K.; Tang, B.Zh.; Hong, S.H.; Paik, K.W.; Kim, J.K. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces, 2009, 1(5), 1090-1096.
[http://dx.doi.org/10.1021/am9000503 ] [PMID: 20355896]
[4]
Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B. Kinloch, Windle, A.H.; Bauhofer, W.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube epoxy composites. Polymer (Guildf.), 2006, 47, 2036-2045.
[http://dx.doi.org/10.1016/j.polymer.2006.01.029]
[5]
Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z.; Kim, J.K. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater., 2007, 17, 3207-3215.
[http://dx.doi.org/10.1002/adfm.200700065]
[6]
Song, K.; Liu, C.; Guo, J.Z. Polymer-Based Multifunctional Nanocomposites and Their Applications; Elsevier, 2019.
[7]
Tajik, S.; Beitollahi, H.; Garkani, F.; Dourandish, N.Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res., 2021, 60, 1112-1136.
[http://dx.doi.org/10.1021/acs.iecr.0c04952]
[8]
Kim, M.; Kim, S.H.; Rho, Y.; Cho, E.; Lee, J.H.; Lee, S.J. Transparent, water-repellent, antiviral, antistatic, and flexible Cu-plasma-polymerized fluorocarbon nanocomposite thin films. ACS Appl. Mater. Interfaces, 2021, 13(8), 10301-10312.
[http://dx.doi.org/10.1021/acsami.0c21247 ] [PMID: 33591732]
[9]
Singh, V.; Kashyap, S.; Yadav, U.; Srivastava, A.; Singh, A.V.; Singh, R.K.; Singh, S.K.; Saxena, P.S. Nitrogen doped carbon quantum dots demonstrate no toxicity under in vitro conditions in a cervical cell line and in vivo in Swiss albino mice. Toxicol. Res. (Camb.), 2019, 8(3), 395-406.
[http://dx.doi.org/10.1039/C8TX00260F ] [PMID: 31160973]
[10]
Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582), 787-792.
[http://dx.doi.org/10.1126/science.1060928 ] [PMID: 12161643]
[11]
Schnorr, J.M.; Swager, T.M. Emerging applications of carbon Nanotubes. Chem. Mater., 2011, 23, 646-657.
[http://dx.doi.org/10.1021/cm102406h]
[12]
Lewicki, J.P.; Rodriguez, J.N.; Zhu, C.; Worsley, M.A.; Wu, A.S.; Kanarska, Y.; Horn, J.D.; Duoss, E.B.; Ortega, J.M.; Elmer, W.; Hensleigh, R.; Fellini, R.A.; King, M.J. 3D-Printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci. Rep., 2017, 7, 43401.
[http://dx.doi.org/10.1038/srep43401 ] [PMID: 28262669]
[13]
Hu, Y.; Domínguez, C.M.; Bauer, J.; Weigel, S.; Schipperges, A.; Oelschlaeger, C.; Willenbacher, N.; Keppler, S.; Bastmeyer, M.; Heißler, S.; Wöll, C.; Scharnweber, T.; Rabe, K.S.; Niemeyer, C.M. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat. Commun., 2019, 10(1), 5522.
[http://dx.doi.org/10.1038/s41467-019-13381-1 ] [PMID: 31797918]
[14]
Camacho, J.; Singh, A.V.; Wang, W.; Shan, R.; Yapp, E.K.Y.; Chen, D.; Kraft, M.; Wang, H. Soot particle size distributions in premixed stretch-stabilized flat ethylene-oxygen-argon flames. Proc. Combust. Inst., 2017, 36, 1001-1009.
[http://dx.doi.org/10.1016/j.proci.2016.06.170]
[15]
Chen, B.; Gao, M.; Zuo, J.M.; Qu, S.; Liu, B.; Huang, Y. Binding energy of parallel carbon nanotubes. Appl. Phys. Lett., 2003, 83, 3570.
[http://dx.doi.org/10.1063/1.1623013]
[16]
Pötschke, P.; Formes, T.D.; Paul, D.R. Rheological behaviour of multiwalled carbon nanotube/polycarbonate composites. Polymer (Guildf.), 2002, 43, 3247.
[http://dx.doi.org/10.1016/S0032-3861(02)00151-9]
[17]
Lau, K.T.; Hui, D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon, 2002, 40(9), 1065.
[18]
Tang, W.; Santare, M.H.; Advani, S.G. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon, 2003, 41, 2779.
[http://dx.doi.org/10.1016/S0008-6223(03)00387-7]
[19]
Kanagaraj, S.; Varanda, F.R.; Zhiltsova, T.V.; Oliveira, M.S.A.; Simoes, J.A.O. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol., 2007, 67, 3070-3077.
[http://dx.doi.org/10.1016/j.compscitech.2007.04.024]
[20]
Xie, X.L.; Fung, R.K.; Li, R.K.Y.; Tjong, S.C.; Mai, Y-W. Structural and mechanical behavior of polypropylene/ maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites prepared by injection molding. J. Polym. Sci., B, Polym. Phys., 2002, 40, 1214-1222.
[http://dx.doi.org/10.1002/polb.10175]
[21]
Wiriyanukul, N.; Wacharawichanant, S. Effect of compatibilizers on mechanical thermal and morphology properties of HDPE/TiO2 nanocomposites. Adv. Mat. Res., 2010, 93-94, 169-172.
[22]
Arman, N.; Tekay, E.; Sinan, S. Preparation of high-strength SEBS nanocomposites reinforced with halloysite nanotube: Effect of SEBS-g-MA compatibilizer. J. Thermoplastic Composite Mat., 2020, 33, 1336-1357.
[http://dx.doi.org/10.1177/0892705719895055]
[23]
Xue, M.L.; Yu, Y.L.; Chuah, H.H. Reactive compatibilization of poly(trimethylene terephthalate)/ polypropylene blends by polypropylene-graft-maleic anhydride. Part 2. Crystallization behavior. J. Macromol. Sci. Part B Phys., 2007, 46, 603-615.
[http://dx.doi.org/10.1080/00222340701258008]
[24]
Passador, F.R.; Ruvolo-Filho, A.C.; Pessan, L.A. Effects of different compatibilizers on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE blend-based nanocomposites. J. Appl. Polym. Sci., 2013, 130, 1726-1735.
[http://dx.doi.org/10.1002/app.39265]
[25]
do Amaral Montanheiroa, T.L.; Passadora, F.R.; de Oliveiraa, M.P.; Durán, N.; Lemesa, A.P. Preparation and characterization of maleic anhydride grafted poly (Hydroxybutirate-CO-Hydroxyvalerate) – PHBV-g-MA. Mater. Res., 2016, 19, 229-235.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0496]
[26]
Braga, N.F.; Zaggo, H.M.; Montanheiro, T.L.A.; Passador, F.R. Preparation of maleic anhydride grafted poly(trimethylene terephthalate) (PTT-g-MA) by reactive extrusion processing. J. Manuf. Mater. Process, 2019, 3, 37.
[http://dx.doi.org/10.3390/jmmp3020037]
[27]
Jaffal, A. Abu- Zurayk, R.; Al-Hussein, M. Two-step approach based on solution mixing and hot compaction for CNT/HDPE nanocomposite preparation. Int. J. Electrochem. Sci., 2019, 14, 6489.
[http://dx.doi.org/10.20964/2019.07.59]
[28]
Singh, A.V.; Mehta, K.K.; Worley, K.; Dordick, J.S.; Kane, R.S.; Wan, L.Q. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano, 2014, 8(3), 2196-2205.
[http://dx.doi.org/10.1021/nn405253d ] [PMID: 24559311]
[29]
Gomadam, P.M.; Weidnern, J.W. Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells; Wiley: USA, 2005.
[http://dx.doi.org/10.1002/er.1144]
[30]
Kremer, F.; Schonhals, A.; Luck, W. Broadband dielectric spectroscopy; Springer Velarg-Berlin: Heidelberg, New York, 2002.
[31]
Yuan, X.; Wang, H.; Sun, J.C.; Zhang, J. AC impedance technique in PEM fuel cell diagnosis- A review. Int. J. Hydrogen Energy, 2007, 32, 4365.
[http://dx.doi.org/10.1016/j.ijhydene.2007.05.036]
[32]
Yuan, X.Z.; Song, C.; Wang, H.; Zhang, J. Electrochemical impedance spectroscopy in pem fuel cells: Fundamentals and applications; Springer: London, 2010.
[http://dx.doi.org/10.1007/978-1-84882-846-9]
[33]
Al-Madani, G.; Kailani, M.H.; Al-Hussein, M. Test system for through-plane conductivity measurements of hydrogen proton exchange membranes. Int. J. Electrochem. Sci., 2015, 10, 6465.
[34]
Verge, P.; Benali, S.; Bonnaud, L.; Minoia, A.; Mainil, M.; Lazzaroni, R.; Dubois, P. Unpredictable dispersion states of MWNTs in HDPE: A comparative and comprehensive study. Eur. Polym. J., 2012, 48, 677-683.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.01.002]
[35]
Xiang, D.; Guo, J.; Kumar, A.; Chen, B.; Harkin-Jones, E. Effect of processing conditions on the structure, electrical and mechanical properties of melt mixed high density polyethylene/multi-walled CNT composites in compression molding. Mater. Test., 2017, 59(2), 136-147.
[http://dx.doi.org/10.3139/120.110974]
[36]
Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol., 2009, 69, 1486-1498.
[http://dx.doi.org/10.1016/j.compscitech.2008.06.018]
[37]
Strobl, G. The Physics of Polymers; Springer: Berlin, 1996.
[http://dx.doi.org/10.1007/978-3-662-03243-5]
[38]
Al-Hussein, M.; Davies, G.R.; Ward, I.M. Preparation of ultra-high modulus materials from metallocene based linear polyethylenes. Polymer (Guildf.), 2001, 42, 3679.
[http://dx.doi.org/10.1016/S0032-3861(00)00575-9]
[39]
Al-Hussein, M.; Davies, G.R.; Ward, I.M. Mechanical properties of oriented low-density polyethylene with an oriented lamellar-stack morphology. J. Polym. Sci., B, Polym. Phys., 2000, 38, 755.
[http://dx.doi.org/10.1002/(SICI)1099-0488(20000301)38:5<755:AID-POLB13>3.0.CO;2-L]
[40]
Li, Y.J.; Xu, M.; Feng, J.Q.; Cao, X.L.; Yu, Y.F.; Dang, Z.M. Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites. J. Appl. Polym. Sci., 2007, 106, 3359-3365.
[http://dx.doi.org/10.1002/app.26988]
[41]
Gültnera, M.; Häußlerb, L.; Pötschke, P. Influence of matrix crystallinity on electrical percolation of multiwalled carbon nanotubes in polypropylene; AIP Conf. Proc., 1914; , 2017, pp. , 030022-1,030022-030025.
[42]
Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; Kanase, A.; Singh, S.P.; Johnston, B.; Tentschert, J.; Laux, P.; Luch, A. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv. Intell. Syst, 2020, 2, 2000084.
[http://dx.doi.org/10.1002/aisy.202000084]
[43]
Singh, A.V.; Maharjan, R-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470 ] [PMID: 33373205]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy