Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Subcellular Imaging and Diagnosis of Cancer using Engineered Nanoparticles

Author(s): Shivanand H. Nannuri, Ajinkya N. Nikam, Abhijeet Pandey, Srinivas Mutalik and Sajan D. George*

Volume 28, Issue 9, 2022

Published on: 29 July, 2021

Page: [690 - 710] Pages: 21

DOI: 10.2174/1381612827666210525154131

Price: $65

Abstract

The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among the various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.

Keywords: Fluorescent nanoparticles, plasmonic nanoparticles, carbon dots, upconversion nanoparticles, theranostics, subcellular imaging, cancer diagnosis.

[1]
Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev 2012; 41(7): 2606-22.
[http://dx.doi.org/10.1039/C1CS15134G] [PMID: 21796315]
[2]
Nguyen KT. Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomed Nanotechnol 2011; 2: 103e.
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[3]
Pandey A, Kulkarni S, Vincent AP, Nannuri SH, George SD, Mutalik S. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm 2020; 588: 119735.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119735] [PMID: 32763386]
[4]
Nikam AN, Pandey A, Fernandes G, et al. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coord Chem Rev 2020; 419: 213356.
[http://dx.doi.org/10.1016/j.ccr.2020.213356]
[5]
Nikam AN, More MP, Pandey AP, Patil PO, Patil AG, Deshmukh PK. Design and development of thiolated graphene oxide nanosheets for brain tumor targeting. Int J Polym Mater 2020; 69(10): 611-21.
[http://dx.doi.org/10.1080/00914037.2019.1596911]
[6]
Kotha R, Fernandes G, Nikam AN, et al. Surface engineered bimetallic nanoparticles based therapeutic and imaging platform: recent advancements and future perspective. Mater Sci Technol 2020; 36(16): 1729-48.
[http://dx.doi.org/10.1080/02670836.2020.1832323]
[7]
Pandey A, Dhas N, Deshmukh P, et al. Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020; 409: 213212.
[http://dx.doi.org/10.1016/j.ccr.2020.213212]
[8]
Sonali MKV, Viswanadh MK, Singh RP, et al. Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2018; 2(1): 70-86.
[http://dx.doi.org/10.7150/ntno.21638] [PMID: 29291164]
[9]
Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 2020; 40(3): 909-30.
[http://dx.doi.org/10.1002/med.21642] [PMID: 31650619]
[10]
Li X, Zhang X-N, Li X-D, Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol Med 2016; 13(3): 339-48.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0055] [PMID: 27807501]
[11]
Mallidi S, Spring BQ, Hasan T. Optical imaging, photodynamic therapy and optically-triggered combination treatments. Cancer J 2015; 21(3): 194-205.
[http://dx.doi.org/10.1097/PPO.0000000000000117] [PMID: 26049699]
[12]
Keereweer S, Van Driel PB, Snoeks TJ, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 2013; 19(14): 3745-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3598] [PMID: 23674494]
[13]
Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem 2020; 8: 376.
[http://dx.doi.org/10.3389/fchem.2020.00376] [PMID: 32582621]
[14]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[15]
Bai X, Wang Y, Song Z, et al. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci 2020; 21(7): 2480.
[http://dx.doi.org/10.3390/ijms21072480] [PMID: 32260051]
[16]
Meola A, Rao J, Chaudhary N, Sharma M, Chang SD. Gold nanoparticles for brain tumor imaging: a systematic review. Front Neurol 2018; 9: 328.
[http://dx.doi.org/10.3389/fneur.2018.00328] [PMID: 29867737]
[17]
Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(3): e1542.
[http://dx.doi.org/10.1002/wnan.1542] [PMID: 30084539]
[18]
Schaal PA, Besmehn A, Maynicke E, Noyong M, Beschoten B, Simon U. Electrically conducting nanopatterns formed by chemical e-beam lithography via gold nanoparticle seeds. Langmuir 2012; 28(5): 2448-54.
[http://dx.doi.org/10.1021/la204393h] [PMID: 22201225]
[19]
Sun S, Mendes P, Critchley K, et al. Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett 2006; 6(3): 345-50.
[http://dx.doi.org/10.1021/nl052130h] [PMID: 16522020]
[20]
Mafuné F, Kohno J-y, Takeda Y, Kondow T. Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B 2002; 106(31): 7575-7.
[http://dx.doi.org/10.1021/jp020577y]
[21]
Jimenez-Ruiz A, Perez-Tejeda P, Grueso E, Castillo PM, Prado- Gotor R. Nonfunctionalized gold nanoparticles: synthetic routes and synthesis condition dependence. Chemistry 2015; 21(27): 9596-609.
[http://dx.doi.org/10.1002/chem.201405117] [PMID: 25867678]
[22]
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Discuss 1951; 11: 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[23]
Bartosewicz B, Bujno K, Liszewska M, et al. Effect of citrate substitution by various α-hydroxycarboxylate anions on properties of gold nanoparticles synthesized by Turkevich method. Colloids Surf A Physicochem Eng Asp 2018; 549: 25-33.
[http://dx.doi.org/10.1016/j.colsurfa.2018.03.073]
[24]
Nebu J, Devi JA, Aparna R, Aswathy B, Lekha G, Sony G. Fluorescence turn-on detection of fenitrothion using gold nanoparticle quenched fluorescein and its separation using superparamagnetic iron oxide nanoparticle. Sens Actuators B Chem 2018; 277: 271-80.
[http://dx.doi.org/10.1016/j.snb.2018.08.153]
[25]
Hong L, Lu M, Dinel M-P, et al. Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA. Biosens Bioelectron 2018; 109: 230-6.
[http://dx.doi.org/10.1016/j.bios.2018.03.032] [PMID: 29567568]
[26]
Wang Y, Wang M, Han L, Zhao Y, Fan A. Enhancement effect of p-iodophenol on gold nanoparticle-catalyzed chemiluminescence and its applications in detection of thiols and guanidine. Talanta 2018; 182: 523-8.
[http://dx.doi.org/10.1016/j.talanta.2018.01.093] [PMID: 29501187]
[27]
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 1994; (7): 801-2.
[http://dx.doi.org/10.1039/C39940000801]
[28]
Shon Y-S, Chuc S, Voundi P. Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments. Colloids Surf A Physicochem Eng Asp 2009; 352(1-3): 12-7.
[http://dx.doi.org/10.1016/j.colsurfa.2009.09.037]
[29]
Lee JM, Youn YS, Lee ES. Development of light-driven gas-forming liposomes for efficient tumor treatment. Int J Pharm 2017; 525(1): 218-25.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.046] [PMID: 28445764]
[30]
Chang H-H, Murphy CJ. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem Mater 2018; 30(4): 1427-35.
[http://dx.doi.org/10.1021/acs.chemmater.7b05310] [PMID: 31404258]
[31]
Guo J, Rahme K, He Y, Li L-L, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12: 6131-52.
[http://dx.doi.org/10.2147/IJN.S140772] [PMID: 28883725]
[32]
Alex S, Tiwari A. Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 2015; 15(3): 1869-94.
[http://dx.doi.org/10.1166/jnn.2015.9718] [PMID: 26413604]
[33]
Liu Y, Ashton JR, Moding EJ, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 2015; 5(9): 946-60.
[http://dx.doi.org/10.7150/thno.11974] [PMID: 26155311]
[34]
Chhatre A, Thaokar R, Mehra A. Formation of gold nanorods by seeded growth: mechanisms and modeling. Cryst Growth Des 2018; 18(6): 3269-82.
[http://dx.doi.org/10.1021/acs.cgd.7b01387]
[35]
John J, Thomas L, Kurian A, George SD. Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles. J Lumin 2016; 172: 39-46.
[http://dx.doi.org/10.1016/j.jlumin.2015.11.005]
[36]
John J, Thomas L, Kumar BR, Kurian A, George SD. Shape dependent heat transport through green synthesized gold nanofluids. J Phys D Appl Phys 2015; 48(33): 335301.
[http://dx.doi.org/10.1088/0022-3727/48/33/335301]
[37]
Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Effic Technol 2017; 3(4): 516-27.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[38]
Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 2009; 73(2): 374-81.
[http://dx.doi.org/10.1016/j.saa.2009.02.037] [PMID: 19324587]
[39]
Aromal SA, Vidhu VK, Philip D. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc 2012; 85(1): 99-104.
[http://dx.doi.org/10.1016/j.saa.2011.09.035] [PMID: 22018585]
[40]
Sasidharan S, Poojari R, Bahadur D, Srivastava R. Embelin-Mediated Green Synthesis of Quasi-Spherical and Star-Shaped Plasmonic Nanostructures for Antibacterial Activity, Photothermal Therapy, and Computed Tomographic Imaging. ACS Sustain Chem& Eng 2018; 6(8): 10562-77.
[http://dx.doi.org/10.1021/acssuschemeng.8b01894]
[41]
Li H, Yan X, Kong D, Jin R, Sun C, Du D, et al. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz 2020; 5(2): 218-34.
[http://dx.doi.org/10.1039/C9NH00476A]
[42]
Wang R, Lu K-Q, Tang Z-R, Xu Y-J. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A Mater Energy Sustain 2017; 5(8): 3717-34.
[http://dx.doi.org/10.1039/C6TA08660H]
[43]
Li L, Dong T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J Mater Chem C Mater Opt Electron Devices 2018; 6(30): 7944-70.
[http://dx.doi.org/10.1039/C7TC05878K]
[44]
Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 2019; 21(3): 449-71.
[http://dx.doi.org/10.1039/C8GC02736F]
[45]
Shi X, Meng H, Sun Y, et al. Far-Red to near-infrared carbon dots: preparation and applications in biotechnology. Small 2019; 15(48): e1901507.
[http://dx.doi.org/10.1002/smll.201901507] [PMID: 31168960]
[46]
Zhi B, Yao X, Cui Y, Orr G, Haynes CL. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale 2019; 11(43): 20411-28.
[http://dx.doi.org/10.1039/C9NR05028K] [PMID: 31641702]
[47]
Jiang K, Feng X, Gao X, et al. Preparation of multicolor photoluminescent carbon dots by tuning surface states. Nanomaterials (Basel) 2019; 9(4): 529.
[http://dx.doi.org/10.3390/nano9040529] [PMID: 30987120]
[48]
Shamsipur M, Barati A, Karami S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 2017; 124: 429-72.
[http://dx.doi.org/10.1016/j.carbon.2017.08.072]
[49]
Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochim Acta 2016; 183(2): 519-42.
[http://dx.doi.org/10.1007/s00604-015-1705-3]
[50]
Gonçalves H, Esteves da Silva JC. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J Fluoresc 2010; 20(5): 1023-8.
[http://dx.doi.org/10.1007/s10895-010-0652-y] [PMID: 20352303]
[51]
Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 2006; 110(2): 831-6.
[http://dx.doi.org/10.1021/jp055503b] [PMID: 16471611]
[52]
Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009; 3(8): 2367-75.
[http://dx.doi.org/10.1021/nn900546b] [PMID: 19702326]
[53]
Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004; 126(40): 12736-7.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[54]
Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128(24): 7756-7.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[55]
Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 2018; 30(1): 1704740.
[http://dx.doi.org/10.1002/adma.201704740] [PMID: 29178388]
[56]
Yuan F, Wang Z, Li X, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light‐Emitting diodes. Adv Mater 2017; 29(3): 1604436.
[http://dx.doi.org/10.1002/adma.201604436] [PMID: 27879013]
[57]
Liu C, Wang R, Wang B, et al. Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Mikrochim Acta 2018; 185(12): 539.
[http://dx.doi.org/10.1007/s00604-018-3072-3] [PMID: 30415284]
[58]
Pan L, Sun S, Zhang A, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 2015; 27(47): 7782-7.
[http://dx.doi.org/10.1002/adma.201503821] [PMID: 26487302]
[59]
Tian Z, Zhang X, Li D, Zhou D, Jing P, Shen D, et al. Full‐color inorganic carbon dot phosphors for white-light-emitting diodes. Adv Opt Mater 2017; 5(19): 1700416.
[http://dx.doi.org/10.1002/adom.201700416]
[60]
Zhan J, Geng B, Wu K, Xu G, Wang L, Guo R, et al. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 2018; 130: 153-63.
[http://dx.doi.org/10.1016/j.carbon.2017.12.075]
[61]
Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, Xiong HM. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018; 14(22): e1800612.
[http://dx.doi.org/10.1002/smll.201800612] [PMID: 29709104]
[62]
Xu Q, Kuang T, Liu Y, et al. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B Mater Biol Med 2016; 4(45): 7204-19.
[http://dx.doi.org/10.1039/C6TB02131J] [PMID: 32263722]
[63]
Zhou J, Zhou H, Tang J, et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Mikrochim Acta 2017; 184(2): 343-68.
[http://dx.doi.org/10.1007/s00604-016-2043-9]
[64]
Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 2012; 134(1): 15-8.
[http://dx.doi.org/10.1021/ja206030c] [PMID: 22136359]
[65]
Manioudakis J, Victoria F, Thompson CA, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots. J Mater Chem C Mater Opt Electron Devices 2019; 7(4): 853-62.
[http://dx.doi.org/10.1039/C8TC04821E]
[66]
Ding H, Li X-H, Chen X-B, Wei J-S, Li X-B, Xiong H-M. Surface states of carbon dots and their influences on luminescence. J Appl Phys 2020; 127(23): 231101.
[http://dx.doi.org/10.1063/1.5143819]
[67]
Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl 2015; 54(18): 5360-3.
[http://dx.doi.org/10.1002/anie.201501193] [PMID: 25832292]
[68]
Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chemistry 2014; 20(8): 2254-63.
[http://dx.doi.org/10.1002/chem.201304374] [PMID: 24449509]
[69]
Li Z, Yu H, Bian T, et al. Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. J Mater Chem C Mater Opt Electron Devices 2015; 3(9): 1922-8.
[http://dx.doi.org/10.1039/C4TC02756F]
[70]
Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016; 10(1): 484-91.
[http://dx.doi.org/10.1021/acsnano.5b05406] [PMID: 26646584]
[71]
Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe(3+). Anal Chem 2014; 86(20): 10201-7.
[http://dx.doi.org/10.1021/ac503183y] [PMID: 25280346]
[72]
Chandra S, Patra P, Pathan SH, et al. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B Mater Biol Med 2013; 1(18): 2375-82.
[http://dx.doi.org/10.1039/c3tb00583f] [PMID: 32261072]
[73]
Xu Q, Pu P, Zhao J, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. J Mater Chem A Mater Energy Sustain 2015; 3(2): 542-6.
[http://dx.doi.org/10.1039/C4TA05483K]
[74]
Wang C, Wang Y, Shi H, et al. A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury (II) based on sulfur doped carbon quantum dots. Mater Chem Phys 2019; 232: 145-51.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.071]
[75]
Dong Y, Pang H, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl 2013; 52(30): 7800-4.
[http://dx.doi.org/10.1002/anie.201301114] [PMID: 23761198]
[76]
Qu D, Sun Z, Zheng M, et al. Three Colors Emission from S, N Co-doped Graphene Quantum Dots for Visible Light H2 Production and Bioimaging. Adv Opt Mater 2015; 3(3): 360-7.
[http://dx.doi.org/10.1002/adom.201400549]
[77]
Li L, Yu B, You T. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosens Bioelectron 2015; 74: 263-9.
[http://dx.doi.org/10.1016/j.bios.2015.06.050] [PMID: 26143466]
[78]
Xue M, Zhang L, Zhan Z, Zou M, Huang Y, Zhao S. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 2016; 150: 324-30.
[http://dx.doi.org/10.1016/j.talanta.2015.12.024] [PMID: 26838415]
[79]
Wang H, Lu Q, Hou Y, Liu Y, Zhang Y. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 2016; 155: 62-9.
[http://dx.doi.org/10.1016/j.talanta.2016.04.020] [PMID: 27216657]
[80]
Zhou J, Shan X, Ma J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances 2014; 4(11): 5465-8.
[http://dx.doi.org/10.1039/c3ra45294h]
[81]
Sun X, Brückner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale 2015; 7(41): 17278-82.
[http://dx.doi.org/10.1039/C5NR05549K] [PMID: 26445399]
[82]
Ma Y, Chen A, Huang Y, et al. Off-on fluorescent switching of boron-doped carbon quantum dots for ultrasensitive sensing of catechol and glutathione. Carbon 2020; 162: 234-44.
[http://dx.doi.org/10.1016/j.carbon.2020.02.048]
[83]
Pang L-F, Wu H, Fu M-J, Guo X-F, Wang H. Red emissive boron and nitrogen co-doped “on-off-on” carbon dots for detecting and imaging of mercury(II) and biothiols. Mikrochim Acta 2019; 186(11): 708.
[http://dx.doi.org/10.1007/s00604-019-3852-4] [PMID: 31641864]
[84]
Zuo G, Xie A, Li J, Su T, Pan X, Dong W. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection. J Phys Chem C 2017; 121(47): 26558-65.
[http://dx.doi.org/10.1021/acs.jpcc.7b10179]
[85]
Yang C, Li Y, Yang Y, et al. Multidimensional theranostics for tumor fluorescence imaging, photoacoustic imaging and photothermal treatment based on manganese doped carbon dots. J Biomed Nanotechnol 2018; 14(9): 1590-600.
[http://dx.doi.org/10.1166/jbn.2018.2565] [PMID: 29958553]
[86]
Jafari M, Rezvanpour A. Upconversion nano-particles from synthesis to cancer treatment: A review. Adv Powder Technol 2019; 30(9): 1731-53.
[http://dx.doi.org/10.1016/j.apt.2019.05.027]
[87]
Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 2014; 114(10): 5161-214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[88]
Li K, Hong E, Wang B, et al. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagn Photodyn Ther 2019; 25: 177-92.
[http://dx.doi.org/10.1016/j.pdpdt.2018.12.007] [PMID: 30579991]
[89]
Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine (Lond) 2011; 7(6): 710-29.
[http://dx.doi.org/10.1016/j.nano.2011.02.013] [PMID: 21419877]
[90]
Del Rosal B, Jaque D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl Fluoresc 2019; 7(2): 022001.
[http://dx.doi.org/10.1088/2050-6120/ab029f] [PMID: 30695767]
[91]
Zhang X, Jin X, Wang D, Xiong S, Geng X, Zhao Y. Synthesis of NaYF4: Yb, Er nanocrystals and its application in silicon thin film solar cells. Phys Status Solidi, C Curr Top Solid State Phys 2010; 7(3‐4): 1128-31.
[http://dx.doi.org/10.1002/pssc.200982762]
[92]
Niu N, He F, Gai S, et al. Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4: Yb3+, Ln3+, Bi3+(Ln3+= Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. J Mater Chem 2012; 22(40): 21613-23.
[http://dx.doi.org/10.1039/c2jm34653b]
[93]
Han S, Deng R, Xie X, Liu X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed Engl 2014; 53(44): 11702-15.
[http://dx.doi.org/10.1002/anie.201403408] [PMID: 25204638]
[94]
Zheng K, Loh KY, Wang Y, et al. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 2019; 29: 100797.
[http://dx.doi.org/10.1016/j.nantod.2019.100797]
[95]
Kumar B, Murali A, Bharath AB, Giri S. Guar gum modified upconversion nanocomposites for colorectal cancer treatment through enzyme-responsive drug release and NIR-triggered photodynamic therapy. Nanotechnology 2019; 30(31): 315102.
[http://dx.doi.org/10.1088/1361-6528/ab116e] [PMID: 30893650]
[96]
Saleh SM, Ali R, Hirsch T, Wolfbeis OS. Detection of biotin–avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles. J Nanopart Res 2011; 13(10): 4603-11.
[http://dx.doi.org/10.1007/s11051-011-0424-x]
[97]
Wang Y, Song S, Zhang S, Zhang H. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today 2019; 25: 38-67.
[http://dx.doi.org/10.1016/j.nantod.2019.02.007]
[98]
Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 2004; 4(11): 2191-6.
[http://dx.doi.org/10.1021/nl048680h]
[99]
Nannuri SH, Kulkarni SD, Subash C, Chidangil S, George SD. Post annealing induced manipulation of phase and upconversion luminescence of Cr 3+ doped NaYF4: Yb, Er crystals. RSC Advances 2019; 9(17): 9364-72.
[http://dx.doi.org/10.1039/C9RA00115H]
[100]
Zhang Y-W, Sun X, Si R, You L-P, Yan C-H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 2005; 127(10): 3260-1.
[http://dx.doi.org/10.1021/ja042801y] [PMID: 15755126]
[101]
Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008; 19(34): 345606.
[http://dx.doi.org/10.1088/0957-4484/19/34/345606] [PMID: 21730655]
[102]
Liu D, Xu X, Du Y, et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun 2016; 7(1): 10254.
[http://dx.doi.org/10.1038/ncomms10254] [PMID: 26743184]
[103]
Asadi M, Ghahari M, Hassanzadeh-Tabrizi S, Arabi AM, Nasiri R. Studying the toxicity effects of coated and uncoated NaLuF4: Yb3+, Tm3+ upconversion nanoparticles on blood factors and histopathology for Balb/C mice’s tissue. Mater Res Express 2020; 6(12): 125421.
[http://dx.doi.org/10.1088/2053-1591/ab6199]
[104]
Zhang L, Wang Z, Lu Z, et al. Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties. J Nanosci Nanotechnol 2014; 14(6): 4710-3.
[http://dx.doi.org/10.1166/jnn.2014.8641] [PMID: 24738451]
[105]
Zhang X, Guo Z, Zhang X, et al. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci Rep 2019; 9(1): 5212.
[http://dx.doi.org/10.1038/s41598-019-41482-w] [PMID: 30914696]
[106]
Sharma RK, Mudring A-V, Ghosh P. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. J Lumin 2017; 189: 44-63.
[http://dx.doi.org/10.1016/j.jlumin.2017.03.062]
[107]
Shang Y, Hao S, Liu J, et al. Synthesis of upconversion β-NaYF4: Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase. Nanomaterials (Basel) 2015; 5(1): 218-32.
[http://dx.doi.org/10.3390/nano5010218] [PMID: 28347007]
[108]
Du P, Deng AM, Luo L, Yu JS. Simultaneous phase and size manipulation in NaYF4: Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J Chem 2017; 41(22): 13855-61.
[http://dx.doi.org/10.1039/C7NJ03165C]
[109]
Tang J, Chen L, Li J, et al. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) doping in NaYF4:Yb,Er nanocrystals. Nanoscale 2015; 7(35): 14752-9.
[http://dx.doi.org/10.1039/C5NR04125B] [PMID: 26287521]
[110]
Nannuri SH, Samal AR, Subash C, Santhosh C, George SD. Tuning of structural, laser power-dependent and temperature dependent luminescence properties of NaYF4: Yb, Er (Y: 88%, Yb: 10 and Er: 2%) submicron crystals using Cr3+ ion doping. J Alloys Compd 2019; 777: 894-901.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.035]
[111]
Chen C, Sun L-D, Li Z-X, et al. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 2010; 26(11): 8797-803.
[http://dx.doi.org/10.1021/la904545a] [PMID: 20085339]
[112]
Wang H-Q, Nann T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 2009; 3(11): 3804-8.
[http://dx.doi.org/10.1021/nn9012093] [PMID: 19873986]
[113]
Wang H-Q, Tilley RD, Nann T. Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis. CrystEngComm 2010; 12(7): 1993-6.
[http://dx.doi.org/10.1039/b927225a]
[114]
Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S. Novel microwave-assisted solvothermal synthesis of NaYF4:Yb,Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 2011; 27(23): 14632-7.
[http://dx.doi.org/10.1021/la204015m] [PMID: 22029665]
[115]
Wang H, Nann T. Monodisperse upconversion GdF3:Yb, Er rhombi by microwave-assisted synthesis. Nanoscale Res Lett 2011; 6(1): 267.
[http://dx.doi.org/10.1186/1556-276X-6-267] [PMID: 21711769]
[116]
Guzzetta F, Roig A, Julián-López B. Ultrafast Synthesis and Coating of High-Quality β-NaYF4:Yb3+,Ln3+ Short Nanorods. J Phys Chem Lett 2017; 8(23): 5730-5.
[http://dx.doi.org/10.1021/acs.jpclett.7b02473] [PMID: 29125300]
[117]
Reddy KL, Prabhakar N, Arppe R, Rosenholm JM, Krishnan V. Microwave-assisted one-step synthesis of acetate-capped NaYF4: Yb/Er upconversion nanocrystals and their application in bioimaging. J Mater Sci 2017; 52(10): 5738-50.
[http://dx.doi.org/10.1007/s10853-017-0809-z]
[118]
Yu S, Wang Z, Cao R, Meng L. Microwave–assisted synthesis of water–disperse and biocompatible NaGdF4:Yb,Ln@NaGdF4 nanocrystals for UCL/CT/MR multimodal imaging. J Fluor Chem 2017; 200: 77-83.
[http://dx.doi.org/10.1016/j.jfluchem.2017.06.002]
[119]
Chen C, Li C, Shi Z. Current Advances in Lanthanide-Doped Upconversion Nanostructures for Detection and Bioapplication. Adv Sci (Weinh) 2016; 3(10): 1600029.
[http://dx.doi.org/10.1002/advs.201600029] [PMID: 27840794]
[120]
Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968; 26(1): 62-9.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[121]
Liu S, Han MY. Silica-coated metal nanoparticles. Chem Asian J 2010; 5(1): 36-45.
[PMID: 19768718]
[122]
Li Z, Zhang Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew Chem Int Ed 2006; 118(46): 7896-9.
[http://dx.doi.org/10.1002/ange.200602975]
[123]
Ramasamy P, Chandra P, Rhee SW, Kim J. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale 2013; 5(18): 8711-7.
[http://dx.doi.org/10.1039/c3nr01608k] [PMID: 23900204]
[124]
Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. small 2009; 5(20): 2285-90.
[125]
Yi G-S, Chow G-M. Water-soluble NaYF4:Yb,Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 2007; 19(3): 341-3.
[http://dx.doi.org/10.1021/cm062447y]
[126]
Bogdan N, Vetrone F, Ozin GA, Capobianco JA. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 2011; 11(2): 835-40.
[http://dx.doi.org/10.1021/nl1041929] [PMID: 21244089]
[127]
Zhou J, Yu M, Sun Y, et al. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 2011; 32(4): 1148-56.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.071] [PMID: 20965563]
[128]
Chen C, Ke J, Zhou XE, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013; 500(7463): 486-9.
[http://dx.doi.org/10.1038/nature12327] [PMID: 23851396]
[129]
Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 2004; 56(8): 1067-84.
[http://dx.doi.org/10.1016/j.addr.2004.01.001] [PMID: 15094207]
[130]
Yin J, He X, Wang K, et al. One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 2012; 4(1): 110-2.
[http://dx.doi.org/10.1039/C1NR11265A] [PMID: 22080331]
[131]
Liu HM, Wu SH, Lu CW, et al. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. small 2008; 4(5): 619-26.
[132]
Xing X, He X, Peng J, Wang K, Tan W. Uptake of silica-coated nanoparticles by HeLa cells. J Nanosci Nanotechnol 2005; 5(10): 1688-93.
[http://dx.doi.org/10.1166/jnn.2005.199] [PMID: 16245529]
[133]
Prutki M, Poljak-Blazi M, Jakopovic M, Tomas D, Stipancic I, Zarkovic N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett 2006; 238(2): 188-96.
[http://dx.doi.org/10.1016/j.canlet.2005.07.001] [PMID: 16111806]
[134]
Son MJ, Woolard K, Nam D-H, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009; 4(5): 440-52.
[http://dx.doi.org/10.1016/j.stem.2009.03.003] [PMID: 19427293]
[135]
Wei Y, Jin X, Kong T, Zhang W, Zhu B. The endocytic pathways of carbon dots in human adenoid cystic carcinoma cells. Cell Prolif 2019; 52(3): e12586.
[http://dx.doi.org/10.1111/cpr.12586] [PMID: 30997713]
[136]
Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. Ecotoxicol Environ Saf 2020; 203: 110951.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110951] [PMID: 32678752]
[137]
Kapara A, Brunton V, Graham D, Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem Sci (Camb) 2020; 11(22): 5819-29.
[http://dx.doi.org/10.1039/D0SC01255F]
[138]
Jiang X, Röcker C, Hafner M, Brandholt S, Dörlich RM, Nienhaus GU. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010; 4(11): 6787-97.
[http://dx.doi.org/10.1021/nn101277w] [PMID: 21028844]
[139]
Buono C, Anzinger JJ, Amar M, Kruth HS. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest 2009; 119(5): 1373-81.
[http://dx.doi.org/10.1172/JCI35548] [PMID: 19363293]
[140]
Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31(3): 438-48.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.060] [PMID: 19800115]
[141]
Qiu K, Du Y, Liu J, Guan J-L, Chao H, Diao J. Super-resolution observation of lysosomal dynamics with fluorescent gold nanoparticles. Theranostics 2020; 10(13): 6072-81.
[http://dx.doi.org/10.7150/thno.42134] [PMID: 32483439]
[142]
Pramanik SK, Sreedharan S, Singh H, et al. Imaging cellular trafficking processes in real time using lysosome targeted up-conversion nanoparticles. Chem Commun (Camb) 2017; 53(94): 12672-5.
[http://dx.doi.org/10.1039/C7CC08185E] [PMID: 29131207]
[143]
Wu L, Li X, Ling Y, Huang C, Jia N. Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 2017; 9(34): 28222-32.
[http://dx.doi.org/10.1021/acsami.7b08148] [PMID: 28787116]
[144]
Tong L, Wang X, Chen Z, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging. Anal Chem 2020; 92(9): 6430-6.
[http://dx.doi.org/10.1021/acs.analchem.9b05553] [PMID: 32268724]
[145]
Fuller JE, Zugates GT, Ferreira LS, et al. Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 2008; 29(10): 1526-32.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.025] [PMID: 18096220]
[146]
Gao Y, Liu Y, Yan R, et al. Bifunctional peptide-conjugated gold nanoparticles for precise and efficient nucleus-targeting bioimaging in live cells. Anal Chem 2020; 92(19): 13595-603.
[http://dx.doi.org/10.1021/acs.analchem.0c03476] [PMID: 32940455]
[147]
Liu JN, Bu W, Pan LM, et al. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 2012; 33(29): 7282-90.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.035] [PMID: 22796158]
[148]
Zhuang Q, Jia H, Du L, et al. Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosens Bioelectron 2014; 55: 76-82.
[http://dx.doi.org/10.1016/j.bios.2013.12.003] [PMID: 24362242]
[149]
Ju E, Li Z, Liu Z, Ren J, Qu X. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl Mater Interfaces 2014; 6(6): 4364-70.
[http://dx.doi.org/10.1021/am5000883] [PMID: 24559457]
[150]
Hua X-W, Bao Y-W, Chen Z, Wu F-G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 2017; 9(30): 10948-60.
[http://dx.doi.org/10.1039/C7NR03658B] [PMID: 28736787]
[151]
Shen Y, Zhang X, Liang L, et al. Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon 2020; 156: 558-67.
[http://dx.doi.org/10.1016/j.carbon.2019.09.079]
[152]
Singh H, Sreedharan S, Oyarzabal E, et al. Mitochondriotropic Lanthanide Nanorods: Implications for Multimodal Imaging. Chem Comm 2020.
[153]
Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003; 63(9): 1999-2004.
[PMID: 12727808]
[154]
El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005; 5(5): 829-34.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[155]
Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012; 6(11): 10366-77.
[http://dx.doi.org/10.1021/nn304347g] [PMID: 23101432]
[156]
Aydogan B, Li J, Rajh T, et al. AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol Imaging Biol 2010; 12(5): 463-7.
[http://dx.doi.org/10.1007/s11307-010-0299-8] [PMID: 20237857]
[157]
Jang B, Park J-Y, Tung C-H, Kim I-H, Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011; 5(2): 1086-94.
[http://dx.doi.org/10.1021/nn102722z] [PMID: 21244012]
[158]
Zhao F, Li X, Li J, et al. Activatable ultrasmall gold nanorods for “off-on” fluorescence imaging-guided photothermal therapy. J Mater Chem B Mater Biol Med 2017; 5(11): 2145-51.
[http://dx.doi.org/10.1039/C6TB02873J] [PMID: 32263687]
[159]
Popp MK, Oubou I, Shepherd C, Nager Z, Anderson C, Pagliaro L. Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume. J Nanomater 2014 2014.
[160]
Feng Y, Chang Y, Sun X, et al. Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. Biomater Sci 2019; 7(4): 1448-62.
[http://dx.doi.org/10.1039/C8BM01122B] [PMID: 30666994]
[161]
Sun S, Zhang L, Jiang K, Wu A, Lin H. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater 2016; 28(23): 8659-68.
[http://dx.doi.org/10.1021/acs.chemmater.6b03695]
[162]
Ding H, Ji Y, Wei J-S, Gao Q-Y, Zhou Z-Y, Xiong H-M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B Mater Biol Med 2017; 5(26): 5272-7.
[http://dx.doi.org/10.1039/C7TB01130J] [PMID: 32264113]
[163]
Yang W, Zhang H, Lai J, et al. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 2018; 128: 78-85.
[http://dx.doi.org/10.1016/j.carbon.2017.11.069]
[164]
Sun S, Chen J, Jiang K, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl Mater Interfaces 2019; 11(6): 5791-803.
[http://dx.doi.org/10.1021/acsami.8b19042] [PMID: 30648846]
[165]
Zhao J, Li F, Zhang S, An Y, Sun S. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J Chem 2019; 43(16): 6332-42.
[http://dx.doi.org/10.1039/C8NJ06351F]
[166]
Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008; 29(7): 937-43.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.051] [PMID: 18061257]
[167]
Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 2009; 81(21): 8687-94.
[http://dx.doi.org/10.1021/ac901960d] [PMID: 19817386]
[168]
Xiong L-Q, Chen Z-G, Yu M-X, Li F-Y, Liu C, Huang C-H. Synthesis, characterization, and in vivo targeted imaging of amine- functionalized rare-earth up-converting nanophosphors. Biomaterials 2009; 30(29): 5592-600.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.015] [PMID: 19564039]
[169]
Yu X-F, Sun Z, Li M, et al. Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 2010; 31(33): 8724-31.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.099] [PMID: 20728213]
[170]
Li Y, Li X, Xue Z, Jiang M, Zeng S, Hao J. M2+ Doping induced simultaneous phase/size control and remarkable enhanced upconversion luminescence of NaLnF4 probes for optical-guided tiny tumor diagnosis. Adv Healthc Mater 2017; 6(10): 1601231.
[http://dx.doi.org/10.1002/adhm.201601231] [PMID: 28257557]
[171]
Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F. Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 2012; 33(14): 3733-42.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.063] [PMID: 22361097]
[172]
Chen G, Shen J, Ohulchanskyy TY, et al. (α-NaYbF4:Tm(3+))/ CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012; 6(9): 8280-7.
[http://dx.doi.org/10.1021/nn302972r] [PMID: 22928629]
[173]
Han S, Samanta A, Xie X, et al. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv Mater 2017; 29(18): 1700244.
[http://dx.doi.org/10.1002/adma.201700244] [PMID: 28295739]
[174]
Chen Y, Fu Y, Li X, Chen H, Wang Z, Zhang H. Peptide-functionalized NaGdF4 nanoparticles for tumor-targeted magnetic resonance imaging and effective therapy. RSC Advances 2019; 9(30): 17093-100.
[http://dx.doi.org/10.1039/C9RA02135C]
[175]
Zeng S, Tsang M-K, Chan C-F, Wong K-L, Hao J. PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 2012; 33(36): 9232-8.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.019] [PMID: 23036962]
[176]
Wong H-T, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J. In vitro cell imaging using multifunctional small sized KGdF4:Yb3+,Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process. Nanoscale 2013; 5(8): 3465-73.
[http://dx.doi.org/10.1039/c3nr00081h] [PMID: 23475279]
[177]
Zhai X, Lei P, Zhang P, et al. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials 2015; 65: 115-23.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.023] [PMID: 26148475]
[178]
Kostiv U, Lobaz V, Kučka J, et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 2017; 9(43): 16680-8.
[http://dx.doi.org/10.1039/C7NR05456D] [PMID: 29067394]
[179]
Du K, Lei P, Dong L, et al. In situ decorating of ultrasmall Ag2Se on upconversion nanoparticles as novel nanotheranostic agent for multimodal imaging-guided cancer photothermal therapy. Appl Mater Today 2020; 18: 100497.
[http://dx.doi.org/10.1016/j.apmt.2019.100497]
[180]
Liu S, Li W, Dong S, et al. Degradable calcium phosphate-coated upconversion nanoparticles for highly efficient chemo-photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(51): 47659-70.
[http://dx.doi.org/10.1021/acsami.9b11973] [PMID: 31713407]
[181]
Kharlamov AN, Feinstein JA, Cramer JA, Boothroyd JA, Shishkina EV, Shur V. Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM- FIM trial. Future Cardiol 2017; 13(4): 345-63.
[182]
Singh P, Pandit S, Mokkapati VR, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[183]
Bayda S, Hadla M, Palazzolo S, et al. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem 2018; 25(34): 4269-303.
[184]
Guryev EL, Shilyagina NY, Kostyuk AB, Sencha LM, Balalaeva IV, Vodeneev VA, et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles. Toxicol. SciToxicological Sciences 2019; 170(1): 123-32.
[185]
Lv R, Li G, Lu S, Wang T. Synthesis of multi-functional carbon quantum dots for targeted antitumor therapy. J. Fluoresc 2021; 31: pp. (2)339-48.
[186]
Adrita SH, Tasnim KN, Ryu JH, Sharker SM. Nanotheranostic carbon dots as an emerging platform for cancer therapy. J Nanotheranostics 2020; 1(1): 59-78.
[187]
Jia Q, Zhao Z, Liang K, et al. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 2020; 4(2): 449-71.
[188]
Del Rosal B, Jaque D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. Methods Appl Fluoresc 2019; 7(2)022001
[189]
Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, Prina-Mello A, et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the European upconversion network (COST Action CM1403). Adv Healthc Mater 2019; 8(1)1801233
[190]
Jia Q, Zhao Z, Liang K, et al. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 2020; 4(2): 449-71.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy