Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

A Review of Nanoparticles Characterization Techniques

Author(s): Pankaj Wadhwa*, Supriya Sharma, Sanjeev Sahu, Ajit Sharma and Deepak Kumar

Volume 7, Issue 3, 2022

Published on: 13 May, 2022

Page: [202 - 214] Pages: 13

DOI: 10.2174/2405461507666220405113715

Price: $65

Abstract

Nanoparticles (NPs) are small materials of sizes 1 to 100 nm and can be divided into different categories according to their properties, shapes, or sizes. They can be classified as metal nanoparticles, carbon-based nanoparticles, semiconductor nanoparticles, ceramics nanoparticles, polymeric nanoparticles, and lipid-based nanoparticles. The basic characteristics used while characterizing the nanoparticles are morphology, size, surface charge, and optical properties. SEM, environmental SEM (ESEM), tip-enhanced Raman spectroscopy (TERS), scanning tunneling microscopy (STM), and TEM are used to study the topography and morphology of nanoparticles. Spectral analysis is employed to check optical properties, while X-ray crystallography (XRD), energy-dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and fluorescence correlation spectroscopy (FCS) are used for learning the fundamental properties of nanoparticles (NPs). This review will focus on the utilization of these techniques in the characterization of nanoparticles.

Keywords: Nanoparticles, characterization, SEM, TEM, spectroscopy, fluorescence correlation spectroscopy (FCS).

Graphical Abstract

[1]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2010; 110: 2574.
[http://dx.doi.org/10.1021/cr900197g] [PMID: 18543879]
[2]
Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 2016; 6: 26332.
[http://dx.doi.org/10.1038/srep26332] [PMID: 27189842]
[3]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41(7): 2740-79.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[4]
Ibrahim KS. Carbon nanotubes-properties and applications: A review. Carbon Lett 2013; 14: 131-44.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[5]
Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014; 43(22): 7520-35.
[http://dx.doi.org/10.1039/C3CS60378D] [PMID: 24413305]
[6]
Thomas SC, Harshita BSP, Mishra PK, Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr Pharm Des 2015; 21(42): 6165-88.
[http://dx.doi.org/10.2174/1381612821666151027153246] [PMID: 26503144]
[7]
Abouelmagd SA, Meng F, Kim BK, Hyun H, Yeo Y. Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomater Sci Eng 2016; 2(12): 2294-303.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00497] [PMID: 28944286]
[8]
Rawat MK, Jain A, Singh S, et al. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: In vitro and in vivo evaluation. J Pharm Sci 2011; 100(6): 2366-78.
[http://dx.doi.org/10.1002/jps.22435] [PMID: 21491449]
[9]
Chekli L, Bayatsarmadi B, Sekine R, et al. Analytical characterisation of nanoscale zero-valent iron: A methodological review. Anal Chim Acta 2016; 903: 13-35.
[http://dx.doi.org/10.1016/j.aca.2015.10.040] [PMID: 26709296]
[10]
Johal M. Understanding Nanomaterials. Boca Raton, FL: CRC Press 2011.
[11]
Rodighiero S, Torre B, Sogne E, et al. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide. Microsc Res Tech 2015; 78(6): 433-43.
[http://dx.doi.org/10.1002/jemt.22492] [PMID: 25810353]
[12]
Suzuki E. High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J Microsc 2002; 208(Pt 3): 153-7.
[http://dx.doi.org/10.1046/j.1365-2818.2002.01082.x] [PMID: 12460446]
[13]
Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2007; 2(6): 789-803.
[http://dx.doi.org/10.2217/17435889.2.6.789] [PMID: 18095846]
[14]
Dima C, Assadpour E, Dima S, Jafari SM. Characterization and analysis of nanomaterials in foods Handbook of Food Nanotechnology. Academic Press 2020; pp. 577-653.
[http://dx.doi.org/10.1016/B978-0-12-815866-1.00015-7]
[15]
Najeeb NM, Ahmad Z, Balamurugan S, Sulaiman K, Shakoor R. A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications. Curr Nanosci 2020; 16(4): 544-55.
[http://dx.doi.org/10.2174/1573413715666190206150619]
[16]
Gmoshinskii I, Khotimchenko SA, Popov V, Dzantiev B, Zherdev A, Demin V, et al. Nanomaterials and nanotechnologies: Methods of analysis and control. Russ Chem Rev 2013; 82: 48-76.
[http://dx.doi.org/10.1070/RC2013v082n01ABEH004329]
[17]
Singh A. Experimental methodologies for the characterization of nanoparticles. In: Engineered Nanoparticles. 2016; pp. 125-70.
[http://dx.doi.org/10.1016/B978-0-12-801406-6.00004-2]
[18]
Rahaman S, Jagannatha KB. Pradeep, Sriram A, Anirudha Nitin. Synthesis and characterization of SNS quantum dots materialfor solar cell. Mater Today Proc 2018; 5(1): 3117-20.
[http://dx.doi.org/10.1016/j.matpr.2018.01.117]
[19]
Ramasamy V, Mohana V, Rajendran V. Characterization of Ca doped CeO2 quantum dots and their applications in photocatalytic degradation. OpenNano 2018; 3: 38-47.
[http://dx.doi.org/10.1016/j.onano.2018.04.002]
[20]
Cheng X, Zhong J, Meng J, Yang M, Jia F, Xu Z, et al. Characterization of multiwalled carbon nanotubes dispersing in water and association with biological effects. J Nanomater 2011; 2011: 938491.
[http://dx.doi.org/10.1155/2011/938491]
[21]
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances 2018; 8(49): 28048-85.
[http://dx.doi.org/10.1039/C8RA04205E]
[22]
Bogner A, Jouneau PH, Thollet G, Basset D, Gauthier C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 2007; 38(4): 390-401.
[http://dx.doi.org/10.1016/j.micron.2006.06.008] [PMID: 16990007]
[23]
Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(7): 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[24]
Tuoriniemi J, Gustafsson S, Olsson E, Hassellöv M. In situ characterisation of physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using environmental scanning electron microscopy. Environ Chem 2014; 11(4): 367-76.
[http://dx.doi.org/10.1071/EN13182]
[25]
Gatti AM, Kirkpatrick J, Gambarelli A, et al. ESEM evaluations of muscle/nanoparticles interface in a rat model. J Mater Sci Mater Med 2008; 19(4): 1515-22.
[http://dx.doi.org/10.1007/s10856-008-3385-6] [PMID: 18266087]
[26]
Tiede K, Tear SP, David H, Boxall AB. Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res 2009; 43(13): 3335-43.
[http://dx.doi.org/10.1016/j.watres.2009.04.045] [PMID: 19501872]
[27]
Patravale V, Dandekar P, Jain R. Characterization techniques for nanoparticulate carriers. In: 2012; pp. 87-121.
[28]
Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal Chem 2011; 83(12): 4453-88.
[http://dx.doi.org/10.1021/ac200853a] [PMID: 21545140]
[29]
Nnamchi PS, Obayi CS, Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S. Chapter 4 - Electrochemical Characterization of Nanomaterials Characterization of Nanomaterials. Woodhead Publishing 2018; pp. 103-27.
[http://dx.doi.org/10.1016/B978-0-08-101973-3.00004-3]
[30]
Campos E, Pinto D, Oliveira J, Mattos E, Lazzarini Dutra R. Synthesis, characterization and applications of iron oxide nanoparticles - a short review. J Aerosp Technol Manag 2015; 7(3): 267-76.
[http://dx.doi.org/10.5028/jatm.v7i3.471]
[31]
Shi R, Gao G, Yi R, Zhou K, Qiu G, Liu X. Controlled synthesis and characterization of monodisperse Fe3O4 nanoparticles. Chin J Chem 2009; 27(4): 739-44.
[http://dx.doi.org/10.1002/cjoc.200990122]
[32]
Anu K, Singaravelu G, Murugan K, Benelli G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. J Cluster Sci 2017; 28(1): 551-63.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[33]
Shanmugam R, Rinitha G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano 2018; p. 3.
[34]
Chen X, Wen J. In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res Lett 2012; 7(1): 598.
[http://dx.doi.org/10.1186/1556-276X-7-598] [PMID: 23107519]
[35]
Scheerschmidt K, Werner P. Characterization of structure and composition of quantum dots by transmission electron microscopy Nano-optoelectronics nanoscience and technology. Berlin, Heidelberg: Springer 2002.
[http://dx.doi.org/10.1007/978-3-642-56149-8_3]
[36]
Chinnusamy S, Kaur R, Bokare A, Erogbogbo F. Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Commun 2018; 8(1): 137-44.
[http://dx.doi.org/10.1557/mrc.2018.7]
[37]
Ahson Aslam M, Kuo H-W, Den W, Usman M, Sultan M, Ashraf H. Functionalized Carbon Nanotubes (CNTs) for water and wastewater treatment: Preparation to application. Sustainability 2021; 13(5717)
[http://dx.doi.org/10.3390/su13105717]
[38]
Luo Z, Oki A, Carson L, et al. Thermal stability of functionalized carbon nanotubes studied by in-situ transmission electron microscopy. Chem Phys Lett 2011; 513(1-3): 88-93.
[http://dx.doi.org/10.1016/j.cplett.2011.07.072] [PMID: 21965839]
[39]
Gupta V, Saleh TA. Syntheses of carbon nanotube-metal oxides composites; Adsorption and photo-degradation carbon nanotubes - From research to applications: Stefano Bianco. IntechOpen 2011.
[40]
Sinha Ray S. Techniques for characterizing the structure and properties of polymer nanocomposites Environmentally Friendly Polymer Nanocomposites. Woodhead Publishing Series in Composites Science and Engineering 2013; pp. 74-88.
[http://dx.doi.org/10.1533/9780857097828.1.74]
[41]
Sinha Ray S. Structure and morphology characterization techniques. Clay-containing Polymer Nanocomposites 2013; pp. 39-66.
[42]
Shi HG, Farber L, Michaels JN, et al. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 2003; 20(3): 479-84.
[http://dx.doi.org/10.1023/A:1022676709565] [PMID: 12669972]
[43]
Polakovic M, Görner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release 1999; 60(2-3): 169-77.
[http://dx.doi.org/10.1016/S0168-3659(99)00012-7] [PMID: 10425323]
[44]
Latterini L, Tarpani L. AFM measurements to investigate particulates and their interactions with biological macromolecules. Atomic Force Microscopy Investigations into Biology- From Cell to Protein. IntechOpen 2012; p. 87.
[45]
Rao A, Schoenenberger M, Gnecco E, Glatzel T, Meyer E. Characterization of nanoparticles using atomic force microscopy. J Phys Conf Ser 2007; 61: 971-6.
[http://dx.doi.org/10.1088/1742-6596/61/1/192]
[46]
Sapienza L, Liu J, Song JD, et al. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices. Sci Rep 2017; 7(1): 6205.
[http://dx.doi.org/10.1038/s41598-017-06566-5] [PMID: 28740160]
[47]
Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 2005; 59(1)
[http://dx.doi.org/10.1016/j.surfrep.2005.08.003]
[48]
Ebeling D, Eslami B, Solares Sde J. Visualizing the subsurface of soft matter: Simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy. ACS Nano 2013; 7(11): 10387-96.
[http://dx.doi.org/10.1021/nn404845q] [PMID: 24131492]
[49]
Umemura K, Sato S. Scanning techniques for nanobioconjugates of carbon nanotubes. Scanning 2018; 2018: 6254692.
[http://dx.doi.org/10.1155/2018/6254692] [PMID: 30008981]
[50]
Bellucci S, Gaggiotti G, Marchetti M, Micciulla F, Mucciato R, Regi M. Atomic force microscopy characterization of carbon nanotubes. J Phys Conf Ser 2007; 61(1): 99.
[http://dx.doi.org/10.1088/1742-6596/61/1/021]
[51]
Sheikholeslam M, Pritzker M, Chen P. Hybrid peptide- carbon nanotube dispersions and hydrogels. Carbon 2014; 71: 284-93.
[http://dx.doi.org/10.1016/j.carbon.2014.01.055]
[52]
Ghasempour R, Narei H, Rafiee R. 1 - CNT basics and characteristics carbon nanotube-reinforced polymers. Elsevier 2018; pp. 1-24.
[53]
Filipponi L, Sutherland D. Characterisation methods. Aarhus University, Denmark 2010; pp. 1-13.
[54]
Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Chapter 6 - Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications interface science and technology. Elsevier 2019; pp. 199-322.
[55]
Wang H, Chu PK. Surface characterization of biomaterials Characterization of biomaterials. Waltham, MA: ELSEVIER 2013; pp. 105-74.
[http://dx.doi.org/10.1016/B978-0-12-415800-9.00004-8]
[56]
Morgenstern M, Freitag N, Nent A, Nemes-Incze P, Liebmann M. Graphene quantum dots probed by scanning tunneling microscopy. Ann Phys 2017; 529(11): 1700018.
[http://dx.doi.org/10.1002/andp.201700018]
[57]
Blokland JH, Bozkurt M, Ulloa JM, et al. Ellipsoidal InAs quantum dots observed by cross-sectional scanning tunneling microscopy. Appl Phys Lett 2009; 94(2): 023107.
[http://dx.doi.org/10.1063/1.3072366]
[58]
Ichimura K, Osawa M, Nomura K, et al. Tunneling spectroscopy on carbon nanotubes using STM. Physica B 2002; 323(1): 230-2.
[http://dx.doi.org/10.1016/S0921-4526(02)00972-9]
[59]
Hassanien A, Tokumoto M, Kumazawa Y, et al. Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature. Appl Phys Lett 1998; 73: 3839-41.
[http://dx.doi.org/10.1063/1.122910]
[60]
Nurmi JT, Tratnyek PG, Sarathy V, et al. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 2005; 39(5): 1221-30.
[http://dx.doi.org/10.1021/es049190u] [PMID: 15787360]
[61]
Wang Q, Kanel S, Park H, Ryu A, Choi H. Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. J Nanopart Res 2009; 11(3): 749-55.
[http://dx.doi.org/10.1007/s11051-008-9524-7]
[62]
Cornell RM. The iron oxides: Structure, properties, reactions, occurrences and uses crystal structure. 2nd ed. John Wiley & Sons 2006; pp. 9-37.
[63]
Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 2006; 120(1-3): 47-56.
[http://dx.doi.org/10.1016/j.cis.2006.03.001] [PMID: 16697345]
[64]
Kumar SS, Venkateswarlu P, Rao VR, Rao GN. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 2013; 3(1): 30.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[65]
Khatoon UT, Rao GVSN, Mohan MK, Eds. Synthesis and characterization of copper nanoparticles by chemical reduction method. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies 2013; 2013
[http://dx.doi.org/10.1109/ICANMEET.2013.6609221]
[66]
Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 2013; 18(5): 5954-64.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[67]
Das R, Abd Hamid SB, Ali M, Yongzhi W. Carbon nanotubes characterization by x-ray powder diffraction- a review. Curr Nanosci 2015; 11(1)
[http://dx.doi.org/10.2174/1573413710666140818210043]
[68]
Bendiab N, Almairac R. Rols Sp, Aznar R, Sauvajol J-L, Mirebeau I. Structural determination of iodine localization in single-walled carbon nanotube bundles by diffraction methods. Phys Rev B Condens Matter Mater Phys 2004; 69(19)
[http://dx.doi.org/10.1103/PhysRevB.69.195415]
[69]
Burian A, Dore J, Fischer H, Sloan J. Structural studies of multiwall carbon nanotubes by neutron diffraction. Phys Rev B 1999; 59: 1665-8.
[http://dx.doi.org/10.1103/PhysRevB.59.1665]
[70]
Giannasi A, Celli M, Sauvajol JL, Zoppi M, Bowron DT. SWCN characterization by neutron diffraction. Physica B 2004; 350(1): E1027-9.
[http://dx.doi.org/10.1016/j.physb.2004.03.282]
[71]
García-Gutiérrez MC, Nogales A, Hernandez JJ, Rueda D, Ezquerra T. X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites. Optica Pura y Aplicada 2007; 40(2)
[72]
Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol 2011; 697: 63-70.
[http://dx.doi.org/10.1007/978-1-60327-198-1_6] [PMID: 21116954]
[73]
Pons T, Uyeda HT, Medintz IL, Mattoussi H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B 2006; 110(41): 20308-16.
[http://dx.doi.org/10.1021/jp065041h] [PMID: 17034212]
[74]
Horie M, Fujita K. Toxicity of metal oxides nanoparticles. Adv Mol Toxicol 2011; pp. 145-78.
[75]
Marsalek R. Particle size and zeta potential of ZnO. APCBEE Procedia 2014; 9: 13-7.
[http://dx.doi.org/10.1016/j.apcbee.2014.01.003]
[76]
Dougherty GM, Rose KA, Tok JB, et al. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 2008; 29(5): 1131-9.
[http://dx.doi.org/10.1002/elps.200700448] [PMID: 18246574]
[77]
Mikolajczyk A, Gajewicz A, Rasulev B, Schaeublin N, Maurer-Gardner E, Hussain S, et al. Zeta potential for metal oxide nanoparticles: A predictive model developed by a nano-quantitative structure–property relationship approach. Chem Mater 2015; 27(7): 2400-7.
[http://dx.doi.org/10.1021/cm504406a]
[78]
Spaeth P, Adhikari S, Le L, et al. Circular dichroism measurement of single metal nanoparticles using photothermal imaging. Nano Lett 2019; 19(12): 8934-40.
[http://dx.doi.org/10.1021/acs.nanolett.9b03853] [PMID: 31790264]
[79]
Kneer LM, Roller EM, Besteiro LV, Schreiber R, Govorov AO, Liedl T. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots. ACS Nano 2018; 12(9): 9110-5.
[http://dx.doi.org/10.1021/acsnano.8b03146] [PMID: 30188691]
[80]
Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008; 89(5): 392-400.
[http://dx.doi.org/10.1002/bip.20853] [PMID: 17896349]
[81]
Chen R, Choudhary P, Schurr RN, Bhattacharya P, Brown JM, Chun Ke P. Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Appl Phys Lett 2012; 100(1): 13703-137034.
[http://dx.doi.org/10.1063/1.3672035] [PMID: 22271932]
[82]
Lin P-C, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32(4): 711-26.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[83]
Roy S, Sadhukhan R, Ghosh U, Das TK. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2015; 141: 176-84.
[http://dx.doi.org/10.1016/j.saa.2015.01.041] [PMID: 25668698]
[84]
Pandoli O, Massi A, Cavazzini A, Spada GP, Cui D. Circular dichroism and UV-Vis absorption spectroscopic monitoring of production of chiral silver nanoparticles templated by guanosine 5′-monophosphate. Analyst (Lond) 2011; 136(18): 3713-9.
[http://dx.doi.org/10.1039/c1an15288b] [PMID: 21796288]
[85]
Zeng C, Jin R. Chiral Au nanoclusters: Atomic level origins of chirality. Chem Asian J 2017; 12(15): 1839-50.
[http://dx.doi.org/10.1002/asia.201700023] [PMID: 28653468]
[86]
Slocik JM, Govorov AO, Naik RR. Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. Nano Lett 2011; 11(2): 701-5.
[http://dx.doi.org/10.1021/nl1038242] [PMID: 21207969]
[87]
Ranjbar B, Gill P. Circular dichroism techniques: Biomolecular and nanostructural analyses- a review. Chem Biol Drug Des 2009; 74(2): 101-20.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00847.x] [PMID: 19566697]
[88]
Ramos AP, Da Róz AL, Ferreira M, de Lima Leite F, Oliveira ON. Dynamic light scattering applied to nanoparticle characterization nanocharacterization techniques. William Andrew Publishing 2017; pp. 99-110.
[89]
Montano MD, Ranville J, Lowry GV, et al. Detection and characterization of engineered nanomaterials in the environment: Current state-of-the-art and future directions report: U.S. environmentalprotection agency Washington, DC 2014. Contract No.: Document Number
[90]
Hassellöv M, Readman JW, Ranville JF, Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008; 17(5): 344-61.
[http://dx.doi.org/10.1007/s10646-008-0225-x] [PMID: 18483764]
[91]
Verma P, Maheshwari SK. Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. J Microsc Ultrastruct 2018; 6(4): 182-7.
[PMID: 30464890]
[92]
Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008; 101(2): 239-53.
[http://dx.doi.org/10.1093/toxsci/kfm240] [PMID: 17872897]
[93]
Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 2009; 81(22): 9425-32.
[http://dx.doi.org/10.1021/ac901822w] [PMID: 19803497]
[94]
Jiang X, Ahmed M, Deng Z, Narain R. Biotinylated glyco-functionalized quantum dots: Synthesis, characterization, and cytotoxicity studies. Bioconjug Chem 2009; 20(5): 994-1001.
[http://dx.doi.org/10.1021/bc800566f] [PMID: 19402705]
[95]
Jiang W, Mardyani S, Fischer H, Chan WCW. Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots. Chem Mater 2006; 18(4): 872-8.
[http://dx.doi.org/10.1021/cm051393+]
[96]
Butcher D. Recent highlights in graphite furnace atomic absorption spectrometry. Appl Spectrosc Rev 2017; 52(2)
[http://dx.doi.org/10.1080/05704928.2017.1303504]
[97]
Jorio A, Saito R. Raman spectroscopy for carbon nanotube applications. J Appl Phys 2021; 129(2): 021102.
[http://dx.doi.org/10.1063/5.0030809]
[98]
Papoušek D, Aliev MR. Molecular vibrational-rotational spectra Elsevier. Amsterdam 1982.
[99]
Stanley C, Douglas AS. Principles of instrumental analysis. Australia: Thomson Brooks/Cole 2007.
[100]
Williams DH, Fleming I. Ultraviolet and visible spectra, Spectroscopic Methods in Organic Chemistry. 5th ed. Berkshire: McGraw-Hill 1995; pp. 1-27.
[101]
Vahdati M, Tohidi Moghadam T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 2020; 10(1): 510.
[http://dx.doi.org/10.1038/s41598-019-57333-7] [PMID: 31949299]
[102]
Martínez JC, Chequer NA, González JL, Cordova T. Alternative metodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci Nanotechnol 2012; 2(6): 184-9.
[http://dx.doi.org/10.5923/j.nn.20120206.06]
[103]
Raoof M, Corr SJ, Kaluarachchi WD, et al. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: Implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine 2012; 8(7): 1096-105.
[http://dx.doi.org/10.1016/j.nano.2012.02.001] [PMID: 22349096]
[104]
Halien N, La H, Xuan Hoa V, Chu VH, Nguyen T, Le Q, et al. Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Nanosci Nanotechnol 2010; 1(2): 025009.
[105]
kamble VA, Jagdale DM, kadam VJ. Solid lipid nanoparticles as drug delivery system. Int J Pharma Bio Sci 2010; 1(3): 1-9.
[106]
Kora AJ, Rastogi L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. J Environ Manage 2016; 181: 231-6.
[http://dx.doi.org/10.1016/j.jenvman.2016.06.029] [PMID: 27353373]
[107]
Dung Dang TM, Tuyet Thu Le T, Fribourg-Blanc E, Chien Dang M. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanosci Nanotechnol 2011; 2(1): 015009.
[http://dx.doi.org/10.1088/2043-6262/2/1/015009]
[108]
Zhong D, Liu W, Tan P, Zhu A, Liu Y, Xiong X. Insights into the synergy effect of anisotropic {001} and {230}facets of BaTiO 3 nanocubes sensitized with CdSe quantum dots for photocatalytic water reduction. Appl Catal B 2018; 227.
[109]
Mongin C, Moroz P, Zamkov M, Castellano FN. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat Chem 2018; 10(2): 225-30.
[http://dx.doi.org/10.1038/nchem.2906] [PMID: 29359748]
[110]
Petit S, Madejova J, Bergaya F, Lagaly G. Chapter 27 - Fourier transform infrared spectroscopy developments in clay science. Elsevier 2013; pp. 213-31.
[111]
Williams DH, Fleming I. Infrared spectra, Spectroscopic Methods in Organic Chemistry. 5th ed. Berkshire, England: McGraw-Hill 1995; pp. 28-62.
[112]
Aksu Demirezen D, Yıldız YŞ, Yılmaz Ş, Demirezen Yılmaz D. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J Biosci Bioeng 2019; 127(2): 241-5.
[http://dx.doi.org/10.1016/j.jbiosc.2018.07.024] [PMID: 30348486]
[113]
López-Lorente ÁI, Mizaikoff B. Recent advances on the characterization of nanoparticles using infrared spectroscopy. Trends Analyt Chem 2016; 84(4): 97-106.
[http://dx.doi.org/10.1016/j.trac.2016.01.012]
[114]
Shume WM, Murthy HCA, Zereffa EA. A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J Chem 2020; 2020: 5039479.
[http://dx.doi.org/10.1155/2020/5039479]
[115]
Colpan C, Nalbant Y, Ercelik M. 428 Fundamentals of Fuel Cell Technologies. Comprehensive Energy Systems 2018; pp. 1107-30.
[116]
Amargeetha A, Velavan S. X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers. Nanosci Technol 5 2018; 5(1): 1-5.
[117]
Santhoshkumar J, Kumar SV, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technol 2017; 3(4): 459-65.
[http://dx.doi.org/10.1016/j.reffit.2017.05.001]
[118]
Mutavdžić D, Xu J, Thakur G, et al. Determination of the size of quantum dots by fluorescence spectroscopy. Analyst (Lond) 2011; 136(11): 2391-6.
[http://dx.doi.org/10.1039/c0an00802h] [PMID: 21491050]
[119]
Zhang C, Palui G, Zeng B, Zhan N, Chen B, Mattoussi H. Non-invasive characterization of the organic coating of biocompatible quantum dots using nuclear magnetic resonance spectroscopy. Chem Mater 2018; 30(10): 3454-66.
[http://dx.doi.org/10.1021/acs.chemmater.8b01033]
[120]
Martínez C, Flórez M-H, Molina-V D, Kouznetsov V. Surface characterization of thiol ligands on CdTe quantum dots: Analysis by 1 H NMR and DOSY. New J Chem 2019; 43.
[121]
Fernández B, Costa JM, Pereiro R, Sanz-Medel A. Inorganic mass spectrometry as a tool for characterisation at the nanoscale. Anal Bioanal Chem 2010; 396(1): 15-29.
[http://dx.doi.org/10.1007/s00216-009-2959-6] [PMID: 19633832]
[122]
Hibaaq M, Ben R, Andrew P, Giuseppe S, Renxiao L, Guanglu G. Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) analysis of nanomaterials for use in nuclear and material applications. Spectroscopy (Springf) 2021; 36(1): 26-32.
[123]
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44(1): 340-72.
[http://dx.doi.org/10.1002/jssc.202000833] [PMID: 32974962]
[124]
Cao SQ, Chen HT, Zeng XJ. Determination of the impurities elements in high-purity cadmium by inductively coupled plasma mass spectrometry. Guang pu xue yu guang pu fen xi = Guang pu 2000; 19(6): 854-7.
[125]
Fukuda M, Hayashibe Y, Sayama Y. Determination of Nickel, Cobalt, Copper, thorium and uranium in high-purity zinc metal by ICP-MS with on-line matrix separation. Anal Sci 1995; 11(1): 13-6.
[http://dx.doi.org/10.2116/analsci.11.13]
[126]
Toda E, Hioki A. Determination of impurities in high-purity selenium by inductively coupled plasma mass spectrometry after matrix separation with thiourea. Anal Sci 1995; 11(1): 115-8.
[http://dx.doi.org/10.2116/analsci.11.115]
[127]
Duester L, Prasse C, Vogel JV, Vink JP, Schaumann GE. Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface. J Environ Monit 2011; 13(5): 1204-11.
[http://dx.doi.org/10.1039/c1em10056d] [PMID: 21403952]
[128]
Laborda F, Bolea E, Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis. Anal Chem 2014; 86(5): 2270-8.
[http://dx.doi.org/10.1021/ac402980q] [PMID: 24308527]
[129]
Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal At Spectrom 2012; 27(7): 1093-100.
[http://dx.doi.org/10.1039/c2ja30061c]
[130]
Costa-Fernández JM, Menéndez-Miranda M, Bouzas-Ramos D, Encinar J, Sanz-Medel A. Mass spectrometry for the characterization and quantification of engineered inorganic nanoparticles. Trends Analyt Chem 2016; 84: 139-48.
[http://dx.doi.org/10.1016/j.trac.2016.06.001]
[131]
Wilson AJ, Willets KA. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(2): 180-9.
[http://dx.doi.org/10.1002/wnan.1208] [PMID: 23335562]
[132]
Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP. SERS: Materials, applications, and the future. Mater Today 2012; 15(1): 16-25.
[http://dx.doi.org/10.1016/S1369-7021(12)70017-2]
[133]
Camden JP, Dieringer JA, Wang Y, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 2008; 130(38): 12616-7.
[http://dx.doi.org/10.1021/ja8051427] [PMID: 18761451]
[134]
McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 2005; 109(22): 11279-85.
[http://dx.doi.org/10.1021/jp050508u] [PMID: 16852377]
[135]
Hong S, Li X. Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions. J Nanomater 2013; 2013(2)
[http://dx.doi.org/10.1155/2013/790323]
[136]
Lu Y, Feng S, Liu X, Chen L. Surface-enhanced raman scattering study of silver nanoparticles prepared by using MC as a template. J Nanomater 2013; 2013(9): 1-8.
[http://dx.doi.org/10.1155/2013/984831]
[137]
Rawat R, Tiwari A, Singh MK, Mandal RK, Pathak A, Tripathi A. Effects on surface-enhanced Raman scattering from copper nanoparticles synthesized by laser ablation. Radiat Eff Defects Solids 2020; 175(3-4): 332-41.
[http://dx.doi.org/10.1080/10420150.2019.1701465]
[138]
Fan M, Andrade GFS, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 2011; 693(1-2): 7-25.
[http://dx.doi.org/10.1016/j.aca.2011.03.002] [PMID: 21504806]
[139]
Naya M, Tani T, Tomaru Y, Li J, Murakami N. Nanophotonics bio-sensor using gold nanostructure- art. no. 70321Q. Proceedings of SPIE 7032.
[140]
Biggs KB, Camden JP, Anker JN, Van Duyne RP. Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: Determination of the sticking probability and detection limit time. J Phys Chem A 2009; 113(16): 4581-6.
[http://dx.doi.org/10.1021/jp8112649] [PMID: 19290588]
[141]
Wustholz KL, Henry AI, McMahon JM, et al. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 2010; 132(31): 10903-10.
[http://dx.doi.org/10.1021/ja104174m] [PMID: 20681724]
[142]
Dinish US, Yaw FC, Agarwal A, Olivo M. Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing. Biosens Bioelectron 2011; 26(5): 1987-92.
[http://dx.doi.org/10.1016/j.bios.2010.08.069] [PMID: 20869866]
[143]
Fang J, Liu S, Li Z. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 2011; 32(21): 4877-84.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.029] [PMID: 21492933]
[144]
Dieringer JA, McFarland AD, Shah NC, et al. Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss 2006; 132: 9-26.
[http://dx.doi.org/10.1039/B513431P] [PMID: 16833104]
[145]
Ando J, Fujita K. Metallic nanoparticles as SERS agents for biomolecular imaging. Curr Pharm Biotechnol 2013; 14(2): 141-9.
[PMID: 22356108]
[146]
Mannelli I, Marco MP. Recent advances in analytical and bioanalysis applications of noble metal nanorods. Anal Bioanal Chem 2010; 398(6): 2451-69.
[http://dx.doi.org/10.1007/s00216-010-3937-8] [PMID: 20644918]
[147]
Hutter T, Elliott S, Mahajan S. Optical fibre-tip probes for SERS: Numerical study for design considerations. 2018.
[http://dx.doi.org/10.1364/OE.26.015539]
[148]
Wang H, Schultz ZD. The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles. Analyst (Lond) 2013; 138(11): 3150-7.
[http://dx.doi.org/10.1039/c3an36898j] [PMID: 23423552]
[149]
Lee J-P, Chen D, Li X, et al. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Nanoscale 2013; 5(23): 11620-4.
[http://dx.doi.org/10.1039/c3nr03363e] [PMID: 24126702]
[150]
Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: Principles and applications. EPJ Tech Instrum 2015; 2: 9.
[http://dx.doi.org/10.1140/epjti/s40485-015-0019-5]
[151]
Mahmood S, Taher M, Mandal UK. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int J Nanomedicine 2014; 9: 4331-46.
[PMID: 25246789]
[152]
Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 2014; 15(1): 350-60.
[http://dx.doi.org/10.1021/bm401580k] [PMID: 24283460]
[153]
Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 2008; 19(23): 235104.
[http://dx.doi.org/10.1088/0957-4484/19/23/235104] [PMID: 21825779]
[154]
Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 2009; 5(4): 382-6.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[155]
Echlin P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-ray Microanalysis. Springer Science & Business Media 2011.
[156]
de Jonge N, Sougrat R, Northan BM, Pennycook SJ. Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 2010; 16(1): 54-63.
[http://dx.doi.org/10.1017/S1431927609991280] [PMID: 20082729]
[157]
Burghardt RC, Droleskey R. Transmission electron microscopy. In: Curr Protoc Microbiol. 2006. Chapter 2: 1.
[PMID: 18770588]
[158]
Hayat M. Basic techniques for transmission electron microscopy. San Diego, California; London: Elsevier 2012.
[159]
Sharpe MR. Stray light in UV-VIS spectrophotometers. Anal Chem 1984; 56(2): 339A-56A.
[160]
Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 2016; 1(1)
[http://dx.doi.org/10.1007/s41204-016-0001-8]
[161]
Scimeca M, Bischetti S, Lamsira H, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem 2018; 62(1): 2841.
[162]
Karoui R. Quality control in food processing. In: Benjamin C, Paul MF, Fidel T, Eds. Encyclopedia of Food and Health. Academic Press 2016; pp. 567-72.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00582-1]
[163]
Chatham JC, Blackband SJ. Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR J 2001; 42(3): 189-208.
[http://dx.doi.org/10.1093/ilar.42.3.189] [PMID: 11406719]
[164]
Loos G, Schepdael AV, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. Phil Trans R Soc A 2016; 374: 20150366.
[http://dx.doi.org/10.1098/rsta.2015.0366]
[165]
Chen KH, Pan MJ, Jargalsaikhan Z, Ishdorj TO, Tseng FG. Development of Surface-Enhanced Raman Scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer. Biosensors (Basel) 2020; 10(11): 163.
[http://dx.doi.org/10.3390/bios10110163] [PMID: 33142781]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy