Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Fetal Cardiac Function: Myocardial Performance Index

Author(s): Mariana Oliveira*, Joana Portela Dias and Luís Guedes-Martins

Volume 18, Issue 4, 2022

Published on: 17 March, 2022

Article ID: e271221199505 Pages: 12

DOI: 10.2174/1573403X18666211227145856

Price: $65

Abstract

The Myocardial Performance Index (MPI) or Tei index, presented by Tei in 1995, is the ratio of the sum of the duration of the isovolumetric contraction time (ICT) and isovolumetric relaxation time (IRT) to the duration of the ejection time (ET). The Modified Myocardial Performance Index (Mod-MPI), proposed in 2005, is considered a reliable and useful tool in the study of fetal heart function in several conditions, such as growth restriction, twin-twin transfusion syndrome, maternal diabetes, preeclampsia, intrahepatic cholestasis of pregnancy, and adverse perinatal outcomes. Nevertheless, clinical translation is currently limited by poorly standardised methodology as variations in the technique, machine settings, caliper placement, and specific training required can result in significantly different MPI values. This review aims to provide a survey of the relevant literature on MPI, present a strict methodology and technical considerations, and propose future research.

Keywords: Fetal heart, doppler, fetal echocardiography, fetal myocardial performance index, Tei index, heart function.

Graphical Abstract

[1]
Crispi F, Gratacós E. Fetal cardiac function: Technical considerations and potential research and clinical applications. Fetal Diagn Ther 2012; 32(1-2): 47-64.
[http://dx.doi.org/10.1159/000338003]
[2]
Mahajan A, Henry A, Meriki N, et al. The (Pulsed- Wave) doppler fetal myocardial performance index: Technical challenges, clinical applications and future research. Fetal Diagn Ther 2015; 38(1): 1-13.
[http://dx.doi.org/10.1159/000363181]
[3]
Raboisson MJ, Bourdages M, Fouron JC. Measuring left ventricular myocardial performance index in fetuses. Am J Cardiol 2003; 91: 919-21.
[4]
Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S. Functional assessment of the fetal heart: A review. Ultrasound Obstet Gynecol 2012; 39(2): 131-44.
[http://dx.doi.org/10.1002/uog.9064]
[5]
Khandoker AH, Marzbanrad F, Kimura Y, Al Nuaimi S, Palaniswami M. Assessing the development of fetal myocardial function by a novel doppler myocardial performance index. Conf Proc IEEE Eng Med Biol Soc 2016; 2016: 3753-6.
[http://dx.doi.org/10.1109/EMBC.2016.7591544] [PMID: 28324997]
[6]
Luewan S, Tongprasert F, Srisupundit K, Traisrisilp K, Tongsong T. Reference ranges of myocardial performance index from 12 to 40 weeks of gestation. Arch Gynecol Obstet 2014; 290(5): 859-65.
[http://dx.doi.org/10.1007/s00404-014-3288-3] [PMID: 24890808]
[7]
Hernandez-Andrade E, Benavides-Serralde JA, Cruz-Martinez R, Welsh A, Mancilla-Ramirez J. Evaluation of conventional doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagn Ther 2012; 32(1-2): 22-9.
[http://dx.doi.org/10.1159/000330792] [PMID: 22677618]
[8]
Herling L, Johnson J, Ferm-Widlund K, et al. Automated analysis of fetal cardiac function using color tissue doppler imaging in second half of normal pregnancy. Ultrasound Obstet Gynecol 2019; 53(3): 348-57.
[http://dx.doi.org/10.1002/uog.19037] [PMID: 29484743]
[9]
Iwashima S, Sekii K, Ishikawa T, Itou H. Serial change in myocardial tissue Doppler imaging from fetus to neonate. Early Hum Dev 2013; 89(9): 687-92.
[http://dx.doi.org/10.1016/j.earlhumdev.2013.04.017] [PMID: 23707048]
[10]
Comas M, Crispi F. Assessment of fetal cardiac function using tissue doppler techniques. Fetal Diagn Ther 2012; 32(1-2): 30-8.
[http://dx.doi.org/10.1159/000335028]
[11]
Russell NE, McAuliffe FM. First-trimester fetal cardiac function. J Ultrasound Med 2008; 27(3): 379-83.
[http://dx.doi.org/10.7863/jum.2008.27.3.379] [PMID: 18314516]
[12]
MacDonald TM, Robinson AJ, Walker SP, Hui L. Prospective longitudinal assessment of the fetal left modified myocardial performance index. J Matern Fetal Neonatal Med 2019; 32(5): 760-7.
[http://dx.doi.org/10.1080/14767058.2017.1391777] [PMID: 29020812]
[13]
Lee MY, Won HS. Technique of fetal echocardiography. Obstet Gynecol Sci 2013; 56(4): 217-26.
[http://dx.doi.org/10.5468/ogs.2013.56.4.217] [PMID: 24328006]
[14]
Welsh AW, Maheshwari P, Wang J, et al. Evaluation of an automated fetal myocardial performance index. Ultrasound Obstet Gynecol 2016; 48(4): 496-503.
[http://dx.doi.org/10.1002/uog.15770] [PMID: 26423314]
[15]
Meriki N, Welsh AW. Technical considerations for measurement of the fetal left modified myocardial performance index. Fetal Diagn Ther 2012; 31(1): 76-80.
[http://dx.doi.org/10.1159/000334385] [PMID: 22236694]
[16]
Cruz-Martinez R, Figueras F, Jaramillo JJ, et al. Learning curve for doppler measurement of fetal modified myocardial performance index. Ultrasound Obstet Gynecol 2011; 37(2): 158-62.
[http://dx.doi.org/10.1002/uog.7765] [PMID: 20922780]
[17]
Nair A, Radhakrishnan S. Fetal left ventricular myocardial performance index: Defining normal values for Indian population and a review of literature. Ann Pediatr Cardiol 2016; 9(2): 132-6.
[http://dx.doi.org/10.4103/0974-2069.177516] [PMID: 27212847]
[18]
Bhorat I, Bagratee J, Reddy T. Gestational age-adjusted trends and reference intervals of the modified myocardial performance index (Mod-MPI) and its components, with its interpretation in the context of established cardiac physiological principles. Prenat Diagn 2014; 34(11): 1031-6.
[http://dx.doi.org/10.1002/pd.4414] [PMID: 24844183]
[19]
Leung V, Avnet H, Henry A, Wang J, Redmond S, Welsh AW. Automation of the fetal right myocardial performance index to optimise repeatability. Fetal Diagn Ther 2018; 44(1): 28-35.
[http://dx.doi.org/10.1159/000478928] [PMID: 28950258]
[20]
Meriki N, Izurieta A, Welsh AW. Fetal left modified myocardial performance index: technical refinements in obtaining pulsed-Doppler waveforms. Ultrasound in Obstetrics & Gynecology 2012; 39(4): 421-9.
[http://dx.doi.org/10.1002/uog.9090] [PMID: 21728210]
[21]
Zhang L, Han J, Zhang N, et al. Assessment of fetal modified myocardial performance index in early-onset and late-onset fetal growth restriction. Echocardiography 2019; 36(6): 1159-64.
[http://dx.doi.org/10.1111/echo.14364] [PMID: 31116471]
[22]
Friedman D, Buyon J, Kim M, Glickstein JS. Fetal cardiac function assessed by doppler myocardial performance index (Tei Index). Ultrasound Obstet Gynecol 2003; 21(1): 33-6.
[http://dx.doi.org/10.1002/uog.11] [PMID: 12528158]
[23]
Peixoto AB, Bravo-Valenzuela NJM, Martins WP, Mattar R, Moron AF, Araujo Júnior E. Reference ranges for the left ventricle modified myocardial performance index, respective time periods, and atrioventricular peak velocities between 20 and 36 + 6 weeks of gestation. J Matern Fetal Neonatal Med 2019; 1-10.
[http://dx.doi.org/10.1080/14767058.2019.1609933] [PMID: 30999802]
[24]
Maheshwari P, Henry A, Welsh AW. The fetal modified myocardial performance index: Is automation the future? Biomed Res Int 2015; 215910.
[http://dx.doi.org/10.1155/2015/215910] [PMID: 26185751]
[25]
Maheshwari P, Alphonse J, Henry A, Wang J, Redmond SJ, Welsh AW. Beat-to-beat variability of fetal myocardial performance index. Ultrasound Obstet Gynecol 2017; 50(2): 215-20.
[http://dx.doi.org/10.1002/uog.16012] [PMID: 27392316]
[26]
Lee MY, Won HS, Park JE, et al. Fetal left modified myocardial performance index measured by the Auto Mod-MPI system: Development of reference values and application to recipients of twin-to-twin transfusion syndrome. Prenat Diagn 2016; 36(5): 424-31.
[http://dx.doi.org/10.1002/pd.4798] [PMID: 26921842]
[27]
Lee MY, Won HS, Jeon EJ, et al. Feasibility of using auto Mod-MPI system, a novel technique for automated measurement of fetal modified myocardial performance index. Ultrasound Obstet Gynecol 2014; 43(6): 640-5.
[http://dx.doi.org/10.1002/uog.13247] [PMID: 24214891]
[28]
Cruz-Martínez R, Figueras F, Bennasar M, et al. Normal reference ranges from 11 to 41 weeks’ gestation of fetal left modified myocardial performance index by conventional doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagn Ther 2012; 32(1-2): 79-86.
[http://dx.doi.org/10.1159/000330798] [PMID: 22759646]
[29]
Khandoker AH, Al-Angari HM, Marzbanrad F, Kimura Y. Investigating fetal myocardial function in heart anomalies by doppler myocardial performance indices. Conf Proc IEEE Eng Med Biol Soc 2017; 2017: 2197-200.
[http://dx.doi.org/10.1109/EMBC.2017.8037290] [PMID: 29060332]
[30]
Zanardini C, Fichera A, Calza S, et al. Longitudinal reference ranges for serial measurements of myocardial performance index (MPI) by conventional and pulsed-wave tissue doppler in monochorionic diamniotic twins at 17 to 26 weeks of gestation. Prenat Diagn 2018. Epub ahead of print
[http://dx.doi.org/10.1002/pd.5286] [PMID: 29799131]
[31]
Willruth A, Steinhard J, Enzensberger C, et al. Fetal colour tissue doppler imaging (cTDI): Biventricular reference ranges for the time segments of the cardiac cycle in second and third trimesters of gestation. Arch Gynecol Obstet 2016; 294(5): 917-24.
[http://dx.doi.org/10.1007/s00404-016-4076-z] [PMID: 27016345]
[32]
Meriki N, Welsh AW. Development of Australian reference ranges for the left fetal modified myocardial performance index and the influence of caliper location on time interval measurement. Fetal Diagn Ther 2012; 32(1-2): 87-95.
[http://dx.doi.org/10.1159/000334133] [PMID: 22759698]
[33]
Clur SA, Oude Rengerink K, Mol BW, Ottenkamp J, Bilardo CM. Fetal cardiac function between 11 and 35 weeks’ gestation and nuchal translucency thickness. Ultrasound Obstet Gynecol 2011; 37(1): 48-56.
[http://dx.doi.org/10.1002/uog.8807] [PMID: 20737458]
[34]
Comas M, Crispi F, Gómez O, Puerto B, Figueras F, Gratacós E. Gestational age- and estimated fetal weight-adjusted reference ranges for myocardial tissue doppler indices at 24-41 weeks’ gestation. Ultrasound Obstet Gynecol 2011; 37(1): 57-64.
[http://dx.doi.org/10.1002/uog.8870] [PMID: 21046540]
[35]
Rozmus-Warcholinska W, Wloch A, Acharya G, et al. Reference values for variables of fetal cardiocirculatory dynamics at 11-14 weeks of gestation. Ultrasound Obstet Gynecol 2010; 35(5): 540-7.
[http://dx.doi.org/10.1002/uog.7595] [PMID: 20178107]
[36]
Van Mieghem T, Gucciardo L, Lewi P, et al. Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound Obstet Gynecol 2009; 33(1): 58-63.
[http://dx.doi.org/10.1002/uog.6238] [PMID: 18973212]
[37]
Hernandez-Andrade E, Figueroa-Diesel H, Kottman C, et al. Gestational-age-adjusted reference values for the modified myocardial performance index for evaluation of fetal left cardiac function. Ultrasound Obstet Gynecol 2007; 29(3): 321-5.
[http://dx.doi.org/10.1002/uog.3947] [PMID: 17290412]
[38]
Chen Q, Sun XF, Liu HJ. Assessment of myocardial performance in fetuses by using Tei index. Z Red Flower F UC Hank EZ AZ Hi 2006; 41(6): 387-90.
[PMID: 16831360]
[39]
Eidem BW, Edwards JM, Cetta F. Quantitative assessment of fetal ventricular function: Establishing normal values of the myocardial performance index in the fetus. Echocardiography 2001; 18(1): 9-13.
[http://dx.doi.org/10.1046/j.1540-8175.2001.t01-1-00009.x] [PMID: 11182775]
[40]
Tsutsumi T, Ishii M, Eto G, Hota M, Kato H. Serial evaluation for myocardial performance in fetuses and neonates using a new doppler index. Pediatr Int 1999; 41(6): 722-7.
[http://dx.doi.org/10.1046/j.1442-200x.1999.01155.x] [PMID: 10618901]
[41]
Zaharie GC, Hasmasanu M, Blaga L, Matyas M, Muresan D, Bolboaca SD. Cardiac left heart morphology and function in newborns with intrauterine growth restriction: Relevance for long-term assessment. Med Ultrason 2019; 21(1): 62-8.
[http://dx.doi.org/10.11152/mu-1667] [PMID: 30779833]
[42]
Pacheco Silva C, Araujo Júnior E, Maccagnano Zamith M, et al. Assessment of modified myocardial performance index in foetuses with growth restriction. Med Ultrason 2016; 18(2): 207-13.
[http://dx.doi.org/10.11152/mu.2013.2066.182.idx] [PMID: 27239656]
[43]
Chawengsettakul S, Russameecharoen K, Wanitpongpan P. Fetal cardiac function measured by myocardial performance index of small-for-gestational age fetuses. J Obstet Gynaecol Res 2015; 41(2): 222-8.
[http://dx.doi.org/10.1111/jog.12508] [PMID: 25158601]
[44]
Sharma B, Verma A, Meena C, Gurjar A, Chakraborty A, Srivastav A. Assessment of the cardiac function in intrauterine growth-restricted fetuses and appropriate for gestational age fetuses. J Obstet Gynaecol India 2019; 69(4): 313-6.
[http://dx.doi.org/10.1007/s13224-018-1192-7] [PMID: 31391736]
[45]
Nassr AA, Youssef AA, Zakherah MS, Ismail AM, Brost BC. Clinical application of fetal left modified myocardial performance index in the evaluation of fetal growth restriction. J Perinat Med 2015; 43(6): 749-54.
[http://dx.doi.org/10.1515/jpm-2014-0018] [PMID: 24706424]
[46]
Altın H, Karaarslan S, Karataş Z, Alp H, Şap F, Baysal T. Evaluation of cardiac functions in term small for gestational age newborns with mild growth retardation: A serial conventional and tissue doppler imaging echocardiographic study. Early Hum Dev 2012; 88(9): 757-64.
[http://dx.doi.org/10.1016/j.earlhumdev.2012.04.003] [PMID: 22591553]
[47]
Bhorat IE, Bagratee JS, Pillay M, Reddy T. Determination of the myocardial performance index in deteriorating grades of intrauterine growth restriction and its link to adverse outcomes. Prenat Diagn 2015; 35(3): 266-73.
[http://dx.doi.org/10.1002/pd.4537] [PMID: 25394754]
[48]
Cruz-Martinez R, Figueras F, Hernandez-Andrade E, Oros D, Gratacos E. Changes in myocardial performance index and aortic isthmus and ductus venosus doppler in term, small-for-gestational age fetuses with normal umbilical artery pulsatility index. Ultrasound Obstet Gynecol 2011; 38(4): 400-5.
[http://dx.doi.org/10.1002/uog.8976]
[49]
Comas M, Crispi F, Cruz-Martinez R, Figueras F, Gratacos E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstet Gynecol 2011; 205(1): 57.e1-6.
[http://dx.doi.org/10.1016/j.ajog.2011.03.010] [PMID: 21620362]
[50]
Benavides-Serralde A, Scheier M, Cruz-Martinez R, et al. Changes in central and peripheral circulation in intrauterine growth-restricted fetuses at different stages of umbilical artery flow deterioration: New fetal cardiac and brain parameters. Gynecol Obstet Invest 2011; 71(4): 274-80.
[http://dx.doi.org/10.1159/000323548] [PMID: 21346314]
[51]
Bhorat I, Pillay M, Reddy T. The clinical prognostic significance of myocardial performance index (MPI) in stable placental-mediated disease. Cardiovasc J Afr 2018; 29(5): 310-6.
[http://dx.doi.org/10.5830/CVJA-2018-036]
[52]
Niewiadomska-Jarosik K, Zamojska J, Zamecznik A, Wosiak A, Jarosik P, Stańczyk J. Myocardial dysfunction in children with intrauterine growth restriction: An echocardiographic study. Cardiovasc J Afr 2017; 28(1): 36-9.
[http://dx.doi.org/10.5830/CVJA-2016-053]
[53]
Crispi F, Hernandez-Andrade E, Pelsers MMAL, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199(3): 254.e1-8.
[http://dx.doi.org/10.1016/j.ajog.2008.06.056] [PMID: 18771973]
[54]
Henry A, Alphonse J, Tynan D, Welsh AW. Fetal myocardial performance index in assessment and management of small-for-gestational-age fetus: a cohort and nested case-control study. Ultrasound Obstet Gynecol 2018; 51(2): 225-35.
[http://dx.doi.org/10.1002/uog.17476] [PMID: 28345186]
[55]
Ichizuka K, Matsuoka R, Hasegawa J, et al. The Tei index for evaluation of fetal myocardial performance in sick fetuses. Early Hum Dev 2005; 81(3): 273-9.
[http://dx.doi.org/10.1016/j.earlhumdev.2004.07.003] [PMID: 15814209]
[56]
Eixarch E, Hernandez-Andrade E, Crispi F, et al. Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction. Placenta 2011; 32(4): 304-9.
[http://dx.doi.org/10.1016/j.placenta.2011.01.014] [PMID: 21334065]
[57]
Cruz-Martinez R, Figueras F, Benavides-Serralde A, Crispi F, Hernandez-Andrade E, Gratacos E. Sequence of changes in myocardial performance index in relation to aortic isthmus and ductus venosus doppler in fetuses with early-onset intrauterine growth restriction. Ultrasound Obstet Gynecol 2011; 38(2): 179-84.
[http://dx.doi.org/10.1002/uog.8903] [PMID: 21154784]
[58]
Henry A, Gopikrishna S, Mahajan A, Alphonse J, Meriki N, Welsh AW. Use of the foetal myocardial performance index in monochorionic, diamniotic twin pregnancy: A prospective cohort and nested case-control study. J Matern Fetal Neonatal Med 2019; 32(12): 2017-29.
[http://dx.doi.org/10.1080/14767058.2018.1424817] [PMID: 29301441]
[59]
Bhorat IE, Bagratee JS, Reddy T. Assessment of fetal myocardial performance in severe early onset pre-eclampsia (EO-PET) with and without intrauterine growth restriction across deteriorating stages of placental vascular resistance and links to adverse outcomes. Eur J Obstet Gynecol Reprod Biol 2017; 210: 325-33.
[http://dx.doi.org/10.1016/j.ejogrb.2017.01.014] [PMID: 28113071]
[60]
Hernandez-Andrade E, Crispi F, Benavides-Serralde JA, et al. Contribution of the myocardial performance index and aortic isthmus blood flow index to predicting mortality in preterm growth-restricted fetuses. Ultrasound Obstet Gynecol 2009; 34(4): 430-6.
[http://dx.doi.org/10.1002/uog.7347] [PMID: 19790100]
[61]
Ortiz JU, Torres X, Eixarch E, et al. Differential changes in myocardial performance index and its time intervals in donors and recipients of twin-to-twin transfusion syndrome before and after laser therapy. Fetal Diagn Ther 2018; 44(4): 305-10.
[http://dx.doi.org/10.1159/000485380] [PMID: 29353282]
[62]
Gijtenbeek M, Eschbach SJ, Middeldorp JM, et al. The value of echocardiography and Doppler in the prediction of fetal demise after laser coagulation for TTTS: A systematic review and meta-analysis. Prenat Diagn 2019; 39(10): 838-47.
[http://dx.doi.org/10.1002/pd.5511] [PMID: 31237967]
[63]
Leszczyńska K, Preis K, Swiatkowska-Freund M, Pankrac Z. Comparison of fetal myocardial contractility before and after laser photocoagulation of communicating vessels in twin-to-twin transfusion syndrome. Ginekol Pol 2014; 85(4): 283-6.
[http://dx.doi.org/10.17772/gp/1724] [PMID: 24834706]
[64]
Delabaere A, Leduc F, Reboul Q, et al. Prediction of neonatal outcome of TTTS by fetal heart and doppler ultrasound parameters before and after laser treatment. Prenat Diagn 2016; 36(13): 1199-205.
[http://dx.doi.org/10.1002/pd.4956] [PMID: 27813120]
[65]
Finneran MM, Pickens R, Templin M, Stephenson CD. Impact of recipient twin preoperative myocardial performance index in twin-twin transfusion syndrome treated with laser. J Matern Fetal Neonatal Med 2017; 30(7): 767-71.
[http://dx.doi.org/10.1080/14767058.2016.1187124] [PMID: 27150066]
[66]
Zanardini C, Prefumo F, Fichera A, Botteri E, Frusca T. Fetal cardiac parameters for prediction of twin-to-twin transfusion syndrome. Ultrasound Obstet Gynecol 2014; 44(4): 434-40.
[http://dx.doi.org/10.1002/uog.13442] [PMID: 24919586]
[67]
Papanna R, Mann LK, Molina S, Johnson A, Moise KJ. Changes in the recipient fetal Tei index in the peri-operative period after laser photocoagulation of placental anastomoses for twin-twin transfusion syndrome. Prenat Diagn 2011; 31(2): 176-80.
[http://dx.doi.org/10.1002/pd.2673] [PMID: 21268037]
[68]
Bhorat I, Pillay M, Reddy T. Determination of the fetal myocardial performance index in women with gestational impaired glucose tolerance and to assess whether this parameter is a possible prognostic indicator of adverse fetal outcome. J Matern Fetal Neonatal Med 2018; 31(15): 2019-26.
[http://dx.doi.org/10.1080/14767058.2017.1334047] [PMID: 28532199]
[69]
Mohsin M, Sadqani S, Younus K, Hoodbhoy Z, Ashiqali S, Atiq M. Evaluation of cardiac function in fetuses of mothers with gestational diabetes. Cardiol Young 2019; 29(10): 1264-7.
[http://dx.doi.org/10.1017/S1047951119001884] [PMID: 31475665]
[70]
Bhorat I, Pillay M, Reddy T. Assessment of the fetal myocardial performance index in well-controlled gestational diabetics and to determine whether it is predictive of adverse perinatal outcome. Pediatr Cardiol 2019; 40(7): 1460-7.
[http://dx.doi.org/10.1007/s00246-019-02158-4] [PMID: 31324952]
[71]
Figueroa H, Silva MC, Kottmann C, et al. Fetal evaluation of the modified-myocardial performance index in pregnancies complicated by diabetes. Prenat Diagn 2012; 32(10): 943-8.
[http://dx.doi.org/10.1002/pd.3937] [PMID: 22825924]
[72]
Pilania R, Sikka P, Rohit MK, Suri V, Kumar P. Fetal Cardiodynamics by echocardiography in insulin dependent maternal diabetes and its correlation with pregnancy outcome. J Clin Diagn Res 2016; 10(7): QC01-4.
[http://dx.doi.org/10.7860/JCDR/2016/17993.8079] [PMID: 27630907]
[73]
Russell NE, Foley M, Kinsley BT, Firth RG, Coffey M, McAuliffe FM. Effect of pregestational diabetes mellitus on fetal cardiac function and structure. Am J Obstet Gynecol 2008; 199(3): 312.e1-7.
[http://dx.doi.org/10.1016/j.ajog.2008.07.016] [PMID: 18771996]
[74]
Sanhal CY, Daglar HK, Kara O, Uygur D, Yucel A. Assessment of fetal myocardial performance index in women with pregestational and gestational diabetes mellitus. J Obstet Gynaecol Res 2017; 43(1): 65-72.
[http://dx.doi.org/10.1111/jog.13174] [PMID: 27862741]
[75]
Turan S, Turan OM, Miller J, Harman C, Reece EA, Baschat AA. Decreased fetal cardiac performance in the first trimester correlates with hyperglycemia in pregestational maternal diabetes. Ultrasound Obstet Gynecol 2011; 38(3): 325-31.
[http://dx.doi.org/10.1002/uog.9035] [PMID: 21538641]
[76]
Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. Ultrasound Obstet Gynecol 2019; 54(5): 634-42.
[http://dx.doi.org/10.1002/uog.20187] [PMID: 30520203]
[77]
Bhorat IE, Bagratee JS, Pillay M, Reddy T. Use of the myocardial performance index as a prognostic indicator of adverse fetal outcome in poorly controlled gestational diabetic pregnancies. Prenat Diagn 2014; 34(13): 1301-6.
[http://dx.doi.org/10.1002/pd.4471] [PMID: 25088046]
[78]
Wong ML, Wong WH, Cheung YF. Fetal myocardial performance in pregnancies complicated by gestational impaired glucose tolerance. Ultrasound Obstet Gynecol 2007; 29(4): 395-400.
[http://dx.doi.org/10.1002/uog.3957] [PMID: 17330321]
[79]
Bui YK, Kipps AK, Brook MM, Moon-Grady AJ. Tissue Doppler is more sensitive and reproducible than spectral pulsed-wave Doppler for fetal right ventricle myocardial performance index determination in normal and diabetic pregnancies. J Am Soc Echocardiogr 2013; 26(5): 507-14.
[http://dx.doi.org/10.1016/j.echo.2013.02.006] [PMID: 23498900]
[80]
Balli S, Kibar AE, Ece I, Oflaz MB, Yilmaz O. Assessment of fetal cardiac function in mild preeclampsia. Pediatr Cardiol 2013; 34(7): 1674-9.
[http://dx.doi.org/10.1007/s00246-013-0702-8] [PMID: 23591803]
[81]
Crispi F, Comas M, Hernández-Andrade E, et al. Does pre-eclampsia influence fetal cardiovascular function in early-onset intrauterine growth restriction? Ultrasound Obstet Gynecol 2009; 34(6): 660-5.
[http://dx.doi.org/10.1002/uog.7450] [PMID: 19827117]
[82]
Api O, Emeksiz MB, Api M, Ugurel V, Unal O. Modified myocardial performance index for evaluation of fetal cardiac function in pre-eclampsia. Ultrasound Obstet Gynecol 2009; 33(1): 51-7.
[http://dx.doi.org/10.1002/uog.6272] [PMID: 19086000]
[83]
Youssef L, Miranda J, Paules C, et al. Fetal cardiac remodeling and dysfunction is associated with both preeclampsia and fetal growth restriction. Am J Obstet Gynecol 2020; 222(1): 79.e1-9.
[http://dx.doi.org/10.1016/j.ajog.2019.07.025] [PMID: 31336074]
[84]
Ozel A, Alici Davutoglu E, Eric Ozdemir M, Oztunc F, Madazli R. Assessment of fetal left ventricular modified myocardial performance index and its prognostic significance for adverse perinatal outcome in intrahepatic cholestasis of pregnancy. J Matern Fetal Neonatal Med 2018; 33(12): 2000-5.
[http://dx.doi.org/10.1080/14767058.2018.1535588] [PMID: 30309274]
[85]
Henry A, Welsh AW. Monitoring intrahepatic cholestasis of pregnancy using the fetal myocardial performance index: a cohort study. Ultrasound Obstet Gynecol 2015; 46(5): 571-8.
[http://dx.doi.org/10.1002/uog.14769] [PMID: 25516144]
[86]
Sanhal CY, Kara O, Yucel A. Can fetal left ventricular modified myocardial performance index predict adverse perinatal outcomes in intrahepatic cholestasis of pregnancy? J Matern Fetal Neonatal Med 2017; 30(8): 911-6.
[http://dx.doi.org/10.1080/14767058.2016.1190824] [PMID: 27186866]
[87]
Cruz-Lemini M, Crispi F, Van Mieghem T, et al. Risk of perinatal death in early-onset intrauterine growth restriction according to gestational age and cardiovascular doppler indices: A multicenter study. Fetal Diagn Ther 2012; 32(1-2): 116-22.
[http://dx.doi.org/10.1159/000333001] [PMID: 22777088]
[88]
Gapp-Born E, Sananes N, Guerra F, et al. Predictive value of cardiovascular parameters in stages 1 and 2 of twin-to-twin transfusion syndrome. Prenat Diagn 2014; 34(9): 908-14.
[http://dx.doi.org/10.1002/pd.4393] [PMID: 24760447]
[89]
Stirnemann JJ, Mougeot M, Proulx F, et al. Profiling fetal cardiac function in twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 2010; 35(1): 19-27.
[http://dx.doi.org/10.1002/uog.7488] [PMID: 20020467]
[90]
Delabaere A, Leduc F, Reboul Q, et al. Factors associated to early intrauterine fetal demise after laser for TTTS by preoperative fetal heart and doppler ultrasound. Prenat Diagn 2018; 38(7): 523-30.
[http://dx.doi.org/10.1002/pd.5280] [PMID: 29740835]
[91]
Eixarch E, Valsky D, Deprest J, et al. Preoperative prediction of the individualized risk of early fetal death after laser therapy in twin-to-twin transfusion syndrome. Prenat Diagn 2013; 33(11): 1033-8.
[http://dx.doi.org/10.1002/pd.4191] [PMID: 23813911]
[92]
Iwagaki S, Takahashi Y, Chiaki R, Asai K, Matsui M, Katsura D. Case of resuscitation from cardiac failure by intrauterine transfusion after single fetal death in monochorionic twin pregnancy. J Obstet Gynaecol Res 2019; 45(10): 2105-10.
[http://dx.doi.org/10.1111/jog.14082] [PMID: 31368163]
[93]
Aggarwal S, Natarajan G. Echocardiographic correlates of persistent pulmonary hypertension of the newborn. Early Hum Dev 2015; 91(4): 285-9.
[http://dx.doi.org/10.1016/j.earlhumdev.2015.02.008] [PMID: 25782054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy