Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Reusable Iron/Iron Oxide-based Nanoparticles Catalyzed Organic Reactions

Author(s): Laksmikanta Adak*, Debasish Kundu*, Keya Roy, Malay Saha and Anup Roy

Volume 26, Issue 4, 2022

Published on: 05 April, 2022

Page: [399 - 417] Pages: 19

DOI: 10.2174/1385272826666220209120545

Price: $65

Abstract

The last decade has witnessed a remarkable progress in the field of nanoscience and nanotechnology. Nanoparticles have been extensively used in diverse areas, including medicine, sensor, and catalysis. The easy accessibility of nanoparticles (NPs) with different shapes, sizes and compositions has inspired researchers to investigate their applications in catalysis. Recently, magnetic nanoparticles, such as iron-based nanoparticles, have attracted much consideration due to their unique properties, such as superparamagnetism, greater surface area, surface-to-volume ratio, and easy separation methodology. They increase the competence of organic reactions in terms of activity, selectivity, yield, simplicity, and sustainability. In this review, we focus on the developments of iron/iron oxide-based nanoparticles-catalyzed organic reactions and some examples of magnetic iron oxide nanoparticles as carriers/support for the main catalyst in organic reactions. Owing to magnetic properties, these nanocatalysts can be easily recovered from the reaction mixture by an external magnet and reused for several runs without loss of catalytic activity. Iron-based nanoparticles are used in a wide range of catalytic processes and applications. Notable focus has been on the hydrogenation of alkenes and alkynes, and also the hydrogenation of nitroarenes to aniline. Other catalyzed organic reactions, such as hydroboration of aldehydes and ketones, oxidative dehydrogenation of N-heterocycles, azide-alkyne cycloaddition reactions, synthesis of various heterocyclic compounds, multicomponent reactions, and crosscoupling reactions for C–C and C–heteroatom bond formation have been covered.

Keywords: Catalysis, organic synthesis, iron(0) nanoparticles (NPs), iron oxide (Fe2O3/Fe3O4) nanoparticles, iron/transition metal mixed oxide NPs, nanoparticles.

Graphical Abstract

[1]
Thota, S.; Crans, D.C. Metal nanoparticles: synthesis and applications in pharmaceutical sciences; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018.
[2]
Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci., 2018, 19(12), 4031-4047.
[http://dx.doi.org/10.3390/ijms19124031] [PMID: 30551592]
[3]
Rai, M.; Ingle, A.P.; Birla, S.; Yadav, A.; Santos, C.A. Strategic role of selected noble metal nanoparticles in medicine. Crit. Rev. Microbiol., 2016, 42(5), 696-719.
[PMID: 26089024]
[4]
Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681-705.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[5]
Zhang, Y-x.; Wang, Y-h. Nonlinear optical properties of metal nanoparticles: A review. RSC Advances, 2017, 7, 45129-45144.
[http://dx.doi.org/10.1039/C7RA07551K]
[6]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[7]
Matsui, I. Nanoparticles for electronic device applications: A brief review. J. Chem. Eng. Jpn, 2005, 38, 535-546.
[http://dx.doi.org/10.1252/jcej.38.535]
[8]
Tao, F.; Nguyen, L.; Zhang, S. Introduction: Synthesis and catalysis on metal nanoparticles; Royal Society of Chemistry: Cambridge, 2014.
[http://dx.doi.org/10.1039/9781782621034]
[9]
Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci., 2020, 55, 6195-6241.
[http://dx.doi.org/10.1007/s10853-020-04415-x]
[10]
Schlögl, R.; Abd Hamid, S.B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem. Int. Ed., 2004, 43(13), 1628-1637.
[http://dx.doi.org/10.1002/anie.200301684] [PMID: 15038028]
[11]
Astruc, D. Nanoparticles and Catalysis; Wiley‐VCH Verlag GmbH & Co. KGaA, 2008.
[12]
Polshettiwar, V.; Asefa, T.; Hutchings, G. Nanocatalysis: Synthesis and applications; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9781118609811]
[13]
Prechtl, M.H.G.; Dupont, J. Nanocatalysis in ionic liquids; John Wiley & Sons, 2017.
[14]
Wang, D.; Astruc, D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev., 2017, 46(3), 816-854.
[http://dx.doi.org/10.1039/C6CS00629A] [PMID: 28101543]
[15]
Faber, M.S.; Fnerg, S.J. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci., 2014, 7, 3519-3542.
[http://dx.doi.org/10.1039/C4EE01760A]
[16]
Wang, C.X.; Wan, B.S. Recent advances in the iron-catalyzed cycloaddition reactions. Chin. Sci. Bull., 2012, 57, 2338-2351.
[http://dx.doi.org/10.1007/s11434-012-5141-z]
[17]
Fürstner, A. Iron catalysis in organic synthesis: A critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci., 2016, 2(11), 778-789.
[http://dx.doi.org/10.1021/acscentsci.6b00272] [PMID: 27981231]
[18]
Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104(12), 6217-6254.
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700]
[19]
Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications; Wiley-VCH: Weinheim, Germany, 2008.
[http://dx.doi.org/10.1002/9783527623273]
[20]
Morris, R.H. Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev., 2009, 38(8), 2282-2291.
[http://dx.doi.org/10.1039/b806837m] [PMID: 19623350]
[21]
Sun, C-L.; Li, B-J.; Shi, Z-J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111(3), 1293-1314.
[http://dx.doi.org/10.1021/cr100198w] [PMID: 21049955]
[22]
Junge, K.; Schröder, K.; Beller, M. Homogeneous catalysis using iron complexes: Recent developments in selective reductions. Chem. Commun. (Camb.), 2011, 47(17), 4849-4859.
[http://dx.doi.org/10.1039/c0cc05733a] [PMID: 21437312]
[23]
García Mancheño, O. New trends towards well-defined low-valent iron catalysts. Angew. Chem. Int. Ed. Engl., 2011, 50(10), 2216-2218.
[http://dx.doi.org/10.1002/anie.201007271] [PMID: 21305680]
[24]
Plietker, B.; Beller, M. Iron Catalysis: Fundamentals and Applications; Springer: Berlin, Germany, 2011.
[http://dx.doi.org/10.1007/978-3-642-14670-1]
[25]
Blanchard, S.; Derat, E.; Desage-El Murr, M.; Fensterbank, L.; Malacria, M.; Mourie-Mansuy, V. Non-innocent ligands: New opportunities in iron catalysis. Eur. J. Inorg. Chem., 2012, 376-389.
[http://dx.doi.org/10.1002/ejic.201100985]
[26]
Darwish, M.; Wills, M. Asymmetric catalysis using iron complexes–‘Ruthenium Lite’? Catal. Sci. Technol., 2012, 2, 243-255.
[http://dx.doi.org/10.1039/C1CY00390A]
[27]
Mousseau, J.J.; Charette, A.B. Direct functionalization processes: A journey from palladium to copper to iron to nickel to metal-free coupling reactions. Acc. Chem. Res., 2013, 46(2), 412-424.
[http://dx.doi.org/10.1021/ar300185z] [PMID: 23098328]
[28]
Gopalaiah, K. Chiral iron catalysts for asymmetric synthesis. Chem. Rev., 2013, 113(5), 3248-3296.
[http://dx.doi.org/10.1021/cr300236r] [PMID: 23461563]
[29]
Knölker, H-J. Organoiron Chemistry. Organometallics in Synthesis; Wiley: Hoboken, NJ, 2013.
[30]
Rana, S.; Modak, A.; Maity, S.; Patra, T.; Maity, D. Iron catalysis in synthetic chemistry; progress in inorganic chemistry;; Knrlin. K. D. John Whey & Sons, 2014, 59, pp. 1-95.
[31]
Bauer, I.; Knölker, H-J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u] [PMID: 25751710]
[32]
Adak, L.; Ghosh, T. Recent progress in iron-catalyzed reactions towards the synthesis of bioactive five- and six-membered heterocycles. Curr. Org. Chem., 2020, 24, 1-31.
[http://dx.doi.org/10.2174/1385272824999200714102103]
[33]
Guérinot, A.; Cossy, J. Iron-catalyzed C–C cross-couplings using organometallics. Top. Curr. Chem. (Cham), 2016, 374(4), 49.
[http://dx.doi.org/10.1007/s41061-016-0047-x] [PMID: 27573401]
[34]
Legros, J.; Figadère, B. Iron-promoted C-C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555.
[http://dx.doi.org/10.1039/C5NP00059A] [PMID: 26395292]
[35]
Adak, L.; Hatakeyama, T.; Nakamura, M. Iron-catalyzed cross-coupling reactions tuned by bulky ortho-phenylene bisphosphine ligands. Bull. Chem. Soc. Jpn., 2021, 94, 1125-114.
[http://dx.doi.org/10.1246/bcsj.20200392]
[36]
Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M. Iron-catalyzed cross-coupling reactions. Org. React., 2014, 83, 1.
[37]
Czaplik, W.M.; Mayer, M.; Cvengroš, J.; von Wangelin, A.J. Coming of age: Sustainable iron-catalyzed cross-coupling reactions. ChemSusChem, 2009, 2(5), 396-417.
[http://dx.doi.org/10.1002/cssc.200900055] [PMID: 19425040]
[38]
Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res., 2008, 41(11), 1500-1511.
[http://dx.doi.org/10.1021/ar800039x] [PMID: 18588321]
[39]
Iwamoto, T.; Okuzono, C.; Adak, L.; Jin, M.; Nakamura, M. Iron-catalysed enantioselective Suzuki-Miyaura coupling of racemic alkyl bromides. Chem. Commun. (Camb.), 2019, 55(8), 1128-1131.
[http://dx.doi.org/10.1039/C8CC09523J] [PMID: 30627712]
[40]
Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H.C.; Shing, T.K.M.; Nakamura, M. Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: Stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc., 2017, 139(31), 10693-10701.
[http://dx.doi.org/10.1021/jacs.7b03867] [PMID: 28762276]
[41]
Jin, M.; Adak, L.; Nakamura, M. Iron-catalyzed enantioselective cross-coupling reactions of α-chloroesters with aryl Grignard reagents. J. Am. Chem. Soc., 2015, 137(22), 7128-7134.
[http://dx.doi.org/10.1021/jacs.5b02277] [PMID: 25955413]
[42]
Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto, T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. Kumada–Tamao–Corriu coupling of alkyl halides catalyzed by an iron–bisphosphine complex. Chem. Lett., 2011, 40, 1030-1032.
[http://dx.doi.org/10.1246/cl.2011.1030]
[43]
Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. Iron-catalyzed cross-coupling of primary and secondary alkyl halides with aryl grignard reagents. J. Am. Chem. Soc., 2004, 126(12), 3686-3687.
[http://dx.doi.org/10.1021/ja049744t] [PMID: 15038701]
[44]
Bedford, R.B.; Carter, E.; Cogswell, P.M.; Gower, N.J.; Haddow, M.F.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J. Simplifying iron-phosphine catalysts for cross-coupling reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(4), 1285-1288.
[http://dx.doi.org/10.1002/anie.201207868] [PMID: 23225738]
[45]
Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun. (Camb.), 2009, 45(10), 1216-1218.
[http://dx.doi.org/10.1039/b820879d] [PMID: 19240878]
[46]
Kawamura, S.; Kawabata, T.; Ishizuka, K.; Nakamura, M. Iron-catalysed cross-coupling of halohydrins with aryl aluminium reagents: A protecting-group-free strategy attaining remarkable rate enhancement and diastereoinduction. Chem. Commun. (Camb.), 2012, 48(75), 9376-9378.
[http://dx.doi.org/10.1039/c2cc34185a] [PMID: 22892892]
[47]
Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-catalyzed Suzuki-Miyaura coupling of alkyl halides. J. Am. Chem. Soc., 2010, 132(31), 10674-10676.
[http://dx.doi.org/10.1021/ja103973a] [PMID: 20681696]
[48]
Bedford, R.B.; Brenner, P.B.; Carter, E.; Carvell, T.W.; Cogswell, P.M.; Gallagher, T.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J.; Pye, D.R. Expedient iron-catalyzed coupling of alkyl, benzyl and allyl halides with arylboronic esters. Chemistry, 2014, 20(26), 7935-7938.
[http://dx.doi.org/10.1002/chem.201402174] [PMID: 24715587]
[49]
Torres Galvis, H.M.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6070), 835-838.
[http://dx.doi.org/10.1126/science.1215614] [PMID: 22344440]
[50]
Koeken, A.C.J.; Torres Galvis, H.M.; Davidian, T.; Ruitenbeek, M.; de Jong, K.P. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas. Angew. Chem. Int. Ed. Engl., 2012, 51(29), 7190-7193.
[http://dx.doi.org/10.1002/anie.201200280] [PMID: 22693165]
[51]
Licht, S.; Cui, B.; Wang, B.; Li, F-F.; Lau, J.; Liu, S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science, 2014, 345, 637-640.
[http://dx.doi.org/10.1126/science.1254234] [PMID: 25104378]
[52]
Jagadeesh, R.V.; Surkus, A-E.; Junge, H.; Pohl, M-M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342(6162), 1073-1076.
[http://dx.doi.org/10.1126/science.1242005] [PMID: 24288327]
[53]
Jagadeesh, R.V.; Junge, H.; Beller, M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat. Commun., 2014, 5, 4123.
[http://dx.doi.org/10.1038/ncomms5123] [PMID: 25005518]
[54]
Jagadeesh, R.V.; Junge, H.; Beller, M. “Nanorust”-catalyzed benign oxidation of amines for selective synthesis of nitriles. ChemSusChem, 2015, 8(1), 92-96.
[http://dx.doi.org/10.1002/cssc.201402613] [PMID: 25346336]
[55]
Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev., 2012, 112(4), 2323-2338.
[http://dx.doi.org/10.1021/cr2002596] [PMID: 22216932]
[56]
Tian, J.; Morozan, A.; Sougrati, M.T.; Lefèvre, M.; Chenitz, R.; Dodelet, J.P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 6867-6870.
[http://dx.doi.org/10.1002/anie.201303025] [PMID: 23720422]
[57]
Kramm, U.I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J.P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc., 2014, 136(3), 978-985.
[http://dx.doi.org/10.1021/ja410076f] [PMID: 24345296]
[58]
Lin, L.; Zhu, Q.; Xu, A.W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc., 2014, 136(31), 11027-11033.
[http://dx.doi.org/10.1021/ja504696r] [PMID: 25058390]
[59]
Riener, K.; Haslinger, S.; Raba, A.; Högerl, M.P.; Cokoja, M.; Herrmann, W.A.; Kühn, F.E. Chemistry of iron N-heterocyclic carbene complexes: Syntheses, structures, reactivities, and catalytic applications. Chem. Rev., 2014, 114(10), 5215-5272.
[http://dx.doi.org/10.1021/cr4006439] [PMID: 24655079]
[60]
Welther, A.; von Wangelin, A.J. Iron(0) nanoparticle catalysts in organic synthesis. Curr. Org. Chem., 2013, 17, 326-335.
[http://dx.doi.org/10.2174/1385272811317040003]
[61]
Ahmad, T.; Phul, R.; Khan, H. Iron oxide nanoparticles: An efficient nano-catalyst. Curr. Org. Chem., 2019, 23, 994-1004.
[http://dx.doi.org/10.2174/1385272823666190314153208]
[62]
Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: Sustainable synthesis and applications in catalytic organic transformations. Green Chem., 2014, 16, 4493-4505.
[http://dx.doi.org/10.1039/C4GC00418C]
[63]
Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem., 2016, 18, 3184-3209.
[http://dx.doi.org/10.1039/C6GC00864J]
[64]
Campos, E.A.; Pinto, D.V.B.S.; de Oliveira, J.I.S.; da Costa Mattos, E.; Dutra, R.C.L. Synthesis, characterization and applications of iron oxide nanoparticles - a short review. J. Aerosp. Technol. Manag., 2015, 7, 267-276.
[http://dx.doi.org/10.5028/jatm.v7i3.471]
[65]
Patil, S.A.; Patil, S.A.; Patil, R. Magnetic nanoparticles supported carbene and amine based metal complexes in catalysis. J. Nano Res., 2016, 42, 112-135.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.42.112]
[66]
Theofanidis, S.A.; Galvita, V.V.; Konstantopoulos, C.; Poelman, H.; Marin, G.B. Fe-based nano-materials in catalysis. Materials (Basel), 2018, 11(5), 831.
[http://dx.doi.org/10.3390/ma11050831] [PMID: 29772842]
[67]
Kazemi, M. Based on MFe2O4 (M.Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. Synth. Commun., 2020, 50, 1899-1935.
[http://dx.doi.org/10.1080/00397911.2020.1723109]
[68]
Kharisov, B.I.; Dias, H.V.R.; Kharissova, O.V. Mini-review: Ferrite nanoparticles in the catalysis. Arab. J. Chem., 2014, 12, 1234-1246.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.049]
[69]
Machado, S.; Pacheco, J.G. Nanoremediation with zero-valent iron nanoparticles.From Soil Remediation; 1st ed; Albergaria, J.T.; Nouws, H.P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2016, p. 108-120.
[70]
Phenrat, T.; Lowry, G.V., Eds.; Nanoscale zerovalent iron particles for environmental restoration, fundamental science to field scale engineering applications; Springer International Publishing AG: Cham, Switzerland, 2019.
[71]
Yan, W.; Lien, H-L.; Koel, B.E.; Zhang, W-X. Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ. Sci. Process. Impacts, 2013, 15(1), 63-77.
[http://dx.doi.org/10.1039/C2EM30691C] [PMID: 24592428]
[72]
Rangheard, C.; de Julián Fernández, C.; Phua, P-H.; Hoorn, J.; Lefort, L.; de Vries, J.G. At the frontier between heterogeneous and homogeneous catalysis: Hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalton Trans., 2010, 39(36), 8464-8471.
[http://dx.doi.org/10.1039/c0dt00177e] [PMID: 20714614]
[73]
Kelsen, V.; Wendt, B.; Werkmeister, S.; Junge, K.; Beller, M.; Chaudret, B. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds. Chem. Commun. (Camb.), 2013, 49(33), 3416-3418.
[http://dx.doi.org/10.1039/c3cc00152k] [PMID: 23505625]
[74]
Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A.G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E.I.; Laasonen, K. Single-shell carbon-encapsulated iron nanoparti-cles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl., 2015, 54(15), 4535-4538.
[http://dx.doi.org/10.1002/anie.201411450] [PMID: 25683139]
[75]
Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc., 2015, 137(4), 1436-1439.
[http://dx.doi.org/10.1021/ja5129132] [PMID: 25607754]
[76]
Gieshoff, T.N.; Villa, M.; Welther, A.; Plois, M.; Chakraborty, U.; Wolf, R.; von Wangelin, A.J. Iron-catalyzed olefin hydrogenation at 1 bar H2 with a FeCl3/LiAlH4 catalyst. Green Chem., 2015, 17, 1408-1413.
[http://dx.doi.org/10.1039/C4GC02368D]
[77]
Gieshoff, T.N.; Chakraborty, U.; Villa, M.; Jacobi von Wangelin, A. Alkene hydrogenations by soluble iron nanocluster catalysts. Angew. Chem. Int. Ed. Engl., 2017, 56(13), 3585-3589.
[http://dx.doi.org/10.1002/anie.201612548] [PMID: 28233953]
[78]
Banerjee, A.; Yao, Y.; Durr, M-R.R.; Barrett, W.G.; Hu, Y.; Scott, R.W.J. Synthesis, characterization, and evaluation of iron nanoparticles as hydrogenation catalysts in alcohols and tetraalkylphosphonium ionic liquids: Do solvents matter? Catal. Sci. Technol., 2018, 8, 5207-5216.
[http://dx.doi.org/10.1039/C8CY01346B]
[79]
Gregori, B.J.; Schwarzhuber, F.; Pöllath, S.; Zweck, J.; Fritsch, L.; Schoch, R.; Bauer, M.; Jacobi von Wangelin, A. Stereoselective alkyne hydrogenation by a simple iron catalyst. ChemSusChem, 2019, 12(16), 3864-3870.
[http://dx.doi.org/10.1002/cssc.201900926] [PMID: 31265757]
[80]
Kumara, M.A.; Choeb, J.K.; Leec, W.; Yoon, S. Synthesis of benzaldoxime from benzaldehyde using nanoscale zero-valent iron and dissolved nitrate or nitrite. Environ. Nanotechnol. Monit. Manag., 2017, 8, 97-102.
[http://dx.doi.org/10.1016/j.enmm.2017.06.003]
[81]
Zhu, Z.; Sun, S.; Tang, S.; Chu, S.; Zhang, X. Easily fabricated Fe/Se soft magnetic material for catalytic phenol oxidation. Molecular Catalysis, 2021, 515, 111923-111927.
[http://dx.doi.org/10.1016/j.mcat.2021.111923]
[82]
Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
[83]
Lu, A-H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[84]
Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite α-Fe2O3 photoelectrodes. ChemSusChem, 2011, 4(4), 432-449.
[http://dx.doi.org/10.1002/cssc.201000416] [PMID: 21416621]
[85]
Jagadeesh, R.V.; Stemmler, T.; Surkus, A-E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines. Nat. Protoc., 2015, 10(4), 548-557.
[http://dx.doi.org/10.1038/nprot.2015.025] [PMID: 25741990]
[86]
Jagadeesh, R.V.; Natte, K.; Junge, H.; Beller, M. Nitrogen-doped graphene activated iron oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catal., 2015, 5, 1526-1529.
[http://dx.doi.org/10.1021/cs501916p]
[87]
Li, Y.; Zhou, Y-X.; Ma, X.; Jiang, H-L. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chem. Commun. (Camb.), 2016, 52(22), 4199-4202.
[http://dx.doi.org/10.1039/C6CC00011H] [PMID: 26908070]
[88]
Papadas, I.T.; Fountoulaki, S.; Lykakis, I.N.; Armatas, G.S. Controllable synthesis of mesoporous iron oxide nanoparticle assemblies for chemoselective catalytic reduc-tion of nitroarenes. Chemistry, 2016, 22(13), 4600-4607.
[http://dx.doi.org/10.1002/chem.201504685] [PMID: 26880681]
[89]
Cui, X.; Zhang, Q.; Tian, M.; Dong, Z. Facile fabrication of γ-Fe2O3-nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaro-matic compounds. New J. Chem., 2017, 41, 10165-10173.
[http://dx.doi.org/10.1039/C7NJ00636E]
[90]
Tian, M.; Cui, X.; Yuan, M.; Yang, J.; Ma, J.; Dong, Z. Efficient chemoselective hydrogenation of halogenated nitrobenzenes over an easily prepared γ-Fe2O3-modified mesoporous carbon catalyst. Green Chem., 2017, 19, 1548-1554.
[http://dx.doi.org/10.1039/C6GC03386E]
[91]
Wang, C.; Salmon, L.; Ciganda, R.; Yate, L.; Moya, S.; Ruiz, J.; Astruc, D. An efficient parts-per-million α-Fe2O3 nanocluster/graphene oxide catalyst for Suzuki-Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution. Chem. Commun. (Camb.), 2017, 53(3), 644-646.
[http://dx.doi.org/10.1039/C6CC08401J] [PMID: 27990528]
[92]
Cui, X.; Zhou, X.; Dong, Z. Ultrathin γ-Fe2O3 nanosheets as a highly efficient catalyst for the chemoselective hydrogenation of nitroaromatic compounds. Catal. Commun., 2018, 107, 57-61.
[http://dx.doi.org/10.1016/j.catcom.2018.01.015]
[93]
Han, J.; Zhang, D.; Maitarad, P.; Shi, L.; Cai, S.; Li, H.; Huang, L.; Zhang, J. Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3. Catal. Sci. Technol., 2015, 5, 438-446.
[http://dx.doi.org/10.1039/C4CY00789A]
[94]
Azuma, R.; Nakamichi, S.; Kimura, J.; Yano, H.; Kawasaki, H.; Suzuki, T.; Kondo, R.; Kanda, Y.; Shimizu, K-i.; Kato, K.; Obora, Y. Solution synthesis of N,N-dimethylformamide-stabilized iron oxide nanoparticles as an efficient and recyclable catalyst for alkene hydrosilylation. ChemCatChem, 2018, 10, 2378-2382.
[http://dx.doi.org/10.1002/cctc.201800161]
[95]
Shegavi, M.L.; Baishya, A.; Geetharani, K.; Bose, S.K. Reusable Fe2O3-nanoparticle catalyzed efficient and selective hydroboration of carbonyl compounds. Org. Chem. Front., 2018, 5, 3520-3525.
[http://dx.doi.org/10.1039/C8QO00912K]
[96]
Atashin, H.; Malakooti, R. Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sul-fides. J. Saudi Chem. Soc., 2017, 21, S17-S24.
[http://dx.doi.org/10.1016/j.jscs.2013.09.007]
[97]
Liu, C.; Mao, J.; Zhang, X.; Yu, L. Selenium-doped Fe2O3-catalyzed oxidative scission of C=C bond. Catal. Commun., 2020, 133, 105828-105831.
[http://dx.doi.org/10.1016/j.catcom.2019.105828]
[98]
Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A-E.; Junge, K.; Topf, C.; Beller, M. Synthesis and characterization of iron-nitrogen-doped graphene/core-shell cata-lysts: Efficient oxidative dehydrogenation of N-Heterocycles. J. Am. Chem. Soc., 2015, 137(33), 10652-10658.
[http://dx.doi.org/10.1021/jacs.5b05674] [PMID: 26230874]
[99]
Sudhakar, K.; Kumar, A.P.; Kumar, B.P.; Raghavender, A.; Ravi, S.; Kenie, D.N.; Lee, Y. Synthesis of γ-Fe2O3 nanoparticles and catalytic activity of azide-alkyne cy-cloaddition reactions. Asian J. Nanosci. Mater., 2018, 1, 172-182.
[100]
Nehme, S.I.; Crocker, L.; Fruk, L. Flavin-conjugated iron oxide nanoparticles as enzyme-Inspired photocatalysts for azo dye degradation. Catalysts, 2020, 10, 324.
[http://dx.doi.org/10.3390/catal10030324]
[101]
Thirumalai, D.; Gajalakshmi, S. An efficient heterogeneous iron oxide nanoparticle catalyst for the synthesis of 9-substituted xanthene-1,8-dione. Res. Chem. Intermed., 2020, 46, 2657-2668.
[http://dx.doi.org/10.1007/s11164-020-04112-z]
[102]
Sadat, M.E.; Patel, R.; Sookoor, J. Buď’ko, S.L.; Ewing, R.C.; Zhang, J.; Xu, H.; Wang, Y.; Pauletti, G.M.; Mast, D.B.; Shi, D. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. Mater. Sci. Eng. C, 2014, 42, 52-63.
[http://dx.doi.org/10.1016/j.msec.2014.04.064] [PMID: 25063092]
[103]
Rahimi, M.; Wadajkar, A.; Subramanian, K.; Yousef, M.; Cui, W.; Hsieh, J-T.; Nguyen, K.T. In vitro evaluation of novel polymer-coated magnetic nanoparticles for con-trolled drug delivery. Nanomedicine, 2010, 6(5), 672-680.
[http://dx.doi.org/10.1016/j.nano.2010.01.012] [PMID: 20172050]
[104]
Corchero, J.L.; Villaverde, A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol., 2009, 27(8), 468-476.
[http://dx.doi.org/10.1016/j.tibtech.2009.04.003] [PMID: 19564057]
[105]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[106]
Zeng, T.; Chen, W-W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C-J. Fe3O4 nanoparticles: A robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12, 570-573.
[http://dx.doi.org/10.1039/b920000b]
[107]
Zhang, Z-H.; Lü, H-Y.; Yang, S-H.; Gao, J-W. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe(3)O(4) nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646.
[http://dx.doi.org/10.1021/cc100047j] [PMID: 20684507]
[108]
Yazdani, E.; Azizi, K.; Nakisa, A.; Heydari, A. Boric acid-functionalized Fe3O4@SiO2 as a novel superparamagnetically recoverable nano catalyst for Mukaiyama-Aldol reaction. Org. Chem. Res, 2015, 1, 27-36.
[109]
Koshteh, M.K.; Bagheri, M. Nano Fe3O4 as green catalyst for Beckmann rearrangement under ultrasound irradiation. J. Mex. Chem. Soc., 2017, 61, 28-34.
[110]
Safaei-Ghomia, J.; Shahbazi-Alavia, H. A flexible one-pot synthesis of pyrazolopyridines catalyzed by Fe3O4@SiO2-SO3H nanocatalyst under microwave irradiation. Scientia Iranica C, 2017, 24, 1209-1219.
[http://dx.doi.org/10.24200/sci.2017.4105]
[111]
Ghavidel, H.; Mirza, B.; Soleimani-Amiri, S. A novel, efficient, and recoverable basic Fe3O4@C nano-catalyst for green synthesis of 4H-chromenes in water via one-pot three component reactions. Polycycl. Aromat. Compd., 2019, 41(3), 604-625.
[http://dx.doi.org/10.1080/10406638.2019.1607413]
[112]
Kiani, M.; Hendijani, M.; Mohammadipour, M.; Zamanian, A. Design, preparation and characterization of MoO3H-functionalized Fe3O4@SiO2 magnetic nanocatalyst and application for the one-pot multicomponent reactions. Acta Chim. Slov., 2017, 64(3), 707-713.
[http://dx.doi.org/10.17344/acsi.2017.3208] [PMID: 28862294]
[113]
Niya, H.F.; Hazeri, N.; Maghsoodlou, M.T. Synthesis and characterization of Fe3O4@THAM-SO3H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Appl. Organomet. Chem., 2020, 34, e5472.
[114]
Rostami, Z.; Rouhanizadeh, M.; Nami, N.; Zareyee, D. Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives. Nanochem. Res., 2018, 3, 142-148.
[115]
Sathe, B.P.; Phatak, P.S.; Dalve, V.S.; Rote, A.B.; Tigote, R.M.; Haval, K.P. Synthesis of 1, 5-benzodiazepines by using Fe3O4@SiO2SO3H nanocatalyst. Int. Res. J. Sci. Eng., 2018, A5(Special Issue), 93-98.
[116]
Kalhor, M.; Zarnegar, Z. Fe3O4/SO3H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine deriva-tives. RSC Advances, 2019, 9, 19333-19346.
[http://dx.doi.org/10.1039/C9RA02910A]
[117]
Faisal, M.; Rehman, Z.U. ul Aein, Q.; Saeed, A. Terpyridine-Pr-Fe3O4@boehmite nanoparticles; a novel and highly effective magnetic nanocatalyst for preparation of cyclic carbonates from carbon dioxide and epoxides under solventless conditions. Mater. Chem. Phys., 2019, 231, 272-280.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.042]
[118]
Chen, X.; Mao, J.; Liu, C.; Chen, C.; Cao, H.; Yu, L. An unexpected generation of magnetically separable Se/Fe3O4 for catalytic degradation of polyene contaminants with molecular oxygen. Chin. Chem. Lett., 2020, 31, 3205-3208.
[http://dx.doi.org/10.1016/j.cclet.2020.07.031]
[119]
Zhu, Z.; Wang, W.; Zeng, L.; Zhang, F.; Liu, J. Selenium-directed synthesis of Pd nanoparticles on mesoporous silica-coated Fe3O4: An efficient magnetic catalyst for oxidative alkene cracking. Catal. Commun., 2020, 142, 106031-106047.
[http://dx.doi.org/10.1016/j.catcom.2020.106031]
[120]
Yang, Y.; Xu, B.; He, J.; Shi, J.; Yu, L.; Fan, Y. Design and synthesis of Fe3O4@SiO2@mSiO2-Fe: A magnetically separable catalyst for selective oxidative cracking reaction of styrene using air as partial oxidant. Appl. Catal. A Gen., 2020, 590, 117353-117358.
[http://dx.doi.org/10.1016/j.apcata.2019.117353]
[121]
Yang, Y.; Xu, B.; He, J.; Shi, J.; Yu, L.; Fan, Y. Magnetically separable mesoporous silica-supported palladium nanoparticle-catalyzed selective hydrogenation of naph-thalene to tetralin. Appl. Organomet. Chem., 2019, 33, e5204-e5212.
[http://dx.doi.org/10.1002/aoc.5204]
[122]
Ma, L.J.; Chen, L.S.; Chen, S.Y. Assembly of Supertetrahedral T5 Copper-Indium Sulfide clusters into a super-supertetrahedron of infinite order. J. Phys. Chem. Solids, 2007, 68, 1330-1335.
[http://dx.doi.org/10.1016/j.jpcs.2007.02.022]
[123]
Hwang, C-S.; Wang, N-C. Preparation and characteristics of ferrite catalysts for reduction of CO2. Mater. Chem. Phys., 2004, 88, 258-263.
[http://dx.doi.org/10.1016/j.matchemphys.2004.02.028]
[124]
Allendorf, M.D.; Diver, R.B.; Siegel, N.P.; Miller, J.E. Two-step water splitting using mixed-metal ferrites: Thermodynamic analysis and characterization of synthesized materials. Energy Fuels, 2008, 22, 4115-4124.
[http://dx.doi.org/10.1021/ef8005004]
[125]
Khan, A.; Smirniotis, P.G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction. J. Mol. Catal. Chem., 2008, 280, 43-51.
[http://dx.doi.org/10.1016/j.molcata.2007.10.022]
[126]
Kodama, T.; Miura, S.; Shimizu, T.; Kitayama, Y. Thermochemical conversion of coal and water to CO and H2 by a two-step redox cycle of ferrite. Energy, 1997, 22, 1019-1027.
[http://dx.doi.org/10.1016/S0360-5442(97)00041-8]
[127]
Manova, E.; Tsoncheva, T.; Paneva, D.; Rehspringer, J.L.; Tenchev, K.; Mitov, I.; Petrov, L. Synthesis, characterization and catalytic properties of nanodimensional nickel ferrite/silica composites. Appl. Catal., 2007, 317(1), 34-42.
[128]
Mondal, B.; Kundu, M.; Mandal, S.P.; Saha, R.; Roy, U.K.; Roychowdhury, A.; Das, D. Sonochemically synthesized spin-canted CuFe2O4 nanoparticles for heterogene-ous green catalytic click chemistry. ACS Omega, 2019, 4(9), 13845-13852.
[http://dx.doi.org/10.1021/acsomega.9b01477] [PMID: 31497701]
[129]
Nguyen, O.T.K.; Ha, P.T.; Dang, H.V.; Vo, Y.H.; Nguyen, T.T.; Le, N.T.H.; Phan, N.T.S. Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyri-dines/pyrimidines with trans-chalcones. RSC Advances, 2019, 9, 5501-5511.
[http://dx.doi.org/10.1039/C9RA00097F]
[130]
Jamatia, R.; Gupta, A.; Pal, A.K. Superparamagnetic copper ferrite nanoparticles catalyzed one step regioselective synthesis of dibenzodiazepinones vial ligand and base free Ullmann type coupling reaction. ChemistrySelect, 2016, 4, 852-860.
[http://dx.doi.org/10.1002/slct.201500038]
[131]
Suryavanshi, A.W. Copper Ferrite super magnetic nano-catalysed synthesis of 6-Amino-3-methyl-4-(substituted-phenyl)-2, 4- dihydro-pyrano-[2, 3-c] pyrazole-5-carbonitrile. Int. Res. J. Sci. Eng., 2018, A5(Special Issue), 123-126.
[132]
Chutia, R.; Chetia, B. Biogenic CuFe2O4 magnetic nanoparticles as a green, reusable and excellent nanocatalyst for the acetylation reaction under solvent free conditions. New J. Chem., 2018, 42, 15200-15206.
[http://dx.doi.org/10.1039/C8NJ02685H]
[133]
Al-Hunaiti, A.; Al-Said, N.; Halawani, L.; Haija, M.A.; Baqaie, R.; Taher, D. Synthesis of magnetic CuFe2O4 nanoparticles as green catalyst for toluene oxidation under solvent-free conditions. Arab. J. Chem., 2020, 13, 4945-4953.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.017]
[134]
Sharma, R.K.; Gaur, R.; Yadav, M.; Rathi, A.K.; Pechousek, J.; Petr, M.; Zboril, R.; Gawande, M.B. Maghemite-copper nanocomposites: Applications for ligand-free cross-coupling (C–O, C–S, and C–N) reactions. ChemCatChem, 2015, 7, 3495-3502.
[http://dx.doi.org/10.1002/cctc.201500546]
[135]
Moghaddam, F.M.; Pourkaveh, R.; Ahangarpour, M. Cobalt-Copper ferrite nanoparticles catalyzed click reaction at room temperature: Green access to 1,2,3-triazole deriv-atives. ChemistrySelect, 2018, 3, 2586-2593.
[http://dx.doi.org/10.1002/slct.201800134]
[136]
Moghaddam, F.M.; Tavakoli, G.; Aliabadi, A. Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: A comparative study be-tween their catalytic activities. RSC Advances, 2015, 5, 59142-59153.
[http://dx.doi.org/10.1039/C5RA08146G]
[137]
Atashkar, B.; Rostami, A.; Rostami, A.; Zolfigol, M.A. NiFe2O4 as a magnetically recoverable nanocatalyst for odourless C–S bond formation via the cleavage of C–O bond in the presence of S8 under mild and green conditions. Appl. Organomet. Chem., 2019, 33, e4691.
[http://dx.doi.org/10.1002/aoc.4691]
[138]
Moghaddam, F.M.; Foroushani, B.K.; Reza, H. Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for neat, one-pot and four-component synthesis of pyrroles. RSC Advances, 2015, 5, 18092-18096.
[http://dx.doi.org/10.1039/C4RA09348H]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy