Abstract
Organic azides are placed in the interphase between chemistry, biology, medicine, and materials science. Their uses in peptide chemistry, combinatorial chemistry, and the synthesis of heterocycles are extensively explored. In this review, the focus is placed on the azidoreductive cyclization of azides and detailed its significant insights. The wide-ranging literature for synthesizing various heterocycles, employing chemoselective and straightforward protocols for azido-reduction with concomitant intramolecular cyclization, has been elaborated. In due course, the azido-reductive cyclization strategy witnessed the synthesis of essential heterocycles, such as benzodiazepine, quinazolinone, piperidine, pyrrole and their derivatives. In addition, the review includes application of azido-reductive cyclization strategies towards the synthesis of various iminosugars, drugs/APIs, and natural products embedding such heterocycles.
Keywords: Aza-sugars, azido-reductive cyclization, benzodiazepines, lactams, pyrroles, quinazolinones.
Graphical Abstract
(b) Curtius, T. Ueber Stickstoffwasserstoffsäure (Azoimid) N3H. Eur. J. Inorg. Chem., 1890, 23, 3023-3033.
(c) Scriven, E.F.V.; Turnbull, K. Azides: Their preparation and synthetic uses. Chem. Rev., 1988, 88(2), 297-368.
[http://dx.doi.org/10.1021/cr00084a001]
[http://dx.doi.org/10.1021/cr60167a001]
[http://dx.doi.org/10.1021/ja01609a045]
[http://dx.doi.org/10.1002/anie.200400657] [PMID: 16100733]
[http://dx.doi.org/10.1016/j.gresc.2020.07.001]
[http://dx.doi.org/10.1038/128639a0]
[http://dx.doi.org/10.1021/ja01280a005]
[http://dx.doi.org/10.1002/adsc.201700103]
[http://dx.doi.org/10.2174/138955706775197875] [PMID: 16457632]
[http://dx.doi.org/10.2174/138955706775197839] [PMID: 16457633]
[http://dx.doi.org/10.2174/138955710791330918] [PMID: 20370699]
[http://dx.doi.org/10.1039/C7CS00017K] [PMID: 29125611]
[http://dx.doi.org/10.1002/adfm.201302847]
[http://dx.doi.org/10.1016/bs.aihch.2019.10.005]
[http://dx.doi.org/10.1016/j.bioorg.2020.103668] [PMID: 32106040]
[http://dx.doi.org/10.1002/anie.199505111]
[http://dx.doi.org/10.3390/molecules25041009] [PMID: 32102403]
[http://dx.doi.org/10.1002/ejoc.201601390]
(b) Hayashi, H.; Kaga, A.; Chiba, S. Application of vinyl azides in chemical synthesis: A recent update J. Org. Chem., 2017, 82(23), 11981-11989.
[http://dx.doi.org/10.1021/acs.joc.7b02455] [PMID: 29091436]
[http://dx.doi.org/10.1080/00304940209355751]
[http://dx.doi.org/10.1351/pac198052102283]
(b) Truong, T.N. Solvent effects on structure and reaction mechanism: A theoretical study of [2+2] polar cycloaddition between ketene and imine. J. Phys. Chem. B, 1998, 102(40), 7877-7881.
[http://dx.doi.org/10.1021/jp9816263]
[http://dx.doi.org/10.1002/tcr.201900027] [PMID: 31419056]
[http://dx.doi.org/10.1002/adsc.202000887]
[http://dx.doi.org/10.1021/cr800278z] [PMID: 19382806]
[http://dx.doi.org/10.2174/138527211795378164]
[http://dx.doi.org/10.1016/j.tet.2019.05.046]
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[http://dx.doi.org/10.1002/ajoc.202100621]
[http://dx.doi.org/10.1192/bjp.bp.109.076448] [PMID: 21200071]
(b) Leimgruber, W. Stefanović V.; Schenker, F.; Karr, A.; Berger, J. Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc., 1965, 87(24), 5791-5793.
[http://dx.doi.org/10.1021/ja00952a050] [PMID: 5845427]
[http://dx.doi.org/10.2174/1568011023354119] [PMID: 12678745]
(b) Annor-Gyamfi, J.K.; Jarrett, J.M.; Osazee, J.O.; Bialonska, D.; Whitted, C.; Palau, V.E.; Shilabin, A.G. Synthesis and biological activity of fused tetracyclic pyrrolo[2,1-c][1,4]benzodiazepines. Heliyon, 2018, 4(2), e00539.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00539] [PMID: 29560454]
(c) Antonow, D.; Thurston, D.E. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem. Rev., 2011, 111(4), 2815-2864.
[http://dx.doi.org/10.1021/cr100120f] [PMID: 21166464]
[http://dx.doi.org/10.1016/S0040-4039(96)01484-0]
[http://dx.doi.org/10.1039/a701249g]
[http://dx.doi.org/10.1021/jo00377a016]
(b)Kamal, A.; Reddy, B.P.; Reddy, B.N. A new facile procedure for the preparation of pyrrolo[2,1-c][1,4]benzodiazepines: Synthesis of antibiotic DC-81 and its thio analogue. Tetrahedron Lett., 1996, 37(13), 2281-2284.
[http://dx.doi.org/10.1016/0040-4039(96)00243-2]
(c)Thurston, D.E.; Bose, D.S. Synthesis of DNA-interactive pyrrolo[2,1- c][1,4]benzodiazepines. Chem. Rev., 1994, 94(2), 433-465.
[http://dx.doi.org/10.1021/cr00026a006]
[http://dx.doi.org/10.1246/cl.1998.593]
[http://dx.doi.org/10.1016/S0040-4039(97)01628-6]
[http://dx.doi.org/10.1016/S0960-894X(00)00468-6] [PMID: 11055345]
[http://dx.doi.org/10.3987/COM-92-S10]
[http://dx.doi.org/10.1016/S0040-4039(00)01319-8]
[http://dx.doi.org/10.1016/S0040-4039(00)01524-0]
[http://dx.doi.org/10.1016/S0040-4039(01)01435-6]
[http://dx.doi.org/10.1016/S0040-4039(02)01453-3]
[http://dx.doi.org/10.1016/S0040-4039(03)01049-9]
[http://dx.doi.org/10.1016/j.tetlet.2004.06.112]
[http://dx.doi.org/10.1055/s-2008-1072742]
[http://dx.doi.org/10.1016/j.tetlet.2004.09.046]
[http://dx.doi.org/10.1016/j.bmcl.2005.03.051] [PMID: 15863329]
[http://dx.doi.org/10.1016/j.tetlet.2006.04.025]
[http://dx.doi.org/10.1016/j.tetlet.2008.01.004]
[http://dx.doi.org/10.1002/chem.200900853] [PMID: 19544509]
[http://dx.doi.org/10.1016/j.tetasy.2010.10.030]
[http://dx.doi.org/10.1021/jo200931m] [PMID: 21776991]
[http://dx.doi.org/10.1016/j.tetlet.2013.06.033]
[http://dx.doi.org/10.1016/j.tetlet.2004.08.090]
[http://dx.doi.org/10.1016/j.bmcl.2008.02.047] [PMID: 18325766]
[http://dx.doi.org/10.1080/00397910802638537]
[http://dx.doi.org/10.1021/cc0501458] [PMID: 17206830]
[http://dx.doi.org/10.1002/chem.200401112] [PMID: 15736275]
[http://dx.doi.org/10.1016/j.tetlet.2019.151392]
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
(b) He, D.; Wang, M.; Zhao, S.; Shu, Y.; Zeng, H.; Xiao, C.; Lu, C.; Liu, Y. Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia, 2017, 119, 136-149.
[http://dx.doi.org/10.1016/j.fitote.2017.05.001] [PMID: 28495308]
[http://dx.doi.org/10.1016/S0040-4039(02)01454-5]
[http://dx.doi.org/10.1021/jo9609283] [PMID: 11667656]
(b) Takeuchi, H.; Hagiwara, S.; Eguchi, S. A new efficient synthesis of imidazolinones and quinazolinone by intramolecular aza-Wittig reaction. Tetrahedron, 1989, 45(20), 6375-6386.
[http://dx.doi.org/10.1016/S0040-4020(01)89515-6]
[http://dx.doi.org/10.1021/jo0011484] [PMID: 11430123]
[http://dx.doi.org/10.1055/s-2006-951482]
[http://dx.doi.org/10.1016/j.tetlet.2006.10.123]
[http://dx.doi.org/10.3390/molecules200610800] [PMID: 26111170]
[http://dx.doi.org/10.1055/s-0030-1259095]
[http://dx.doi.org/10.1021/acs.orglett.5b01242] [PMID: 25996444]
[http://dx.doi.org/10.1016/j.tet.2015.12.059]
[http://dx.doi.org/10.1016/j.tet.2017.08.011]
(b) Xiong, J.; Wei, X.; Wan, Y.C.; Ding, M.W. One-pot and regioselective synthesis of polysubstituted 3,4-dihydroquinazolines and 4,5-dihydro-3H- 1,4-benzodiazepin-3-ones by sequential Ugi/Staudinger/aza-Wittig reaction. Tetrahedron, 2019, 75(8), 1072-1078.
[http://dx.doi.org/10.1016/j.tet.2019.01.014]
(c) Sun, M.; Yu, Y.L.; Zhao, L.; Ding, M.W. One-pot and divergent synthesis of furo[3,2-c]quinolines and quinazolin-4(3H)-ones via sequential isocyanide- based three-component/Staudinger/aza-Wittig reaction. Tetrahedron, 2021, 80, 131868.
[http://dx.doi.org/10.1016/j.tet.2020.131868]
(b) Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the Povarov reaction in medicinal chemistry. Drug Discov. Today. Technol., 2018, 29, 71-79.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.004] [PMID: 30471676]
[http://dx.doi.org/10.7164/antibiotics.57.17] [PMID: 15032481]
(b) Pagliero, R.J.; Lusvarghi, S.; Pierini, A.B.; Brun, R.; Mazzieri, M.R. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1- benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines. Bioorg. Med. Chem., 2010, 18(1), 142-150.
[http://dx.doi.org/10.1016/j.bmc.2009.11.010] [PMID: 19942439]
(c) Kristensen, I.; Larsen, P.O.; Sørensen, H. Free amino acids and γ- glutamyl peptides in seeds of Fagus silvatica. Phytochemistry, 1974, 13(12), 2803-2811.
[http://dx.doi.org/10.1016/0031-9422(74)80245-1]
(d) Chavan, S.P.; Kalbhor, D.B.; Gonnade, R.G. Divergent approach to the synthesis of (-)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent. Tetrahedron, 2021, 80, 131773.
[http://dx.doi.org/10.1016/j.tet.2020.131773]
[http://dx.doi.org/10.1016/j.tetlet.2004.02.146]
[http://dx.doi.org/10.1016/j.tet.2018.08.052]
[http://dx.doi.org/10.1038/307755a0] [PMID: 6230538]
[http://dx.doi.org/10.1016/j.tetasy.2008.02.003]
[http://dx.doi.org/10.1016/j.bmc.2010.09.055] [PMID: 20971014]
[http://dx.doi.org/10.1016/j.tetasy.2008.03.018]
[http://dx.doi.org/10.1016/j.tetlet.2012.04.067]
[http://dx.doi.org/10.1016/j.carres.2015.03.004] [PMID: 25839136]
[http://dx.doi.org/10.1039/C5QO00019J]
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
(b) Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
(c) Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity rela-tionship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1021/ja971695f]
(b) Schaerer, O.D.; Ortholand, J.Y.; Ganesan, A.; Ezaz-Nikpay, K.; Verdine, G.L. Specific binding of the DNA repair enzyme AlkA to a pyrrolidinebased inhibitor. J. Am. Chem. Soc., 1995, 117(24), 6623-6624.
[http://dx.doi.org/10.1021/ja00129a039]
[http://dx.doi.org/10.1021/ja002165d] [PMID: 11456840]
(b) Fache, F.; Schulz, E.; Tommasino, M.L.; Lemaire, M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem. Rev., 2000, 100(6), 2159-2232.
[http://dx.doi.org/10.1021/cr9902897] [PMID: 11749286]
(c) List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[http://dx.doi.org/10.1016/j.tet.2005.08.055]
[http://dx.doi.org/10.2174/157017808783955907]
[http://dx.doi.org/10.1016/j.tet.2011.02.030]
[http://dx.doi.org/10.1016/j.tetasy.2016.10.013]
[http://dx.doi.org/10.1016/j.bmc.2017.07.026] [PMID: 28751199]
[http://dx.doi.org/10.1002/chem.201405551] [PMID: 25573783]
[http://dx.doi.org/10.1016/j.tet.2019.130758]
[http://dx.doi.org/10.1016/j.carres.2020.108028] [PMID: 32413728]
[http://dx.doi.org/10.1039/C0OB00555J] [PMID: 21107447]
[http://dx.doi.org/10.1016/j.tet.2006.03.017]
[http://dx.doi.org/10.1039/c1ob06078c] [PMID: 21952717]
[http://dx.doi.org/10.5012/bkcs.2012.33.1.333]
[http://dx.doi.org/10.5012/bkcs.2012.33.2.739]
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b) Li, J.; Ye, Y.; Zhang, Y. Cycloaddition/annulation strategies for the construction of multisubstituted pyrrolidines and their applications in natural product synthesis. Org. Chem. Front., 2018, 5(5), 864-892.
[http://dx.doi.org/10.1039/C7QO01077J]
[http://dx.doi.org/10.1039/C8QO00742J]
[http://dx.doi.org/10.1016/j.tet.2003.12.062]
[http://dx.doi.org/10.1016/j.tet.2006.05.017]
[http://dx.doi.org/10.1016/j.tet.2006.06.103]
[http://dx.doi.org/10.1039/C4SC01826E] [PMID: 25485074]