Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanomaterials-based Drug Delivery Approaches for Wound Healing

Author(s): Aswathy Ravindran Girija, Sivakumar Balasubramanian and Allison J. Cowin*

Volume 28, Issue 9, 2022

Published on: 22 April, 2022

Page: [711 - 726] Pages: 16

DOI: 10.2174/1381612828666220328121211

Price: $65

Abstract

Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing, all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) and therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source for the use of nanomaterials as an advanced approach to improve wound healing.

Keywords: Wound healing, chronic wounds, nanotechnology, nanoparticles, drug delivery, nanocarriers, polymeric nanoparticles, nanoscaffolds.

[1]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[2]
Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 1998; 176(2A)(Suppl.): 26S-38S.
[http://dx.doi.org/10.1016/S0002-9610(98)00183-4] [PMID: 9777970]
[3]
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 735.
[http://dx.doi.org/10.3390/pharmaceutics12080735] [PMID: 32764269]
[4]
Lindley LE, Stojadinovic O, Pastar I, Tomic-Canic M. Biology and biomarkers for wound healing. Plast Reconstr Surg 2016; 138(3)(Suppl.): 18S-28S.
[http://dx.doi.org/10.1097/PRS.0000000000002682] [PMID: 27556760]
[5]
Brem H, Stojadinovic O, Diegelmann RF, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med 2007; 13(1-2): 30-9.
[http://dx.doi.org/10.2119/2006-00054.Brem] [PMID: 17515955]
[6]
Brem H, Golinko MS, Stojadinovic O, et al. Primary cultured fibroblasts derived from patients with chronic wounds: A methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J Transl Med 2008; 6: 75-84.
[http://dx.doi.org/10.1186/1479-5876-6-75] [PMID: 19046453]
[7]
Loesche M, Gardner SE, Kalan L, et al. Temporal stability in chronic wound microbiota is associated with poor healing. J Invest Dermatol 2017; 137(1): 237-44.
[http://dx.doi.org/10.1016/j.jid.2016.08.009] [PMID: 27566400]
[8]
Stojadinovic O, Pastar I, Nusbaum AG, Vukelic S, Krzyzanowska A, Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen 2014; 22(2): 220-7.
[http://dx.doi.org/10.1111/wrr.12142] [PMID: 24635172]
[9]
Liang L, Stone RC, Stojadinovic O, et al. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen 2016; 24(6): 943-53.
[http://dx.doi.org/10.1111/wrr.12470] [PMID: 27607190]
[10]
Ahangar P, Woodward M, Cowin AJ. Advanced wound therapies. Wound Practice and Research 2018; 26: 58-62.
[11]
Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules 2018; 23(9): 2392.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[12]
Bumpus K, Maier MA. The ABC’s of wound care. Curr Cardiol Rep 2013; 15(4): 346.
[http://dx.doi.org/10.1007/s11886-013-0346-6] [PMID: 23420442]
[13]
Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2015; 7(1): 1-7.
[http://dx.doi.org/10.1038/ijos.2014.65] [PMID: 25504208]
[14]
Percival SL, McCarty SM. Silver and alginates: Role in wound healing and biofilm control. Adv Wound Care (New Rochelle) 2015; 4(7): 407-14.
[http://dx.doi.org/10.1089/wound.2014.0541] [PMID: 26155383]
[15]
Metcalf DG, Bowler PG. Clinician perceptions of wound biofilm. Int Wound J 2016; 13(5): 717-25.
[http://dx.doi.org/10.1111/iwj.12358] [PMID: 25196188]
[16]
Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS 2017; 125(4): 304-19.
[http://dx.doi.org/10.1111/apm.12673] [PMID: 28407419]
[17]
He J, Qiao Y, Zhang H, et al. Gold-silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials 2020; 234: 119763.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119763] [PMID: 31978871]
[18]
Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 1990; 11(3): 418-42.
[http://dx.doi.org/10.1210/edrv-11-3-418] [PMID: 2226349]
[19]
Dickson C, Spencer-Dene B, Dillon C, Fantl V. Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors. Breast Cancer Res 2000; 2(3): 191-6.
[http://dx.doi.org/10.1186/bcr53] [PMID: 11250709]
[20]
Huang JS, Wang YH, Ling TY, Chuang SS, Johnson FE, Huang SS. Synthetic TGF-beta antagonist accelerates wound healing and reduces scarring. FASEB J 2002; 16(10): 1269-70.
[http://dx.doi.org/10.1096/fj.02-0103fje] [PMID: 12153996]
[21]
Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C 2015; 48: 651-62.
[http://dx.doi.org/10.1016/j.msec.2014.12.068] [PMID: 25579968]
[22]
MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 1996; 93(21): 11853-8.
[http://dx.doi.org/10.1073/pnas.93.21.11853] [PMID: 8876227]
[23]
Boucek RJ, Dipietro LA. Factors affecting wound healing. Otolaryngol Clin North Am 1984; 17(2): 243-64.
[http://dx.doi.org/10.1016/S0030-6665(20)31963-0] [PMID: 6204263]
[24]
Nusbaum AG, Gil J, Rippy MK, et al. Effective method to remove wound bacteria: Comparison of various debridement modalities in an in vivo porcine model. J Surg Res 2012; 176(2): 701-7.
[http://dx.doi.org/10.1016/j.jss.2011.11.1040] [PMID: 22440935]
[25]
Bradley M, Cullum N, Sheldon T. The debridement of chronic wounds: A systematic review. Health Technol Assess 1999; 3(17 Pt 1): iii-iv, 1-78.
[http://dx.doi.org/10.3310/hta3171] [PMID: 10492854]
[26]
Kammerlander G, Andriessen A, Asmussen P, Brunner U, Eberlein T. Role of the wet-to-dry phase of cleansing in preparing the chronic wound bed for dressing application. J Wound Care 2005; 14(8): 349-52.
[http://dx.doi.org/10.12968/jowc.2005.14.8.26824] [PMID: 16178287]
[27]
Santema KTB, Stoekenbroek RM, Koelemay MJW, et al. DAMO2CLES Study Group. Hyperbaric oxygen therapy in the treatment of ischemic lower-extremity ulcers in patients with diabetes: Results of the DAMO2CLES multicenter randomized clinical trial. Diabetes Care 2018; 41(1): 112-9.
[http://dx.doi.org/10.2337/dc17-0654] [PMID: 29074815]
[28]
Wu SC, Marston W, Armstrong DG. Wound care: The role of advanced wound healing technologies. J Vasc Surg 2010; 52(3)(Suppl.): 59S-66S.
[http://dx.doi.org/10.1016/j.jvs.2010.06.009] [PMID: 20804934]
[29]
Armstrong DG, Lavery LA, Abu-Rumman P, et al. Outcomes of subatmospheric pressure dressing therapy on wounds of the diabetic foot. Ostomy Wound Manage 2002; 48(4): 64-8.
[PMID: 11993062]
[30]
Schurtz E, Differding J, Jacobson E, Maki C, Ahmeti M. Evaluation of negative pressure wound therapy to closed laparotomy incisions in acute care surgery. Am J Surg 2018; 215(1): 113-5.
[http://dx.doi.org/10.1016/j.amjsurg.2017.08.009] [PMID: 28882357]
[31]
Thakral G, La Fontaine J, Kim P, Najafi B, Nichols A, Lavery LA. Treatment options for venous leg ulcers: Effectiveness of vascular surgery, bioengineered tissue, and electrical stimulation. Adv Skin Wound Care 2015; 28(4): 164-72.
[http://dx.doi.org/10.1097/01.ASW.0000462328.60670.c3] [PMID: 25775200]
[32]
Marston WA, Hanft J, Norwood P, Pollak R. Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: Results of a prospective randomized trial. Diabetes Care 2003; 26(6): 1701-5.
[http://dx.doi.org/10.2337/diacare.26.6.1701] [PMID: 12766097]
[33]
Driver VR, Lavery LA, Reyzelman AM, et al. A clinical trial of integra template for diabetic foot ulcer treatment. Wound Repair Regen 2015; 23(6): 891-900.
[http://dx.doi.org/10.1111/wrr.12357] [PMID: 26297933]
[34]
Wei EX, Kirsner RS, Eaglstein WH. End points in dermatologic clinical trials: A review for clinicians. J Am Acad Dermatol 2016; 75(1): 203-9.
[http://dx.doi.org/10.1016/j.jaad.2016.01.052] [PMID: 26936300]
[35]
Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. Burns Trauma 2019; 7: 2.
[http://dx.doi.org/10.1186/s41038-018-0139-7] [PMID: 30701184]
[36]
Nagai MK, Embil JM. Becaplermin: Recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2002; 2(2): 211-8.
[http://dx.doi.org/10.1517/14712598.2.2.211] [PMID: 11849120]
[37]
Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 2008; 58(2): 185-206.
[http://dx.doi.org/10.1016/j.jaad.2007.08.048] [PMID: 18222318]
[38]
Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 2016; 4: 82-9.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[39]
Azuma K, Izumi R, Osaki T, et al. Chitin, chitosan, and its derivatives for wound healing: Old and new materials. J Funct Biomater 2015; 6(1): 104-42.
[http://dx.doi.org/10.3390/jfb6010104] [PMID: 25780874]
[40]
Kirby GTS, Mills SJ, Vandenpoel L, et al. Development of advanced dressings for the delivery of progenitor cells. ACS Appl Mater Interfaces 2017; 9(4): 3445-54.
[http://dx.doi.org/10.1021/acsami.6b14725] [PMID: 28068055]
[41]
Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent Sci 2017; 3(3): 163-75.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[42]
Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005; 293(2): 217-28.
[http://dx.doi.org/10.1001/jama.293.2.217] [PMID: 15644549]
[43]
Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.
[http://dx.doi.org/10.1016/j.nantod.2008.10.014]
[44]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[http://dx.doi.org/10.1002/bit.25160] [PMID: 24264728]
[45]
Nethi SK, Veeriah V, Barui AK, et al. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods. Nanoscale 2015; 7(21): 9760-70.
[http://dx.doi.org/10.1039/C5NR01327E] [PMID: 25963768]
[46]
Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 2013; 7(4): 2891-7.
[http://dx.doi.org/10.1021/nn401196a] [PMID: 23560817]
[47]
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxid Redox Signal 2019; 30(5): 786-809.
[http://dx.doi.org/10.1089/ars.2017.7383] [PMID: 29943661]
[48]
Jackson J, Kopecki Z, Cowin AJ. Nanotechnological advances in cutaneous medicine. J Nanomater 2013; 2013: 8.
[http://dx.doi.org/10.1155/2013/808234]
[49]
Girija AR, Balasubramanian S, Bright R, et al. Ultrasmall gold nanocluster based antibacterial nanoaggregates for infectious wound healing. ChemNanoMat 2019; 5: 1176-81.
[http://dx.doi.org/10.1002/cnma.201900366]
[50]
Haidari H, Garg S, Vasilev K, et al. Silver based wound dressings: Current issues and future developments for treating bacterial infections. Wound Pract Res 2020; 28: 173-80.
[http://dx.doi.org/10.33235/wpr.28.4.173-180]
[51]
Mukherjee S, Chowdhury D, Kotcherlakota R, et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 2014; 4(3): 316-35.
[http://dx.doi.org/10.7150/thno.7819] [PMID: 24505239]
[52]
Konop M, Damps T, Misicka A, et al. Certain aspects of silver and silver nanoparticles in wound care: A minireview. J Nanomater 2016.
[53]
You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep 2017; 7(1): 10489.
[http://dx.doi.org/10.1038/s41598-017-10481-0] [PMID: 28874692]
[54]
Adhya A, Bain J, Ray O, et al. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm 2014; 6(1): 29-34.
[http://dx.doi.org/10.4103/0976-0105.145776] [PMID: 25538469]
[55]
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An updated review on silver nanoparticles in biomedicine. Nanomaterials (Basel) 2020; 10(11): 2318.
[http://dx.doi.org/10.3390/nano10112318] [PMID: 33238486]
[56]
Krishnan PD, Banas D, Durai RD, et al. Silver nanomaterials for wound dressing applications. Pharmaceutics 2020; 12(9): 821.
[http://dx.doi.org/10.3390/pharmaceutics12090821] [PMID: 32872234]
[57]
Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale 2020; 12(4): 2268-91.
[http://dx.doi.org/10.1039/C9NR08234D] [PMID: 31942896]
[58]
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel) 2018; 8(9): 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[59]
Haidari H, Kopecki Z, Sutton AT, Garg S, Cowin AJ, Vasilev K. pH-responsive “smart” hydrogel for controlled delivery of silver nanoparticles to infected wounds. Antibiotics (Basel) 2021; 10(1): 49.
[http://dx.doi.org/10.3390/antibiotics10010049] [PMID: 33466534]
[60]
Haidari H, Bright R, Strudwick XL, et al. Multifunctional ultra small AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater 2021; 128: 420-34.
[http://dx.doi.org/10.1016/j.actbio.2021.04.007] [PMID: 33857695]
[61]
Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Eradication of mature bacterial biofilms with concurrent improvement in chronic wound healing using silver nanoparticle hydrogel treatment. Biomedicines 2021; 9(9): 1182.
[http://dx.doi.org/10.3390/biomedicines9091182] [PMID: 34572368]
[62]
Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials (Basel) 2019; 12(16): 2540.
[http://dx.doi.org/10.3390/ma12162540] [PMID: 31404974]
[63]
Skóra B, Krajewska U, Nowak A, Dziedzic A, Barylyak A, Kus-Liśkiewicz M. Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci Rep 2021; 11(1): 13451.
[http://dx.doi.org/10.1038/s41598-021-92812-w] [PMID: 34188097]
[64]
Ahmad SA, Das SS, Khatoon A, et al. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater Sci Energy Technol 2020; 3: 756-69.
[http://dx.doi.org/10.1016/j.mset.2020.09.002]
[65]
Franková J, Pivodová V, Vágnerová H, Juráňová J, Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater 2016; 14(2): e137-42.
[http://dx.doi.org/10.5301/jabfm.5000268] [PMID: 26952588]
[66]
Sim W, Barnard RT, Blaskovich MAT, Ziora ZM. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007-2017). Antibiotics (Basel) 2018; 7(4): 93.
[http://dx.doi.org/10.3390/antibiotics7040093] [PMID: 30373130]
[67]
Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 2018; 115: 165-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[68]
Cardoso VS, Quelemes PV, Amorin A, et al. Collagen-based silver nanoparticles for biological applications: Synthesis and characterization. J Nanobiotechnology 2014; 12: 36.
[http://dx.doi.org/10.1186/s12951-014-0036-6] [PMID: 25223611]
[69]
Zhang H, Peng M, Cheng T, et al. Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing. J Mater Sci 2018; 53: 14944-52.
[http://dx.doi.org/10.1007/s10853-018-2710-9]
[70]
Tran CD, Prosenc F, Franko M, Benzi G. One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: Characterization and antimicrobial activity. ACS Appl Mater Interfaces 2016; 8(50): 34791-801.
[http://dx.doi.org/10.1021/acsami.6b14347] [PMID: 27998108]
[71]
Konop M, Czuwara J, Kłodzińska E, et al. Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full-thickness skin wound model in diabetic mice. J Tissue Eng Regen Med 2020; 14(2): 334-46.
[http://dx.doi.org/10.1002/term.2998] [PMID: 31825159]
[72]
Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol 2019; 121: 633-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.056] [PMID: 30326224]
[73]
Han X, He J, Wang Z, et al. Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and fracture treatment. Drug Deliv 2021; 28(1): 319-24.
[http://dx.doi.org/10.1080/10717544.2020.1869865] [PMID: 33517806]
[74]
Diniz FR, Maia RCAP, Rannier L, et al. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials (Basel) 2020; 10(2): 390.
[http://dx.doi.org/10.3390/nano10020390] [PMID: 32102229]
[75]
Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J Mater Sci Mater Med 2018; 29(3): 22.
[http://dx.doi.org/10.1007/s10856-018-6027-7] [PMID: 29396683]
[76]
El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 2020; 238: 116175.
[http://dx.doi.org/10.1016/j.carbpol.2020.116175] [PMID: 32299548]
[77]
Pei Z, Sun Q, Sun X, Wang Y, Zhao P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng 2015; 26(Suppl. 1): S111-8.
[http://dx.doi.org/10.3233/BME-151296] [PMID: 26405868]
[78]
Tao G, Cai R, Wang Y, et al. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater Des 2019; 180: 107940.
[http://dx.doi.org/10.1016/j.matdes.2019.107940]
[79]
Haidari H, Kopecki Z, Bright R, et al. Ultra-small AgNPs impregnated biocompatible hydrogel with highly effective biofilm elimination properties. ACS Appl Mater Interfaces 2020; 12(37): 41011-25.
[http://dx.doi.org/10.1021/acsami.0c09414] [PMID: 32840353]
[80]
Nethi SK, Mukherjee S, Veeriah V, Barui AK, Chatterjee S, Patra CR. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling. Chem Commun (Camb) 2014; 50(92): 14367-70.
[http://dx.doi.org/10.1039/C4CC06996J] [PMID: 25298204]
[81]
Balakrishnan S, Mukherjee S, Das S, et al. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 2017; 35(4): 217-31.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[82]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[83]
Naskar A, Bera S, Bhattacharya R, et al. Effect of bovine serum albumin immobilized Au–ZnO–graphene nanocomposite on human ovarian cancer cell. J Alloys Compd 2018; 734: 66-74.
[http://dx.doi.org/10.1016/j.jallcom.2017.11.029]
[84]
Roy Chowdhury N, Cowin AJ, Zilm P, Vasilev K. “Chocolate” gold nanoparticles – one pot synthesis and biocompatibility. Nanomaterials (Basel) 2018; 8(7): 496.
[http://dx.doi.org/10.3390/nano8070496] [PMID: 29976891]
[85]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[86]
Yildirimer L, Thanh NT, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today 2011; 6(6): 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[87]
Arafa MG, El-Kased RF, Elmazar MM. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci Rep 2018; 8(1): 13674.
[http://dx.doi.org/10.1038/s41598-018-31895-4] [PMID: 30209256]
[88]
Rajendran NK, Kumar SSD, Houreld NN, et al. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[89]
Gobin AM, O’Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med 2005; 37(2): 123-9.
[http://dx.doi.org/10.1002/lsm.20206] [PMID: 16047329]
[90]
Hsu SH, Chang YB, Tsai CL, Fu KY, Wang SH, Tseng HJ. Characterization and biocompatibility of chitosan nanocomposites. Colloids Surf B Biointerfaces 2011; 85(2): 198-206.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.029] [PMID: 21435843]
[91]
Volkova N, Yukhta M, Pavlovich O, Goltsev A. Application of cryopreserved fibroblast culture with au nanoparticles to treat burns. Nanoscale Res Lett 2016; 11(1): 22.
[http://dx.doi.org/10.1186/s11671-016-1242-y] [PMID: 26762263]
[92]
Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I. Nanoparticles for the treatment of wounds. Curr Pharm Des 2015; 21(29): 4329-41.
[http://dx.doi.org/10.2174/1381612821666150901104601] [PMID: 26323420]
[93]
Pan A, Zhong M, Wu H, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing. Nanomedicine 2018; 14(5): 1619-28.
[http://dx.doi.org/10.1016/j.nano.2018.04.007] [PMID: 29698728]
[94]
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011; 29(3): 322-37.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[95]
Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J Biomater Appl 2016; 31(2): 283-301.
[http://dx.doi.org/10.1177/0885328216644536] [PMID: 27095659]
[96]
Das A, Sudhahar V, Chen GF, et al. Endothelial antioxidant-1: A key mediator of copper-dependent wound healing in vivo. Sci Rep 2016; 6: 33783.
[http://dx.doi.org/10.1038/srep33783] [PMID: 27666810]
[97]
Cucci LM, Satriano C, Marzo T, La Mendola D. Angiogenin and copper crossing in wound healing. Int J Mol Sci 2021; 22(19): 10704.
[http://dx.doi.org/10.3390/ijms221910704] [PMID: 34639045]
[98]
Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 2019; 122: 137-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.120] [PMID: 30342131]
[99]
Tiwari M, Narayanan K, Thakar MB, Jagani HV, Venkata Rao J. Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol 2014; 8(4): 230-7.
[http://dx.doi.org/10.1049/iet-nbt.2013.0052] [PMID: 25429502]
[100]
Alizadeh S, Seyedalipour B, Shafieyan S, Kheime A, Mohammadi P, Aghdami N. Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochem Biophys Res Commun 2019; 517(4): 684-90.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.110] [PMID: 31400855]
[101]
Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 2014; 731: 8-19.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.033] [PMID: 24632085]
[102]
Hu H, Tang Y, Pang L, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic-co-glycolic acid) dressing loaded with vitamin e in vivo and in vitro. ACS Appl Mater Interfaces 2018; 10(27): 22939-50.
[http://dx.doi.org/10.1021/acsami.8b04903] [PMID: 29924595]
[103]
Borkow G, Gabbay J, Dardik R, et al. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen 2010; 18(2): 266-75.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00573.x] [PMID: 20409151]
[104]
Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[105]
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14(2): 244-69.
[http://dx.doi.org/10.1128/CMR.14.2.244-269.2001] [PMID: 11292638]
[106]
Tao B, Lin C, Deng Y, et al. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J Mater Chem B Mater Biol Med 2019; 7(15): 2534-48.
[http://dx.doi.org/10.1039/C8TB03272F] [PMID: 32255130]
[107]
Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 2009; 61(4): 685-92.
[http://dx.doi.org/10.1016/j.jaad.2009.02.051] [PMID: 19646780]
[108]
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch Toxicol 2013; 87(7): 1181-200.
[http://dx.doi.org/10.1007/s00204-013-1079-4] [PMID: 23728526]
[109]
Jamnongkan T, Sukumaran SK, Sugimoto M, et al. Towards novel wound dressings: Antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly(vinyl alcohol) hybrids. J Polym Eng 2015; 35: 575-86.
[http://dx.doi.org/10.1515/polyeng-2014-0319]
[110]
PT SK, Lakshmanan VK, Raj M, et al. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 2013; 30(2): 523-37.
[http://dx.doi.org/10.1007/s11095-012-0898-y] [PMID: 23135816]
[111]
Kumar PTS, Lakshmanan VK, Anilkumar TV, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 2012; 4(5): 2618-29.
[http://dx.doi.org/10.1021/am300292v] [PMID: 22489770]
[112]
Naskar A, Saha P, Roy SS, et al. Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–graphene nanocomposites. RSC Advances 2016; 6: 88751-61.
[http://dx.doi.org/10.1039/C6RA14808E]
[113]
Naskar A, Lee S, Kim KS. Antibacterial potential of Ni-doped zinc oxide nanostructure: Comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Advances 2020; 10: 1232-42.
[http://dx.doi.org/10.1039/C9RA09512H]
[114]
Augustine R, Dominic EA, Reju I, et al. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances 2014; 4: 24777-85.
[http://dx.doi.org/10.1039/c4ra02450h]
[115]
Barui AK, Veeriah V, Mukherjee S, et al. Zinc oxide nanoflowers make new blood vessels. Nanoscale 2012; 4(24): 7861-9.
[http://dx.doi.org/10.1039/c2nr32369a] [PMID: 23152079]
[116]
Yadav E, Singh D, Yadav P, et al. Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Advances 2018; 8: 21621-35.
[http://dx.doi.org/10.1039/C8RA03500H]
[117]
Balaure PC, Holban AM, Grumezescu AM, et al. in vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int J Pharm 2019; 557: 199-207.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.063] [PMID: 30597267]
[118]
Gao Y, Han Y, Cui M, Tey HL, Wang L, Xu C. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. J Mater Chem B Mater Biol Med 2017; 5(23): 4535-41.
[http://dx.doi.org/10.1039/C7TB00664K] [PMID: 32263980]
[119]
Raguvaran R, Manuja BK, Chopra M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol 2017; 96: 185-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.009] [PMID: 27939272]
[120]
Sankar R, Dhivya R, Shivashangari KS, Ravikumar V. Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats. J Mater Sci Mater Med 2014; 25(7): 1701-8.
[http://dx.doi.org/10.1007/s10856-014-5193-5] [PMID: 24682905]
[121]
Archana D, Singh BK, Dutta J, Dutta PK. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int J Biol Macromol 2015; 73: 49-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.055] [PMID: 25450048]
[122]
Sivaranjani V, Philominathan P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med 2016; 12: 1-5.
[http://dx.doi.org/10.1016/j.wndm.2015.11.002]
[123]
Seisenbaeva GA, Fromell K, Vinogradov VV, et al. Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci Rep 2017; 7(1): 15448.
[http://dx.doi.org/10.1038/s41598-017-15792-w] [PMID: 29133853]
[124]
Javanmardi S, Ghojoghi A, Divband B, Ashrafi J. Titanium dioxide nanoparticle/gelatin: A potential burn wound healing biomaterial. Wounds 2018; 30(12): 372-9.
[PMID: 30507548]
[125]
Peng CC, Yang MH, Chiu WT, et al. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromol Biosci 2008; 8(4): 316-27.
[http://dx.doi.org/10.1002/mabi.200700188] [PMID: 18072182]
[126]
Khalid A, Ullah H, Ul-Islam M, et al. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Advances 2017; 7: 47662-8.
[http://dx.doi.org/10.1039/C7RA06699F]
[127]
Ismail NA, Amin KAM, Majid FAA, Razali MH. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng C 2019; 103: 109770.
[http://dx.doi.org/10.1016/j.msec.2019.109770] [PMID: 31349525]
[128]
Becker S, Soukup JM, Gallagher JE. Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro 2002; 16(3): 209-18.
[http://dx.doi.org/10.1016/S0887-2333(02)00015-2] [PMID: 12020593]
[129]
Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 2015; 5: 14813.
[http://dx.doi.org/10.1038/srep14813] [PMID: 26437582]
[130]
Khashan KS, Sulaiman GM, Mahdi R. Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity. Artif Cells Nanomed Biotechnol 2017; 45(8): 1699-709.
[http://dx.doi.org/10.1080/21691401.2017.1282498] [PMID: 28147710]
[131]
Nethi SK, Barui AK, Bollu VS, Rao BR, Patra CR. Pro-angiogenic properties of terbium hydroxide nanorods: Molecular mechanisms and therapeutic applications in wound healing. ACS Biomater Sci Eng 2017; 3(12): 3635-45.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00457] [PMID: 33445398]
[132]
Chigurupati S, Mughal MR, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 2013; 34(9): 2194-201.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.061] [PMID: 23266256]
[133]
Huang X, Li LD, Lyu GM, et al. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front 2018; 5: 386-93.
[http://dx.doi.org/10.1039/C7QI00707H]
[134]
Deepachitra R, Ramnath V, Sastry TP. Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Advances 2014; 4: 62717-27.
[http://dx.doi.org/10.1039/C4RA10150B]
[135]
Mitra T, Manna PJ, Raja STK, et al. Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications. RSC Advances 2015; 5: 98653-65.
[http://dx.doi.org/10.1039/C5RA15726A]
[136]
Rehman SRU, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Reduced graphene oxide incorporated gelma hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine 2019; 14: 9603-17.
[http://dx.doi.org/10.2147/IJN.S218120] [PMID: 31824154]
[137]
Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Development of reduced Graphene Oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci 2018; 517: 251-64.
[http://dx.doi.org/10.1016/j.jcis.2018.01.110] [PMID: 29428812]
[138]
Khan MS, Abdelhamid HN, Wu HF. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B Biointerfaces 2015; 127: 281-91.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.049] [PMID: 25687099]
[139]
Zheng Y, Li S, Han D, et al. Eco-friendly preparation of epoxy-rich graphene oxide for wound healing. ACS Biomater Sci Eng 2021; 7(2): 752-63.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01598] [PMID: 33494597]
[140]
Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules 2020; 10(8): 1169.
[http://dx.doi.org/10.3390/biom10081169] [PMID: 32796593]
[141]
Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J 2020; 130: 109609.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109609]
[142]
Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng 2021; 5(1): 011504.
[http://dx.doi.org/10.1063/5.0038364] [PMID: 33644627]
[143]
Zhu C, Lei H, Fan D, et al. Novel enzymatic crosslinked hydrogels that mimic extracellular matrix for skin wound healing. J Mater Sci 2018; 53: 5909-28.
[http://dx.doi.org/10.1007/s10853-017-1956-y]
[144]
Tavakoli S, Mokhtari H, Kharaziha M, Kermanpur A, Talebi A, Moshtaghian J. A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds. Mater Sci Eng C 2020; 111: 110837.
[http://dx.doi.org/10.1016/j.msec.2020.110837] [PMID: 32279800]
[145]
Lokhande G, Carrow JK, Thakur T, et al. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 2018; 70: 35-47.
[http://dx.doi.org/10.1016/j.actbio.2018.01.045] [PMID: 29425720]
[146]
Chatterjee S, Hui PC, Kan CW. Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy. Polymers (Basel) 2018; 10(5): 480.
[http://dx.doi.org/10.3390/polym10050480] [PMID: 30966514]
[147]
Zhang K, Xue K, Loh XJ. Thermo-responsive hydrogels: From recent progress to biomedical applications. Gels 2021; 7(3): 77.
[http://dx.doi.org/10.3390/gels7030077] [PMID: 34202514]
[148]
Zhang Y, Huang Y. Rational design of smart hydrogels for biomedical applications. Front Chem 2021; 8: 615665.
[http://dx.doi.org/10.3389/fchem.2020.615665] [PMID: 33614595]
[149]
Gao G, Jiang YW, Jia HR, Wu FG. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019; 188: 83-95.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.045] [PMID: 30339942]
[150]
Chen H, Cheng R, Zhao X, et al. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater 2019; 11: 3.
[http://dx.doi.org/10.1038/s41427-018-0103-9]
[151]
Zhao X, Liang Y, Huang Y, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/PH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater 2020; 30: 1910748.
[http://dx.doi.org/10.1002/adfm.201910748]
[152]
Thet NT, Alves DR, Bean JE, et al. Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 2016; 8(24): 14909-19.
[http://dx.doi.org/10.1021/acsami.5b07372] [PMID: 26492095]
[153]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[154]
Değim Z, Çelebi N, Alemdaroğlu C, Deveci M, Öztürk S, Özoğul C. Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. Int Wound J 2011; 8(4): 343-54.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00795.x] [PMID: 21486392]
[155]
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat Rev Drug Discov 2014; 13(9): 655-72.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[156]
Choi JU, Lee SW, Pangeni R, Byun Y, Yoon IS, Park JW. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater 2017; 57: 197-215.
[http://dx.doi.org/10.1016/j.actbio.2017.04.034] [PMID: 28476587]
[157]
Nunes PS, Rabelo AS, Souza JC, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int J Pharm 2016; 513(1-2): 473-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.040] [PMID: 27633280]
[158]
Lu KJ, Wang W, Xu XL, et al. A dual deformable liposomal ointment functionalized with retinoic acid and epidermal growth factor for enhanced burn wound healing therapy. Biomater Sci 2019; 7(6): 2372-82.
[http://dx.doi.org/10.1039/C8BM01569D] [PMID: 30916681]
[159]
Ternullo S, Schulte Werning LV, Holsæter AM, Škalko-Basnet N. Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing. Pharmaceutics 2019; 12(1): 8.
[http://dx.doi.org/10.3390/pharmaceutics12010008] [PMID: 31861794]
[160]
Xie P, Dolivo DM, Jia S, et al. Liposome-encapsulated statins reduce hypertrophic scarring through topical application. Wound Repair Regen 2020; 28(4): 460-9.
[http://dx.doi.org/10.1111/wrr.12811] [PMID: 32428986]
[161]
Liu M, Chen W, Zhang X, et al. Improved surface adhesion and wound healing effect of madecassoside liposomes modified by temperature-responsive PEG-PCL-PEG copolymers. Eur J Pharm Sci 2020; 151: 105373.
[http://dx.doi.org/10.1016/j.ejps.2020.105373] [PMID: 32450220]
[162]
Chhibber S, Kaur J, Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol 2018; 9: 561.
[http://dx.doi.org/10.3389/fmicb.2018.00561] [PMID: 29651276]
[163]
Ribeiro AM, Meneses AC, Neumann IA. Polymeric nanoparticles and sponges in the control and stagnation of bleeding and wound healing. In: Design of Nanostructures for Versatile Therapeutic Applications. William Andrew Publishing 2018; pp. 189-219.
[164]
Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C 2016; 67: 747-65.
[http://dx.doi.org/10.1016/j.msec.2016.05.074] [PMID: 27287175]
[165]
Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 2010; 142(2): 149-59.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.018] [PMID: 19850093]
[166]
Alberti T, Coelho DS, Voytena A, et al. Nanotechnology: A promising tool towards wound healing. Curr Pharm Des 2017; 23(24): 3515-28.
[http://dx.doi.org/10.2174/1381612823666170503152550] [PMID: 28472915]
[167]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[168]
Chu Y, Yu D, Wang P, Xu J, Li D, Ding M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen 2010; 18(5): 499-505.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00612.x] [PMID: 20840519]
[169]
George L, Bavya MC, Rohan KV, Srivastava R. A therapeutic polyelectrolyte-vitamin C nanoparticulate system in polyvinyl alcohol-alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 160: 315-24.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.030] [PMID: 28950196]
[170]
Blersch J, Francisco V, Rebelo C, et al. A light-triggerable nanoparticle library for the controlled release of non-coding RNAs. Angew Chem Int Ed Engl 2020; 59(5): 1985-91.
[http://dx.doi.org/10.1002/anie.201911398] [PMID: 31729147]
[171]
Zhou C, Huang Z, Huang Y, et al. In situ gelation of rhEGF-containing liquid crystalline precursor with good cargo stability and system mechanical properties: A novel delivery system for chronic wounds treatment. Biomater Sci 2019; 7(3): 995-1010.
[http://dx.doi.org/10.1039/C8BM01196F] [PMID: 30603758]
[172]
Koudehi MF, Zibaseresht R. Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber. Mater Technol 2020; 35: 21-30.
[http://dx.doi.org/10.1080/10667857.2019.1649888]
[173]
Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release 2010; 146: 241-60.
[174]
Ngo YH, Li D, Simon GP, Garnier G. Paper surfaces functionalized by nanoparticles. Adv Colloid Interface Sci 2011; 163(1): 23-38.
[http://dx.doi.org/10.1016/j.cis.2011.01.004] [PMID: 21324427]
[175]
Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. Endocr Dev 2011; 21: 102-15.
[http://dx.doi.org/10.1159/000328140] [PMID: 21865759]
[176]
Gainza G, Aguirre JJ, Pedraz JL, Hernández RM, Igartua M. rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. Eur J Pharm Sci 2013; 50(3-4): 243-52.
[http://dx.doi.org/10.1016/j.ejps.2013.07.003] [PMID: 23872142]
[177]
Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res Int 2016; 2016: 1851242.
[http://dx.doi.org/10.1155/2016/1851242] [PMID: 27872845]
[178]
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int J Mol Sci 2019; 20(23): 5889.
[http://dx.doi.org/10.3390/ijms20235889] [PMID: 31771245]
[179]
Peipei F, Yang L, Chunhai K, et al. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front Bioeng Biotechnol 2021; 9: 650598.
[180]
Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics 2021; 13(7): 964.
[http://dx.doi.org/10.3390/pharmaceutics13070964] [PMID: 34206857]
[181]
Oryan A, Alemzadeh E, Tashkhourian J, Nami Ana SF. Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study. Carbohydr Polym 2018; 200: 82-92.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.077] [PMID: 30177212]
[182]
Chereddy KK, Vandermeulen G, Préat V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen 2016; 24(2): 223-36.
[http://dx.doi.org/10.1111/wrr.12404] [PMID: 26749322]
[183]
Porporato PE, Payen VL, De Saedeleer CJ, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012; 15(4): 581-92.
[http://dx.doi.org/10.1007/s10456-012-9282-0] [PMID: 22660894]
[184]
Chereddy KK, Coco R, Memvanga PB, et al. Combined effect of PLGA and curcumin on wound healing activity. J Control Release 2013; 171(2): 208-15.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.015] [PMID: 23891622]
[185]
Chereddy KK, Lopes A, Koussoroplis S, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine 2015; 11(8): 1975-84.
[http://dx.doi.org/10.1016/j.nano.2015.07.006] [PMID: 26238081]
[186]
Chereddy KK, Her CH, Comune M, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 2014; 194: 138-47.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.016] [PMID: 25173841]
[187]
Englander L, Friedman A. Nitric oxide nanoparticle technology: A novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol 2010; 3(6): 45-50.
[PMID: 20725551]
[188]
Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide 2002; 7(1): 1-10.
[http://dx.doi.org/10.1016/S1089-8603(02)00002-2] [PMID: 12175813]
[189]
Luo JD, Chen AF. Nitric oxide: A newly discovered function on wound healing. Acta Pharmacol Sin 2005; 26(3): 259-64.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00058.x] [PMID: 15715920]
[190]
Witte MB, Barbul A. Role of nitric oxide in wound repair. Am J Surg 2002; 183(4): 406-12.
[http://dx.doi.org/10.1016/S0002-9610(02)00815-2] [PMID: 11975928]
[191]
Han G, Nguyen LN, Macherla C, et al. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol 2012; 180(4): 1465-73.
[http://dx.doi.org/10.1016/j.ajpath.2011.12.013] [PMID: 22306734]
[192]
Nurhasni H, Cao J, Choi M, et al. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int J Nanomedicine 2015; 10: 3065-80.
[PMID: 25960648]
[193]
Schairer D, Martinez LR, Blecher K, et al. Nitric oxide nanoparticles: Pre-clinical utility as a therapeutic for intramuscular abscesses. Virulence 2012; 3(1): 62-7.
[http://dx.doi.org/10.4161/viru.3.1.18816] [PMID: 22286699]
[194]
Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J 2019; 117: 304-36.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.020]
[195]
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 2017; 12(11): 1335-52.
[http://dx.doi.org/10.2217/nnm-2017-0017] [PMID: 28520509]
[196]
Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater 2019; 2(3): 952-69.
[http://dx.doi.org/10.1021/acsabm.8b00637] [PMID: 35021385]
[197]
Aavani F, Khorshidi S, Karkhaneh A. A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol 2019; 43(1): 38-47.
[http://dx.doi.org/10.1080/03091902.2019.1606950] [PMID: 31091134]
[198]
Aswathy RG, Palaninathan V, et al. Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Advances 2020; 10: 26594-603.
[http://dx.doi.org/10.1039/D0RA04648E]
[199]
Datta S, Rameshbabu AP, Bankoti K, et al. Oleoyl-chitosan-based nanofiber mats impregnated with amniotic membrane derived stem cells for accelerated full-thickness excisional wound healing. ACS Biomater Sci Eng 2017; 3(8): 1738-49.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00189] [PMID: 33429655]
[200]
Wali A, Gorain M, Inamdar S, Kundu G, Badiger M. in vivo wound healing performance of halloysite clay and gentamicin-incorporated cellulose ether-pva electrospun nanofiber mats. ACS Appl Bio Mater 2019; 2(10): 4324-34.
[http://dx.doi.org/10.1021/acsabm.9b00589] [PMID: 35021447]
[201]
Mayandi V, Wen Choong AC, Dhand C, et al. Multifunctional antimicrobial nanofiber dressings containing ε-polylysine for the eradication of bacterial bioburden and promotion of wound healing in critically colonized wounds. ACS Appl Mater Interfaces 2020; 12(14): 15989-6005.
[http://dx.doi.org/10.1021/acsami.9b21683] [PMID: 32172559]
[202]
Wang J, Chen XY, Zhao Y, et al. pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 2019; 13(10): 11686-97.
[http://dx.doi.org/10.1021/acsnano.9b05608] [PMID: 31490650]
[203]
Altinbasak I, Jijie R, Barras A, et al. Reduced graphene-oxide-embedded polymeric nanofiber mats: An “on-demand” photothermally triggered antibiotic release platform. ACS Appl Mater Interfaces 2018; 10(48): 41098-106.
[http://dx.doi.org/10.1021/acsami.8b14784] [PMID: 30376295]
[204]
Tamayol A, Hassani Najafabadi A, Mostafalu P, et al. Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Sci Rep 2017; 7(1): 9220.
[http://dx.doi.org/10.1038/s41598-017-04749-8] [PMID: 28835675]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy