Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Graphenoxide Cross-Linker Based Potentiometric Biosensor Design for Sarcosine Determination

Author(s): Özlem Biçen Ünlüer, Nazire Altunkök, Ebru Birlik Özkütük* and Arzu Ersöz

Volume 28, Issue 11, 2021

Published on: 08 October, 2021

Page: [1303 - 1311] Pages: 9

DOI: 10.2174/0929866528666211008160111

Price: $65

conference banner
Abstract

Background: Sarcosine, also known as N-methyl glycine, is a natural amino acid that is an intermediate and by product in glycine synthesis and degradation. Recently found in many peptides, sarcosine has been researched as a newly accepted prostate cancer marker. The increased concentration of sarcosine in blood serum and the urine showed that malignancy of measured prostate cancer cells is active.

Objective: In this article, we aimed to design a potentiometric biosensor for detection of sarcosine with a low detection limit, high selectivity, short response time, wide linear range, and satisfactory long-term stability.

Methods: In this article, we developed a new Graphene oxide (GFOX) photosensitive cross-linker based potentiometric biosensor based on the AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. The functional groups determined using Raman, FT-IR, XPS analyzes, and surface characterization, the morphology of synthesized GFOX photosensitive cross-linker were determined by TEM and AFM studies. Then, the performance of the GFOX based potentiometric biosensor has been evaluated.

Results: When the usage of the developed GFOX doped potentiometric biosensor against sarcosine determination, it was found that 10-4 mM sarcosine was determined in 60 seconds in the solution. In addition, the detection limit of the GFOX doped potentiometric biosensor was found to be 9.45x10-7 mM, and the linear potentiometric biosensor was found to be in the concentration range of 10-1 to 10-5 mM. The selectivity studies of the developed potentiometric biosensor were investigated using glycine solutions, and it was determined that GFOX doped potentiometric biosensor was more selective against sarcosine. Besides this, a reusability test using 10-3 mM sarcosine solution showed that reproducible studies were performed without the loss of potential of designed potentiometric biosensor and no loss of sensitivity.

Conclusion: After applying the framework, we get a new potentiometric biosensor for sarcosine determination. GFOX photosensitive cross-linker was used in designing potentiometric biosensors, and this increased the stability and efficiency of the biosensor. Therefore, the developed potentiometric biosensor for sarcosine determination could be easily used for the early diagnosis of prostate cancer.

Keywords: Sarcosine, potentiometric sensor, GFOX based photosensitive cross-linker, ANADOLUCA, prostate cancer, graphenoxide.

Graphical Abstract

[1]
Amaral, L.M.P.F.; Santos, A.F.L.O.M. Thermochemistry of sarcosine and sarcosine anhydride: theoretical and experimental studies. J. Chem. Thermodyn., 2013, 58, 315-321.
[http://dx.doi.org/10.1016/j.jct.2012.11.019]
[2]
Zhang, H.X.; Hyrc, K.; Thio, L.L. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J. Physiol., 2009, 587(Pt 13), 3207-3220.
[http://dx.doi.org/10.1113/jphysiol.2009.168757] [PMID: 19433577]
[3]
Cernei, N.; Zitka, O.; Ryvolova, M.; Adam, V.; Masarik, M. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carninoma marker. Int. J. Electrochem. Sci., 2012, 7, 4286-4301.
[4]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[http://dx.doi.org/10.1038/nature07762] [PMID: 19212411]
[5]
Couzin, J. Biomarkers. Metabolite in urine may point to high-risk prostate cancer. Science, 2009, 323(5916), 865.
[http://dx.doi.org/10.1126/science.323.5916.865a] [PMID: 19213886]
[6]
Biavardi, E.; Tudisco, C.; Maffei, F.; Motta, A.; Massera, C.; Condorelli, G.G.; Dalcanale, E. Exclusive recognition of sarcosine in water and urine by a cavitand-functionalized silicon surface. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2263-2268.
[http://dx.doi.org/10.1073/pnas.1112264109] [PMID: 22308349]
[7]
Burton, C.; Gamagedara, S.; Ma, Y. A novel enzymatic technique for determination of sarcosine in urine samples. Anal. Methods, 2012, 4, 141-146.
[http://dx.doi.org/10.1039/C1AY05541K]
[8]
Rebelo, T.S.C.R.; Pereira, C.M.; Sales, M.G.F.; Noronha, J.P.; Costa-Rodrigues, J.; Silva, F.; Fernandes, M.H. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples. Anal. Chim. Acta, 2014, 850, 26-32.
[http://dx.doi.org/10.1016/j.aca.2014.08.005] [PMID: 25441156]
[9]
Diltemiz, S.E.; Uslu, O. A reflectometric interferometric nanosensor for sarcosine. Biotechnol. Prog., 2015, 31(1), 55-61.
[http://dx.doi.org/10.1002/btpr.1955] [PMID: 25079110]
[10]
Nguy, T.P.; Phi, T.V.; Tram, D.T.N.; Eersels, K.; Wagner, P. Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 2017, 246, 461-470.
[http://dx.doi.org/10.1016/j.snb.2017.02.101]
[11]
Hu, J.; Wei, W.; Ke, S.; Zeng, X.; Lin, P. A novel and sensitive sarcosine biosensor based on organic electrochemical transistor. Electrochim. Acta, 2019, 307, 100-106.
[http://dx.doi.org/10.1016/j.electacta.2019.03.180]
[12]
Zhou, Y.; Yin, H.; Meng, X.; Xu, Z.; Fu, Y.; Ai, S. Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochim. Acta, 2012, 71, 294-301.
[http://dx.doi.org/10.1016/j.electacta.2012.04.014]
[13]
Özkütük, E.B.; Diltemiz, S.E.; Avcı, Ş.; Uğurağ, D.; Aykanat, R.B.; Ersöz, A.; Say, R. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features. Mater. Sci. Eng. C, 2016, 69, 231-235.
[http://dx.doi.org/10.1016/j.msec.2016.06.057] [PMID: 27612708]
[14]
Molaakbari, E.; Mostafavi, A.; Beitollahi, H.; Alizadeh, R. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst (Lond.), 2014, 139(17), 4356-4364.
[http://dx.doi.org/10.1039/C4AN00138A] [PMID: 25014312]
[15]
Beitollahi, H.; Mostafavi, M. Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples. Electroanalysis, 2014, 26, 1090-1098.
[http://dx.doi.org/10.1002/elan.201400074]
[16]
Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Hamzavi, M.; Parvan, H. Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int. J. Electrochem. Sci., 2014, 9, 2955-2965.
[17]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[http://dx.doi.org/10.1016/j.bios.2013.04.029] [PMID: 23707873]
[18]
Ensafi, A.A.; Karimi-Maleh, H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. (Lausanne), 2010, 640, 75-83.
[http://dx.doi.org/10.1016/j.jelechem.2010.01.010]
[19]
Hajian, R.; Mehrayin, Z.; Mohagheghian, M.; Zafari, M.; Hosseini, P.; Shams, N. Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug: valrubicin-DNA interaction. Mater. Sci. Eng. C, 2015, 49, 769-775.
[http://dx.doi.org/10.1016/j.msec.2015.01.072] [PMID: 25687007]
[20]
Shahmiria, M.R.; Baharia, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirniaa, N. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B Chem., 2013, 177, 70-77.
[http://dx.doi.org/10.1016/j.snb.2012.10.098]
[21]
Lu, J.; Pang, D.; Zeng, X.; He, X. A new solid-state silver ion-selective electrode based on a novel tweezer-type calixarene derivative. J. Electroanal. Chem. (Lausanne), 2004, 568, 37-43.
[http://dx.doi.org/10.1016/j.jelechem.2004.01.017]
[22]
Luppa, P.B.; Sokoll, L.J.; Chan, D.W. Immunosensors-principles and applications to clinical chemistry. Clin. Chim. Acta, 2001, 314(1-2), 1-26, 128.
[http://dx.doi.org/10.1016/S0009-8981(01)00629-5] [PMID: 11718675]
[23]
Hou, S.; Zhang, A.; Su, M. Nanomaterials for biosensing applications. Nanomaterials (Basel), 2016, 6(4), 58.
[http://dx.doi.org/10.3390/nano6040058] [PMID: 28335185]
[24]
Tiyek, İ.; Dönmez, U.; Yıldırım, B.; Alma, M.H.; Ersoy, M.S. Synthesis and characterization of reduced graphene oxide by chemical method. SAÜ. J. Sci., 2016, 20, 350.
[25]
Çiftçi, N.S. Monodısperse nıckel-palladıum alloy nanopartıcles supported on reduced graphene oxıde as hıghly effıcıent catalysts for the hydrolytıc dehydrogenatıon of ammonıa borane. Ataturk University, Institute of Natural and Principles Applied Sciences, Department of Nano Science and Nano Engineering Nanomaterials Science, 2015; pp. 40-42.
[26]
Du, H.; Li, J.; Zhang, J.; Su, G.; Li, X. Separation of hydrogen and nitrogen gases with porous graphene membrene. J. Phys. Chem. C, 2011, 115, 23261-23266.
[http://dx.doi.org/10.1021/jp206258u]
[27]
Yazıcı, B. Development of gol nanoparticle coated potentiometric immunosensor for clenbuterol detection. Eskişehir Osmangazi Universıty, Institute of Sciences, Department of Chemistry, 2017; pp. 19-41.
[28]
Say, R. Photosensitive aminoacid-monomer linkage and bioconjugation applications in life sciences and biotechnology. World Intellectual Property Organization-PatentScope. 2019. Available from: www.wipo.int/patentscope/search/en/WO2011070402
[29]
Ünlüer, Ö.B.; Ersöz, A.; Say, R.; Tomsuk, Ö.; Sivas, H. Novel nanoimaging approach: antibodious polymeric nanolabel for intracellular alpha-fetoprotein targeted monitoring. Biotechnol. Prog., 2013, 29(2), 472-479.
[http://dx.doi.org/10.1002/btpr.1674] [PMID: 23225784]
[30]
Say, R.; Ünlüer, Ö.B.; Ersöz, A.; Öziç, C.; Kılıç, V. Reusable nanocopy machine particles for the replication of DNA. Biotechnol. Prog., 2015, 31(1), 119-123.
[http://dx.doi.org/10.1002/btpr.2016] [PMID: 25376531]
[31]
Say, R.; Keçili, R.; Biçen, Ö.; Şişman, F.; Hür, D.; Denizli, A. A novel nanoprotein particle synthesis: nanolipase. Process Biochem., 2011, 46, 1688-1692.
[http://dx.doi.org/10.1016/j.procbio.2011.04.011]
[32]
Say, R.; Şenay, R.H.; Biçen, Ö.; Ersöz, A.; Şişman Yılmaz, F.; Akgöl, S.; Denizli, A. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch. Mater. Sci. Eng. C, 2013, 33(4), 1900-1906.
[http://dx.doi.org/10.1016/j.msec.2012.12.053] [PMID: 23498211]
[33]
Say, R.; Özkütük, E.B.; Ünlüer, Ö.B.; Uğurağ, D.; Ersöz, A. Nano anti-tumor necrosis factor-alpha based potentiometric sensor for tumor necrosis factor-alpha detection. Sens. Actuators B Chem., 2015, 209, 864-869.
[http://dx.doi.org/10.1016/j.snb.2014.12.063]
[34]
Koncki, R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta, 2007, 599(1), 7-15.
[http://dx.doi.org/10.1016/j.aca.2007.08.003] [PMID: 17765058]
[35]
Ali, T.A.; Mohamed, G.G.; Yahya, G.A. Development of novel potentiometric sensors for determination of lidocaine hydrochloride in pharmaceutical preparations, serum and urine samples. Iran. J. Pharm. Res., 2017, 16(2), 498-512.
[PMID: 28979305]
[36]
Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol., 2010, 58(1), 12-18.
[http://dx.doi.org/10.1016/j.eururo.2010.01.035] [PMID: 20117878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy