Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Research Progress of Quercetin Delivery Systems

Author(s): Xingtao Zhao, Ying Deng, Xinyan Xue, Li Liao, Mengting Zhou, Cheng Peng and Yunxia Li*

Volume 28, Issue 9, 2022

Published on: 22 April, 2022

Page: [727 - 742] Pages: 16

DOI: 10.2174/1381612828666220317141923

Price: $65

Abstract

Background: Quercetin is the main dietary flavonoid with a wide range of pharmacological activities. However, the poor gastrointestinal absorption and low bioavailability of quercetin curtail its clinical applications.

Methods: We performed a systematic research on the quercetin drug delivery system in PubMed, Web of Science, SciFinder, Google Scholar, Chinese National Knowledge Infrastructure database, and summarized it reasonably.

Result and Conclusion: The bioavailability of quercetin can be improved through the application of delivery systems technologies, such as microparticle delivery systems, solid dispersions, encapsulation, phospholipid complexes, and hydrogels. Quercetin delivery systems have been demonstrated to exhibit stronger antibacterial, anti-oxidant, anti-inflammatory, anti-cancer, and other pharmacological effects in vitro and in vivo animal experiments, promoting the development and optimization of quercetin delivery systems for clinical applications.

Keywords: Quercetin, nanoparticles delivery systems, solid dispersions, phospholipid complexes, hydrogels, flavonoid.

[1]
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, et al. Hepatoprotective effect of quercetin: From chemistry to medicine Food Chem Toxicol 2017; 108(Pt B): 365-74.
[PMID: 27591927]
[2]
Ozyel B, Le Gall G, Needs PW, Kroon PA. Anti-inflammatory effects of quercetin on high-glucose and pro-inflammatory cytokine challenged vascular endothelial cell metabolism. Mol Nutr Food Res 2021; 65(6): e2000777.
[http://dx.doi.org/10.1002/mnfr.202000777] [PMID: 33481349]
[3]
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 24.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[4]
Sato S, Mukai Y. Modulation of chronic inflammation by quercetin: The beneficial effects on obesity. J Inflamm Res 2020; 13: 421-31.
[http://dx.doi.org/10.2147/JIR.S228361] [PMID: 32848440]
[5]
Tian Y, Liimatainen J, Puganen A, Alakomi HL, Sinkkonen J, Yang B. Sephadex LH-20 fractionation and bioactivities of phenolic compounds from extracts of Finnish berry plants. Food Res Int 2018; 113: 115-30.
[http://dx.doi.org/10.1016/j.foodres.2018.06.041] [PMID: 30195504]
[6]
Kim CH, Kim JE, Song YJ. Antiviral activities of quercetin and isoquercitrin against human herpesviruses. Molecules 2020; 25(10): 25.
[http://dx.doi.org/10.3390/molecules25102379] [PMID: 32443914]
[7]
Eid HM, Haddad PS. The antidiabetic potential of quercetin: Underlying mechanisms. Curr Med Chem 2017; 24(4): 355-64.
[http://dx.doi.org/10.2174/0929867323666160909153707] [PMID: 27633685]
[8]
Yang H, Yang T, Heng C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 2019; 33(12): 3140-52.
[http://dx.doi.org/10.1002/ptr.6486] [PMID: 31452288]
[9]
Zhao X, Gong L, Wang C, et al. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/Keap1/Nrf2 signaling pathway. J Ethnopharmacol 2021; 268: 113569.
[http://dx.doi.org/10.1016/j.jep.2020.113569] [PMID: 33186701]
[10]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019; 10(1): 10.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[11]
Dabeek WM, Marra MV. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019; 11(10): 11.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[12]
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155: 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[13]
Batiha GE, Beshbishy AM, Ikram M, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020; 9(3): 374.
[PMID: 32210182]
[14]
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 2018; 62(1): 62.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[15]
Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2020; 60(4): 626-59.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[16]
Fasolo D, Schwingel L, Holzschuh M, Bassani V, Teixeira H. Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. J Pharm Biomed Anal 2007; 44(5): 1174-7.
[http://dx.doi.org/10.1016/j.jpba.2007.04.026] [PMID: 17540529]
[17]
Chen X, Yin OQ, Zuo Z, Chow MS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res 2005; 22(6): 892-901.
[http://dx.doi.org/10.1007/s11095-005-4584-1] [PMID: 15948033]
[18]
Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med 2000; 28(7): 1056-67.
[http://dx.doi.org/10.1016/S0891-5849(00)00195-7] [PMID: 10832067]
[19]
Dowhan W. Understanding phospholipid function: Why are there so many lipids? J Biol Chem 2017; 292(26): 10755-66.
[http://dx.doi.org/10.1074/jbc.X117.794891] [PMID: 28490630]
[20]
Yarce CJ, Alhajj MJ, Sanchez JD, Oñate-Garzón J, Salamanca CH. Development of antioxidant-loaded nanoliposomes employing lecithins with different purity grades. Molecules 2020; 25(22): 25.
[http://dx.doi.org/10.3390/molecules25225344] [PMID: 33207762]
[21]
Vila-Caballer M, Codolo G, Munari F, et al. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. J Control Release 2016; 238: 31-42.
[PMID: 27444816]
[22]
Yoo CY, Seong JS, Park SN. Preparation of novel capsosome with liposomal core by layer-by-Layer self-assembly of sodium hyaluronate and chitosan. Colloids Surf B Biointerfaces 2016; 144: 99-107.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.010] [PMID: 27085041]
[23]
Chen W, Zou M, Ma X, Lv R, Ding T, Liu D. Co-Encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. J Food Sci 2019; 84(1): 111-20.
[PMID: 30548488]
[24]
Cruz Dos Santos S, Osti Silva N, Dos Santos Espinelli JBJ, et al. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218: 22-33.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.11.010] [PMID: 30508514]
[25]
Román-Aguirre M, Leyva-Porras C, Cruz-Alcantar P, Aguilar-Elguézabal A, Saavedra-Leos MZ. Comparison of polysaccharides as coatings for quercetin-loaded liposomes (QLL) and their effect as antioxidants on radical scavenging activity. Polymers (Basel) 2020; 12(12): 12.
[http://dx.doi.org/10.3390/polym12122793] [PMID: 33255914]
[26]
Melnyk MI, Dryn DO, Al Kury LT, Zholos AV, Soloviev AI. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress. J Liposome Res 2019; 29(1): 94-101.
[http://dx.doi.org/10.1080/08982104.2018.1458864] [PMID: 29671361]
[27]
Araujo-Díaz SB, Leyva-Porras C, Aguirre-Bañuelos P, Álvarez-Salas C, Saavedra-Leos Z. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr Polym 2017; 167: 317-25.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.065] [PMID: 28433168]
[28]
Patel G, Thakur NS, Kushwah V, et al. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front Bioeng Biotechnol 2020; 8: 631.
[http://dx.doi.org/10.3389/fbioe.2020.00631] [PMID: 32612988]
[29]
Hemati M, Haghiralsadat F, Jafary F, Moosavizadeh S, Moradi A. Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. Int J Nanomedicine 2019; 14: 6575-85.
[http://dx.doi.org/10.2147/IJN.S211844] [PMID: 31616144]
[30]
Deodhar S, Dash AK. Long circulating liposomes: Challenges and opportunities. Ther Deliv 2018; 9(12): 857-72.
[http://dx.doi.org/10.4155/tde-2018-0035] [PMID: 30444455]
[31]
Yu J, Chen H, Jiang L, Wang J, Dai J, Wang J. Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. J Pharm Sci 2019; 108(5): 1788-99.
[http://dx.doi.org/10.1016/j.xphs.2018.12.016] [PMID: 30610857]
[32]
Seong JS, Yun ME, Park SN. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohydr Polym 2018; 181: 659-67.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.098] [PMID: 29254020]
[33]
Jeon S, Yoo CY, Park SN. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 2015; 129: 7-14.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.018] [PMID: 25819360]
[34]
El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci 2008; 34(4-5): 203-22.
[PMID: 18572392]
[35]
Zhang ZJ, Michniak-Kohn B. Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. Int J Pharm 2020; 585: 119500.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119500] [PMID: 32512226]
[36]
Liu C, Liu Z, Sun X, et al. Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin. J Agric Food Chem 2018; 66(26): 6717-26.
[http://dx.doi.org/10.1021/acs.jafc.8b00834] [PMID: 29883537]
[37]
Yan S, Yang B, Zhao J, et al. A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct 2019; 10(3): 1595-608.
[http://dx.doi.org/10.1039/C9FO00014C] [PMID: 30806428]
[38]
Pechanova O, Dayar E, Cebova M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules 2020; 25(15): 25.
[http://dx.doi.org/10.3390/molecules25153322] [PMID: 32707934]
[39]
Bonferoni MC, Rossi S, Sandri G, Ferrari F. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin Cancer Biol 2017; 46: 205-14.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.010] [PMID: 28673607]
[40]
Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina (Kaunas) 2019; 55(4): 55.
[http://dx.doi.org/10.3390/medicina55040114] [PMID: 31013662]
[41]
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules 2017; 22(11): 22.
[http://dx.doi.org/10.3390/molecules22111975] [PMID: 29140285]
[42]
Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 2017; 18(3): 875-83.
[http://dx.doi.org/10.1208/s12249-016-0573-4] [PMID: 27368922]
[43]
Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F, et al. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J Food Sci 2019; 84(10): 2883-97.
[http://dx.doi.org/10.1111/1750-3841.14803] [PMID: 31553062]
[44]
Wang TX, Li XX, Chen L, Li L, Janaswamy S. Carriers based on zein-dextran sulfate sodium binary complex for the sustained delivery of quercetin. Front Chem 2020; 8: 662.
[http://dx.doi.org/10.3389/fchem.2020.00662] [PMID: 33195002]
[45]
Moreno LCGEI, Puerta E, Suárez-Santiago JE, Santos-Magalhães NS, Ramirez MJ, Irache JM. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int J Pharm 2017; 517(1-2): 50-7.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061] [PMID: 27915007]
[46]
Sousa-Batista AJ, Poletto FS, Philipon CIMS, Guterres SS, Pohlmann AR, Rossi-Bergmann B. Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 2017; 144(13): 1769-74.
[http://dx.doi.org/10.1017/S003118201700097X] [PMID: 28653597]
[47]
Tran TT, Hadinoto K. A potential quorum-sensing inhibitor for bronchiectasis therapy: Quercetin-chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int J Mol Sci 2021; 22(4): 22.
[http://dx.doi.org/10.3390/ijms22041541] [PMID: 33546487]
[48]
Sabourian P, Ji J, Lotocki V, et al. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B Mater Biol Med 2020; 8(32): 7275-87.
[http://dx.doi.org/10.1039/D0TB00772B] [PMID: 32638822]
[49]
Ersoz M, Erdemir A, Derman S, Arasoglu T, Mansuroglu B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm Dev Technol 2020; 25(6): 757-66.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[50]
Shen F, Zhong H, Ge W, Ren J, Wang X. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability. Carbohydr Polym 2020; 234: 115927.
[http://dx.doi.org/10.1016/j.carbpol.2020.115927] [PMID: 32070546]
[51]
Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm 2016; 101: 15-24.
[PMID: 26802701]
[52]
Shen Y. TanTai J. Co-delivery anticancer drug nanoparticles for synergistic therapy against lung cancer cells. Drug Des Devel Ther 2020; 14: 4503-10.
[http://dx.doi.org/10.2147/DDDT.S275123] [PMID: 33122893]
[53]
Wang C, Su L, Wu C, Wu J, Zhu C, Yuan G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev Ind Pharm 2016; 42(12): 1938-44.
[http://dx.doi.org/10.1080/03639045.2016.1185435] [PMID: 27142812]
[54]
Abd-Rabou AA, Ahmed HH. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 2017; 62(2): 357-67.
[http://dx.doi.org/10.1016/j.advms.2017.01.003] [PMID: 28521254]
[55]
Bishayee K, Khuda-Bukhsh AR, Huh SO. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt Activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol Cells 2015; 38(6): 518-27.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[56]
Das L, Kaurav M, Pandey RS. Phospholipid-polymer hybrid nanoparticle-mediated transfollicular delivery of quercetin: Prospective implement for the treatment of androgenic alopecia. Drug Dev Ind Pharm 2019; 45(10): 1654-63.
[http://dx.doi.org/10.1080/03639045.2019.1652635] [PMID: 31382790]
[57]
Rashedi J, Ghorbani Haghjo A, Mesgari Abbasi M, et al. Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in wistar rats. Adv Pharm Bull 2019; 9(3): 409-15.
[http://dx.doi.org/10.15171/apb.2019.048] [PMID: 31592135]
[58]
Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 2018; 182: 42-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.098] [PMID: 29279124]
[59]
Zhou Y, Tang RC. Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids. Polymers (Basel) 2018; 10(4): 10.
[http://dx.doi.org/10.3390/polym10040404] [PMID: 30966439]
[60]
Yu L, Shang F, Chen X, et al. The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 2018; 6: e5711.
[http://dx.doi.org/10.7717/peerj.5711] [PMID: 30356998]
[61]
Lotha R, Sundaramoorthy NS, Shamprasad BR, Nagarajan S, Sivasubramanian A. Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar typhi and curtail planktonic growth in zebrafish infection model. Microb Pathog 2018; 120: 109-18.
[http://dx.doi.org/10.1016/j.micpath.2018.04.044] [PMID: 29715535]
[62]
Penalva R, González-Navarro CJ, Gamazo C, Esparza I, Irache JM. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine 2017; 13(1): 103-10.
[http://dx.doi.org/10.1016/j.nano.2016.08.033] [PMID: 27615118]
[63]
AbouAitah K, Swiderska-Sroda A, Kandeil A, et al. Virucidal action against avian influenza H5N1 virus and immunomodulatory effects of nanoformulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs. Int J Nanomedicine 2020; 15: 5181-202.
[http://dx.doi.org/10.2147/IJN.S247692] [PMID: 32801685]
[64]
Ozdal Z D, Sahmetlioglu E, Narin I, Cumaoglu A. Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech 2019; 9(6): 212.
[PMID: 31114736]
[65]
Milanezi FG, Meireles LM, de Christo Scherer MM, et al. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J 2019; 27(7): 968-74.
[PMID: 31997903]
[66]
Derman S, Uzunoglu D, Acar T, et al. Antioxidant activity and hemocompatibility study of quercetin loaded Plga nanoparticles. Iran J Pharm Res 2020; 19(1): 424-35.
[PMID: 32922498]
[67]
Seyedi J, Tayemeh MB, Esmaeilbeigi M, et al. Fatty acid alteration in liver, brain, muscle, and oocyte of zebrafish (Danio rerio) exposed to silver nanoparticles and mitigating influence of quercetin-supplemented diet. Environ Res 2021; 194: 110611.
[http://dx.doi.org/10.1016/j.envres.2020.110611] [PMID: 33358875]
[68]
Karami A, Mohamed O, Ahmed A, Husseini GA, Sabouni R. Recent advances in metal-organic frameworks as anticancer drug delivery systems: A review. Anticancer Agents Med Chem 2021; 21(18): 2487-504.
[http://dx.doi.org/10.2174/1871520621666210119093844] [PMID: 33463479]
[69]
Sun X, Li Y, Xu L, et al. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J Int Med Res 2020; 48(2): 300060519897185.
[http://dx.doi.org/10.1177/0300060519897185] [PMID: 32054349]
[70]
Osonga FJ, Kariuki VM, Wambua VM, et al. Photochemical synthesis and catalytic applications of gold nanoplates fabricated using quercetin diphosphate macromolecules. ACS Omega 2019; 4(4): 6511-20.
[http://dx.doi.org/10.1021/acsomega.8b02389] [PMID: 31179406]
[71]
Ebrahimpour S, Esmaeili A, Dehghanian F, Beheshti S. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Sci Rep 2020; 10(1): 15070.
[http://dx.doi.org/10.1038/s41598-020-71678-4] [PMID: 32934245]
[72]
Srisa-Nga K, Mankhetkorn S, Okonogi S, Khonkarn R. Delivery of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci 2019; 108(2): 996-1006.
[http://dx.doi.org/10.1016/j.xphs.2018.08.008] [PMID: 30121312]
[73]
Enteshari Najafabadi R, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol 2018; 19(1): 59.
[http://dx.doi.org/10.1186/s40360-018-0249-7] [PMID: 30253803]
[74]
Shah ST, Yehye WA, Chowdhury ZZ, Simarani K. Magnetically directed antioxidant and antimicrobial agent: Synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019; 7: e7651.
[http://dx.doi.org/10.7717/peerj.7651] [PMID: 31768301]
[75]
Tian R, Wang H, Xiao Y, et al. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from hippophae rhamnoides L. and their comparison with an inclusion complex. AAPS PharmSciTech 2020; 21(7): 249.
[http://dx.doi.org/10.1208/s12249-020-01788-9] [PMID: 32875458]
[76]
Thakur D, Kaur G, Puri A, Nanda R. Therapeutic potential of essential oil based microemulsions: Reviewing state-of-the-art. Curr Drug Deliv 2021; 18(9): 1218-33.
[http://dx.doi.org/10.2174/1567201818666210217161240] [PMID: 33596807]
[77]
Sadeghi-Ghadi Z, Vaezi A, Ahangarkani F, Ilkit M, Ebrahimnejad P, Badali H. Potent in vitro activity of curcumin and quercetin co-encapsulated in nanovesicles without hyaluronan against Aspergillus and candida isolates. J Mycol Med 2020; 30(4): 101014.
[http://dx.doi.org/10.1016/j.mycmed.2020.101014] [PMID: 32800427]
[78]
Khor CM, Ng WK, Chan KP, Dong Y. Preparation and characterization of quercetin/dietary fiber nanoformulations. Carbohydr Polym 2017; 161: 109-17.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.059] [PMID: 28189219]
[79]
Rogerio AP, Dora CL, Andrade EL, et al. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res 2010; 61(4): 288-97.
[http://dx.doi.org/10.1016/j.phrs.2009.10.005] [PMID: 19892018]
[80]
Thakur NS, Mandal N, Patel G, et al. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine 2021; 33: 102368.
[http://dx.doi.org/10.1016/j.nano.2021.102368] [PMID: 33548477]
[81]
Qiao Y, Cao Y, Yu K, Zong L, Pu X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm 2020; 589: 119830.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119830] [PMID: 32877732]
[82]
Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res 2019; 9(2): 497-507.
[http://dx.doi.org/10.1007/s13346-018-0509-5] [PMID: 29541999]
[83]
Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci 2018; 67(8): 933-40.
[http://dx.doi.org/10.5650/jos.ess17253] [PMID: 30012897]
[84]
Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. J Sci Food Agric 2019; 99(4): 1980-9.
[http://dx.doi.org/10.1002/jsfa.9396] [PMID: 30270448]
[85]
Shao Y, Yu H, Yang Y, Li M, Hang L, Xu X. A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry age-related macular degeneration. Oxid Med Cell Longev 2019; 2019: 1479571.
[http://dx.doi.org/10.1155/2019/1479571] [PMID: 31781321]
[86]
Han J, Tong M, Li S, et al. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: A case of quercetin. Drug Dev Ind Pharm 2021; 47(1): 153-62.
[http://dx.doi.org/10.1080/03639045.2020.1862173] [PMID: 33295808]
[87]
Shi X, Fan N, Zhang G, Sun J, He Z, Li J. Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol 2020; 25(4): 472-81.
[http://dx.doi.org/10.1080/10837450.2019.1709502] [PMID: 31909684]
[88]
Porcu EP, Cossu M, Rassu G, et al. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541(1-2): 224-33.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.036] [PMID: 29474897]
[89]
Gilley AD, Arca HC, Nichols BLB, et al. Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro. Carbohydr Polym 2017; 157: 86-93.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.067] [PMID: 27988001]
[90]
Manta K, Papakyriakopoulou P, Chountoulesi M, et al. Preparation and biophysical characterization of quercetin inclusion complexes with β-cyclodextrin derivatives to be formulated as possible nose-to-brain quercetin delivery systems. Mol Pharm 2020; 17(11): 4241-55.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00672] [PMID: 32986435]
[91]
Diamantis DA, Ramesova S, Chatzigiannis CM, et al. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus. Biochim Biophys Acta, Gen Subj 2018; 1862(9): 1913-24.
[http://dx.doi.org/10.1016/j.bbagen.2018.06.006] [PMID: 29886278]
[92]
Corina D, Bojin F, Ambrus R, et al. Physico-chemical and biological evaluation of flavonols: Fisetin, quercetin and kaempferol alone and incorporated in beta cyclodextrins. Anticancer Agents Med Chem 2017; 17(4): 615-26.
[http://dx.doi.org/10.2174/1871520616666160621105306] [PMID: 27338298]
[93]
Kellici TF, Chatziathanasiadou MV, Diamantis D, et al. Mapping the interactions and bioactivity of quercetin-(2-hydroxypropyl)-β-cyclodextrin complex. Int J Pharm 2016; 511(1): 303-11.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.008] [PMID: 27395802]
[94]
Garcia-Mendoza MDP, Espinosa-Pardo FA, Savoire R, Harscoat-Schiavo C, Cansell M, Subra-Paternault P. Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chem 2021; 341(Pt 1): 128234.
[http://dx.doi.org/10.1016/j.foodchem.2020.128234] [PMID: 33038773]
[95]
Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet 2019; 44(2): 169-77.
[http://dx.doi.org/10.1007/s13318-018-0517-3] [PMID: 30328058]
[96]
Zhang K, Zhang Y, Zhang M, et al. Effects of phospholipid complexes of total flavonoids from Persimmon (Diospyros kaki L.) leaves on experimental atherosclerosis rats. J Ethnopharmacol 2016; 191: 245-53.
[http://dx.doi.org/10.1016/j.jep.2016.06.043] [PMID: 27340105]
[97]
Singh D, Rawat MS, Semalty A, Semalty M. Quercetin-phospholipid complex: An amorphous pharmaceutical system in herbal drug delivery. Curr Drug Discov Technol 2012; 9(1): 17-24.
[http://dx.doi.org/10.2174/157016312799304507] [PMID: 21644920]
[98]
Xu XR, Yu HT, Yang Y, Hang L, Yang XW, Ding SH. Quercetin phospholipid complex significantly protects against oxidative injury in ARPE-19 cells associated with activation of Nrf2 pathway. Eur J Pharmacol 2016; 770: 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.050] [PMID: 26643168]
[99]
Zhang K, Zhang M, Liu Z, et al. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats. Fitoterapia 2016; 113: 102-9.
[http://dx.doi.org/10.1016/j.fitote.2016.07.008] [PMID: 27431774]
[100]
Janarthanan G, Shin HS, Kim IG, et al. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 2020; 12(4): 045026.
[http://dx.doi.org/10.1088/1758-5090/aba2f7] [PMID: 32629438]
[101]
Arpornmaeklong P, Sareethammanuwat M, Apinyauppatham K, Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/collagen hydrogel on human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 2021; 109(10): 1656-70.
[http://dx.doi.org/10.1002/jbm.b.34823] [PMID: 33644957]
[102]
Mok SW, Fu SC, Cheuk YC, et al. Intra-articular delivery of quercetin using thermosensitive hydrogel attenuate cartilage degradation in an osteoarthritis rat model. Cartilage 2020; 11(4): 490-9.
[http://dx.doi.org/10.1177/1947603518796550] [PMID: 30160166]
[103]
Huang C, Fu C, Qi ZP, et al. Localised delivery of quercetin by thermo-sensitive PLGA-PEG-PLGA hydrogels for the treatment of brachial plexus avulsion. Artif Cells Nanomed Biotechnol 2020; 48(1): 1010-21.
[http://dx.doi.org/10.1080/21691401.2020.1770265] [PMID: 32608269]
[104]
Dey M, Ghosh B, Giri TK. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids Surf B Biointerfaces 2020; 196: 111341.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111341] [PMID: 32916438]
[105]
Li Q, Gong S, Yao W, et al. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. Artif Cells Nanomed Biotechnol 2021; 49(1): 345-53.
[http://dx.doi.org/10.1080/21691401.2021.1879104] [PMID: 33784224]
[106]
Liu K, Zha XQ, Shen WD, Li QM, Pan LH, Luo JP. The hydrogel of whey protein isolate coated by lotus root amylopectin enhance the stability and bioavailability of quercetin. Carbohydr Polym 2020; 236: 116009.
[http://dx.doi.org/10.1016/j.carbpol.2020.116009] [PMID: 32172837]
[107]
Kim MH, Park JH, Nguyen DT, et al. Hyaluronidase inhibitor-incorporated cross-linked hyaluronic acid hydrogels for subcutaneous injection. Pharmaceutics 2021; 13(2): 13.
[http://dx.doi.org/10.3390/pharmaceutics13020170] [PMID: 33513991]
[108]
Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 2018; 128: 84-100.
[http://dx.doi.org/10.1016/j.addr.2018.03.008] [PMID: 29567396]
[109]
Liu X, Zhang Y, Liu L, et al. Protective and therapeutic effects of nanoliposomal quercetin on acute liver injury in rats. BMC Pharmacol Toxicol 2020; 21(1): 11.
[http://dx.doi.org/10.1186/s40360-020-0388-5] [PMID: 32059743]
[110]
Felippim EC, Marcato PD, Maia Campos PMBG. Development of photoprotective formulations containing nanostructured lipid carriers: Sun protection factor, physical-mechanical and sensorial properties. AAPS PharmSciTech 2020; 21(8): 311.
[http://dx.doi.org/10.1208/s12249-020-01858-y] [PMID: 33161472]
[111]
Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[112]
Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 2019; 570: 118652.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118652] [PMID: 31472219]
[113]
Kan X, Zhang T, Zhong M, Lu X. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection. Biosens Bioelectron 2016; 77: 638-43.
[http://dx.doi.org/10.1016/j.bios.2015.10.033] [PMID: 26485178]
[114]
Ghafelehbashi R, Tavakkoli Yaraki M, Heidarpoor Saremi L, et al. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Mater Sci Eng C Mater Biol Appl 2020; 109: 110597.
[http://dx.doi.org/10.1016/j.msec.2019.110597] [PMID: 32228991]
[115]
Aytac Z, Kusku SI, Durgun E, Uyar T. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chem 2016; 197(Pt A): 864-71.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.051] [PMID: 26617028]
[116]
Wang Z, Zou W, Liu L, Wang M, Li F, Shen W. Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem 2021; 338: 127980.
[http://dx.doi.org/10.1016/j.foodchem.2020.127980] [PMID: 32927201]
[117]
Hashemian M, Ghasemi-Kasman M, Ghasemi S, et al. Fabrication and evaluation of novel quercetin-conjugated Fe3O4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine 2019; 14: 6481-95.
[http://dx.doi.org/10.2147/IJN.S218317] [PMID: 31496698]
[118]
George D, Maheswari PU, Begum KMMS. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 2019; 132: 784-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.008] [PMID: 30951778]
[119]
Yu Y, Xu S, Yu S, et al. A hybrid genipin-cross-linked hydrogel/nanostructured lipid carrier for ocular drug delivery: Cellular, ex vivo, and in vivo evaluation. ACS Biomater Sci Eng 2020; 6(3): 1543-52.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01800] [PMID: 33455373]
[120]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[121]
Doosti M, Seyed Dorraji MS, Mousavi SN, Rasoulifard MH, Hosseini SH. Enhancing quercetin bioavailability by super paramagnetic starch-based hydrogel grafted with fumaric acid: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2019; 183: 110487.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110487] [PMID: 31518957]
[122]
Ali A, Ahmed S. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem 2018; 66(27): 6940-67.
[http://dx.doi.org/10.1021/acs.jafc.8b01052] [PMID: 29878765]
[123]
Wang J, Cheng H, Wang Z, et al. Human small intestine cancer cell membrane-camouflaged quercetin-melanin for antibacterial and antitumor activity. J Biomed Mater Res B Appl Biomater 2021; 109(10): 1534-51.
[http://dx.doi.org/10.1002/jbm.b.34813] [PMID: 33559310]
[124]
Vashisth P, Kar N, Gupta D, Bellare JR. Three dimensional quercetin-functionalized patterned scaffold: Development, characterization, and in vitro assessment for neural tissue engineering. ACS Omega 2020; 5(35): 22325-34.
[http://dx.doi.org/10.1021/acsomega.0c02678] [PMID: 32923790]
[125]
Gallelli G, Cione E, Serra R, et al. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int Wound J 2020; 17(2): 485-90.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[126]
Jee JP, Pangeni R, Jha SK, Byun Y, Park JW. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int J Nanomedicine 2019; 14: 5449-75.
[http://dx.doi.org/10.2147/IJN.S213883] [PMID: 31409998]
[127]
Chen LC, Chen YC, Su CY, Hong CS, Ho HO, Sheu MT. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int J Nanomedicine 2016; 11: 1557-66.
[PMID: 27143878]
[128]
Wang G, Wang J, Guan R. Novel phospholipid-based labrasol nanomicelles loaded flavonoids for oral delivery with enhanced penetration and anti-brain tumor efficiency. Curr Drug Deliv 2020; 17(3): 229-45.
[http://dx.doi.org/10.2174/1567201817666200210120950] [PMID: 32039682]
[129]
Abdelmoneem MA, Elnaggar MA, Hammady RS, et al. Dual-targeted lactoferrin shell-oily core nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces 2019; 11(30): 26731-44.
[http://dx.doi.org/10.1021/acsami.9b10164] [PMID: 31268657]
[130]
Jangde R, Srivastava S, Singh MR, Singh D. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 2018; 115: 1211-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.010] [PMID: 29730004]
[131]
Schwingel LC, Bianchi SE, Zorzi GK, Gonçalves P, Teixeira HF, Bassani VL. Quercetin and 3-O-methylquercetin in vitro skin layers permeation/retention from hydrogels: Why only a methoxy group difference determines different behaviors? J Pharm Pharmacol 2019; 71(5): 733-45.
[http://dx.doi.org/10.1111/jphp.13050] [PMID: 30511358]
[132]
Wáng YX, Idée JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017; 7(1): 88-122.
[http://dx.doi.org/10.21037/qims.2017.02.09] [PMID: 28275562]
[133]
Latunde-Dada GO. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta, Gen Subj 2017; 1861(8): 1893-900.
[http://dx.doi.org/10.1016/j.bbagen.2017.05.019] [PMID: 28552631]
[134]
Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019; 138: 302-25.
[http://dx.doi.org/10.1016/j.addr.2019.01.005] [PMID: 30639256]
[135]
Fu H, Xu W, Wang H, Liao S, Chen G. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in juice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145: 122101.
[http://dx.doi.org/10.1016/j.jchromb.2020.122101] [PMID: 32305710]
[136]
Tai LA, Tsai PJ, Wang YC, Wang YJ, Lo LW, Yang CS. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology 2009; 20(13): 135101.
[http://dx.doi.org/10.1088/0957-4484/20/13/135101] [PMID: 19420485]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy