Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Effect of Conditions of the Pulsed Plasma-chemical Synthesis on Physicochemical Properties of the CuxOy/TiO2 Nanocomposite

Author(s): Roman Sazonov, Galina Kholodnaya*, Denis Ponomarev and Olga Lapteva

Volume 7, Issue 3, 2022

Published on: 30 March, 2022

Page: [215 - 222] Pages: 8

DOI: 10.2174/2405461507666220221095932

Price: $65

Abstract

Aim: This work presents the study results related to the effect of multi-pulse electron beam and additional heating of the reaction mixture on the structural and morphological characteristics of the CuxOy/TiO2 nanocomposite prepared by the pulsed plasma-chemical method.

Methods: The CuxOy/TiO2 nanocomposites were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD).

Results: It was found that an increase in the impact of a pulsed electron beam on the synthesized composite affected the degree of its agglomeration and the geometric mean particle diameter. Additional heating of the reaction mixture increased the geometric diameter of the synthesized particles (up to 200 nm).

Conclusion: The phase composition of the CuxOy/TiO2 nanocomposite changed depending on the synthesis conditions.

Keywords: Nanocomposite, pulsed plasma-chemical synthesis, titanium dioxide, copper (I) oxide, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD).

Graphical Abstract

[1]
Bahadori E, Ramis G, Zanardo D, et al. Photoreforming of glucose over CuO/TiO2. Catalysts 2020; 10: 477.
[http://dx.doi.org/10.3390/catal10050477]
[2]
Shi Q, Qin Z, Yu C, et al. G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res 2020; 13: 939-46.
[http://dx.doi.org/10.1007/s12274-020-2719-7]
[3]
Zeng Y, Wang T, Zhang S, Wang Y, Zhong Q. Sol–gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Appl Surf Sci 2017; 411: 227-34.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.107]
[4]
Wu Y, Wei Z, Xu R, et al. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res 2019; 12: 2211-017.
[http://dx.doi.org/10.1007/s12274-018-2248-9]
[5]
Keskin OY, Dalmis R, Birlik I, Ak Azem NF. Comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CuO/TiO2 one-dimensional photonic crystals. J Alloys Compd 2020; 817: 153262.
[http://dx.doi.org/10.1016/j.jallcom.2019.153262]
[6]
Chen C, Lee SH, Cho M, Lee Y. Core-shell CuO@TiO2 nanorods as a highly stable anode material for lithium-ion batteries. Mater Lett 2015; 140: 111-4.
[http://dx.doi.org/10.1016/j.matlet.2014.10.138]
[7]
Chen W, Jovic V, Sun-Waterhouse D, Idriss H, Waterhouse G. The role of CuO in promoting photocatalytic hydrogen production over TiO2. Int J Hydrogen Energy 2013; 38: 15036-48.
[http://dx.doi.org/10.1016/j.ijhydene.2013.09.101]
[8]
Dalmis R, Keskin OY, Ak Azem NF, Birlik I. A new one-dimensional photonic crystal combination of TiO2/CuO for structural color applications. Ceram Int 2019; 45: 21333-40.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.119]
[9]
Xia B, Liu H, Fan Y, Zhu W, Geng C. Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and sol–gel methods. Adv Eng Mater 2017; 19: 1600572.
[http://dx.doi.org/10.1002/adem.201600572]
[10]
Nguyen T, Nguyen T, Ung T, Nguyen Q. Synthesis and characterization of nano-CuO and CuO/TiO2 photocatalysts. Adv Nat Sci 2013; 4: 025002.
[http://dx.doi.org/10.1088/2043-6262/4/2/025002]
[11]
Ravishankar T, Vaz M, Teixeira S. The effects of surfactant in the sol–gel synthesis of CuO/TiO2 nanocomposites on its photocatalytic activities under UV-visible and visible light illuminations. New J Chem 2020; 44: 1888-904.
[http://dx.doi.org/10.1039/C9NJ05246A]
[12]
Ridha N, Egzar H, Kamal N. Synthesis and characterization of CuO nanoparticles and TiO2/CuO nanocomposite and using them as photocatalysts. AIP Conf Proc 2290: 030006.
[http://dx.doi.org/10.1063/5.0029408]
[13]
Manjunath K, Souza V, Ramakrishnappa T, Nagaraju G, Scholten J, Dupont J. Heterojunction CuO-TiO2 nanocomposite synthesis for significant photocatalytic hydrogen production. Mater Res Express 2016; 3: 115904.
[http://dx.doi.org/10.1088/2053-1591/3/11/115904]
[14]
Qian X, Yang W, Gao S, et al. Highly selective, defect-induced photocatalytic CO2 reduction to acetaldehyde by the Nb-doped TiO2 nanotube array under simulated solar illumination. ACS Appl Mater Interfaces 2020; 12(50): 55982-93.
[http://dx.doi.org/10.1021/acsami.0c17174] [PMID: 33283493]
[15]
Li F, Chen X, Guo Q, Yang X. Hydrogen production via methanol photocatalysis on Au/Rutile-TiO2 (110). J Phys Chem C 2020; 124: 26965-72.
[http://dx.doi.org/10.1021/acs.jpcc.0c09520]
[16]
Yu S, Lu Y, Gao F, Dong L. Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction. Catal 2020; 339: 265-73.
[http://dx.doi.org/10.1016/j.cattod.2019.04.051]
[17]
Gelfuso M, Uribe J, Thomazini D. Deficient or excessive CuO-TiO2 phase influence on dielectric properties of CaCu3Ti4O12 ceramics. Int J Appl Ceram Technol 2019; 16: 868-82.
[http://dx.doi.org/10.1111/ijac.13140]
[18]
Chen X, Xu Z, Yang F, Zhao H. Flame spray pyrolysis synthesized CuO-TiO2 nanoparticles for catalytic combustion of lean CO. Proc Combust Inst 2019; 37: 5499-506.
[http://dx.doi.org/10.1016/j.proci.2018.05.102]
[19]
Rivera-Hoyos CM, Morales-Álvarez ED, Abelló-Esparza J, et al. Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO2/visible photocatalysis. Sci Rep 2018; 8(1): 3503.
[http://dx.doi.org/10.1038/s41598-018-21597-2] [PMID: 29472555]
[20]
Forcade F, Snyders R, González B, Noirfalise X, Vigil E. Size control of CuO nanocrystals grown within TiO2 mesopores with a simple technique. Ceram Int 2018; 44: 16058-61.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.015]
[21]
Subha PP, Vikas LS, Jayaraj MK. Solution-processed CuO/TiO2 heterojunction for enhanced room temperature ethanol sensing applications. Phys Scr 2018; 93: 055001.
[http://dx.doi.org/10.1088/1402-4896/aaae1a]
[22]
Remnev GE, Furman EG, Pushkarev AI, Karpuzov SB, Kondrat’ev NA, Goncharov DV. A high-current pulsed accelerator with a matching transformer. Instrum Exp Tech 2004; 47: 394-8.
[http://dx.doi.org/10.1023/B:INET.0000032909.92515.b7]
[23]
Ponomarev DV, Remnev GE, Sazonov RV, Kholodnaya GE. Pulse plasma-chemical synthesis of ultradispersed powders of titanium and silicon oxide. IEEE Trans Plasma Sci 2013; 41: 6572808.
[http://dx.doi.org/10.1109/TPS.2013.2273559]
[24]
Zhuravlev M, Sazonov R, Kholodnaya G, Pyatkov I, Ponomarev D. Electrospark method for obtaining nanopowders. J Phys Conf Ser 2019; 1393: 012156.
[http://dx.doi.org/10.1088/1742-6596/1393/1/012156]
[25]
Remnev GE, Shubin BG. Volume self–sustained discharge in atmospheric pressure gas with high pulse repetition frequency. Appl Mech Mater 2015; 756: 269-74.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.756.269]
[26]
Hall BD, Zanchet D, Ugarte D. Estimating nanoparticle size from diffraction measurements. J Appl Cryst 2000; 33: 1335-41.
[http://dx.doi.org/10.1107/S0021889800010888]
[27]
Alexander L, Klug H. Determination of crystallite size with the Xray spectrometer. J Appl Phys 1950; 21: 137-42.
[http://dx.doi.org/10.1063/1.1699612]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy