Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Acute Myocardial Infarction and Cardiogenic Shock Interventional Approach to Management in the Cardiac Catheterization Laboratories

Author(s): Behnam N. Tehrani*, Abdulla A. Damluji and Wayne B. Batchelor

Volume 18, Issue 2, 2022

Published on: 18 January, 2022

Article ID: e251121198293 Pages: 16

DOI: 10.2174/1573403X17666211125090929

Price: $65

Abstract

Despite advances in early reperfusion and a technologic renaissance in the space of Mechanical Circulatory Support (MCS), Cardiogenic Shock (CS) remains the leading cause of in-hospital mortality following Acute Myocardial Infarction (AMI). Given the challenges inherent to conducting adequately powered randomized controlled trials in this time-sensitive, hemodynamically complex, and highly lethal syndrome, treatment recommendations have been derived from AMI patients without shock. In this review, we aimed to (1) examine the pathophysiology and the new classification system for CS; (2) provide a comprehensive, evidence-based review for best practices for interventional management of AMI-CS in the cardiac catheterization laboratory; and (3) highlight the concept of how frailty and geriatric syndromes can be integrated into the decision process and where medical futility lies in the spectrum of AMI-CS care. Management strategies in the cardiac catheterization laboratory for CS include optimal vascular access, periprocedural antithrombotic therapy, culprit lesion versus multi-vessel revascularization, selective utilization of hemodynamic MCS tailored to individual shock hemometabolic profiles, and management of cardiac arrest. Efforts to advance clinical evidence for patients with CS should be concentrated on (1) the coordination of multi-center registries; (2) development of pragmatic clinical trials designed to evaluate innovative therapies; (3) establishment of multidisciplinary care models that will inform quality care and improve clinical outcomes.

Keywords: Cardiogenic shock, acute myocardial infarction, cardiac catheterization laboratory, mechanical circulatory support, myocardial oxygen demand, congestion.

Graphical Abstract

[1]
McNamara RL, Kennedy KF, Cohen DJ, et al. Predicting in-hospital mortality in patients with acute myocardial infarction. J Am Coll Cardiol 2016; 68(6): 626-35.
[http://dx.doi.org/10.1016/j.jacc.2016.05.049] [PMID: 27491907]
[2]
Thiele H, Ohman EM, de Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J 2019; 40(32): 2671-83.
[http://dx.doi.org/10.1093/eurheartj/ehz363] [PMID: 31274157]
[3]
van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: A scientific statement from the American heart association. Circulation 2017; 136(16): e232-68.
[http://dx.doi.org/10.1161/CIR.0000000000000525] [PMID: 28923988]
[4]
Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 1999; 341(9): 625-34.
[http://dx.doi.org/10.1056/NEJM199908263410901] [PMID: 10460813]
[5]
Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS. Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: Experience with the Abiomed BVS system. J Card Surg 1999; 14(4): 288-93.
[http://dx.doi.org/10.1111/j.1540-8191.1999.tb00996.x] [PMID: 10874615]
[6]
Saxena A, Garan AR, Kapur NK, et al. Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support. Circulation 2020; 141(14): 1184-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043080] [PMID: 32250695]
[7]
Tehrani BN, Truesdell AG, Sherwood MW, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol 2019; 73(13): 1659-69.
[http://dx.doi.org/10.1016/j.jacc.2018.12.084] [PMID: 30947919]
[8]
Basir MB, Kapur NK, Patel K, et al. Improved Outcomes Associated with the use of shock protocols: Updates from the national cardiogenic shock initiative. Catheter Cardiovasc Interv 2019; 93(7): 1173-83.
[http://dx.doi.org/10.1002/ccd.28307] [PMID: 31025538]
[9]
Amin AP, Spertus JA, Curtis JP, et al. The Evolving Landscape of impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation 2020; 141(4): 273-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044007] [PMID: 31735078]
[10]
Dhruva SS, Ross JS, Mortazavi BJ, et al. Association of use of an intravascular microaxial left ventricular assist device vs. intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 2020; 323(8): 734-45.
[http://dx.doi.org/10.1001/jama.2020.0254] [PMID: 32040163]
[11]
Rab T, Wilson H. Public reporting of mortality after PCI in cardiac arrest and cardiogenic shock: An opinion from the Interventional Council and the Board of Governors of the American College of Cardiology. JACC Cardiovasc Interv 2016; 9(5): 496-8.
[http://dx.doi.org/10.1016/j.jcin.2015.12.006] [PMID: 26965939]
[12]
Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med 1999; 131(1): 47-59.
[http://dx.doi.org/10.7326/0003-4819-131-1-199907060-00010] [PMID: 10391815]
[13]
Hochman JS. Cardiogenic shock complicating acute myocardial infarction: Expanding the paradigm. Circulation 2003; 107(24): 2998-3002.
[http://dx.doi.org/10.1161/01.CIR.0000075927.67673.F2] [PMID: 12821585]
[14]
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 2020; 17(12): 773-89.
[http://dx.doi.org/10.1038/s41569-020-0403-y] [PMID: 32620851]
[15]
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357(11): 1121-35.
[http://dx.doi.org/10.1056/NEJMra071667] [PMID: 17855673]
[16]
Stone GW, Selker HP, Thiele H, et al. Relationship between infarct size and outcomes following primary PCI: Patient-level analysis from 10 randomized trials. J Am Coll Cardiol 2016; 67(14): 1674-83.
[http://dx.doi.org/10.1016/j.jacc.2016.01.069] [PMID: 27056772]
[17]
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013; 123(1): 92-100.
[http://dx.doi.org/10.1172/JCI62874] [PMID: 23281415]
[18]
Udesen NJ, Møller JE, Lindholm MG, et al. Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am Heart J 2019; 214: 60-8.
[http://dx.doi.org/10.1016/j.ahj.2019.04.019] [PMID: 31176289]
[19]
Kapur NK, Alkhouli MA, DeMartini TJ, et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment-elevation myocardial infarction. Circulation 2019; 139(3): 337-46.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038269] [PMID: 30586728]
[20]
Alexander JH, Reynolds HR, Stebbins AL, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA 2007; 297(15): 1657-66.
[http://dx.doi.org/10.1001/jama.297.15.joc70035] [PMID: 17387132]
[21]
Tousek P, Rokyta R, Tesarova J, et al. Routine upfront abciximab versus standard periprocedural therapy in patients undergoing primary percutaneous coronary intervention for cardiogenic shock: The PRAGUE-7 Study. An open randomized multicentre study. Acute Card Care 2011; 13(3): 116-22.
[http://dx.doi.org/10.3109/17482941.2011.567282] [PMID: 21526919]
[22]
Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367(14): 1287-96.
[http://dx.doi.org/10.1056/NEJMoa1208410] [PMID: 22920912]
[23]
Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017; 69(3): 278-87.
[http://dx.doi.org/10.1016/j.jacc.2016.10.022] [PMID: 27810347]
[24]
Thiele H, Akin I, Sandri M, et al. PCI Strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med 2017; 377(25): 2419-32.
[http://dx.doi.org/10.1056/NEJMoa1710261] [PMID: 29083953]
[25]
Lee JM, Rhee TM, Hahn JY, et al. Multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction with cardiogenic shock. J Am Coll Cardiol 2018; 71(8): 844-56.
[http://dx.doi.org/10.1016/j.jacc.2017.12.028] [PMID: 29471935]
[26]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) developed with the special contribution of the Heart failure association (HFA) of the ESC. Eur Heart J 2016; 37(27): 2129-200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[27]
Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 2003; 41(10): 1797-804.
[http://dx.doi.org/10.1016/S0735-1097(03)00309-7] [PMID: 12767667]
[28]
Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med 1976; 295(25): 1404-13.
[http://dx.doi.org/10.1056/NEJM197612162952505] [PMID: 790194]
[29]
Lala A, Guo Y, Xu J, et al. Right ventricular dysfunction in acute myocardial infarction complicated by cardiogenic shock: A hemodynamic analysis of the should we emergently revascularize occluded coronaries for cardiogenic shock (SHOCK) trial and registry. J Card Fail 2018; 24(3): 148-56.
[http://dx.doi.org/10.1016/j.cardfail.2017.10.009] [PMID: 29032225]
[30]
Jacobs AK, Leopold JA, Bates E, et al. Cardiogenic shock caused by right ventricular infarction: A report from the SHOCK registry. J Am Coll Cardiol 2003; 41(8): 1273-9.
[http://dx.doi.org/10.1016/S0735-1097(03)00120-7] [PMID: 12706920]
[31]
Morine K, Jorde L, Razavi A, et al. TCT-492 multimodality management of cardiogenic shock in the United States: Insights from the cardiogenic shock working group registry. J Am Coll Cardiol 2018; 72: B197.
[http://dx.doi.org/10.1016/j.jacc.2018.08.2168]
[32]
Menon V, Slater JN, White HD, Sleeper LA, Cocke T, Hochman JS. Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: Report of the SHOCK trial registry. Am J Med 2000; 108(5): 374-80.
[http://dx.doi.org/10.1016/S0002-9343(00)00310-7] [PMID: 10759093]
[33]
Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of cardiology (ACC), the American heart association (AHA), the society of critical care medicine (SCCM), and the society of thoracic surgeons (STS) in April 2019. Catheter Cardiovasc Interv 2019; 94(1): 29-37.
[http://dx.doi.org/10.1002/ccd.28329] [PMID: 31104355]
[34]
Jentzer JC, van Diepen S, Barsness GW, et al. Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol 2019; 74(17): 2117-28.
[http://dx.doi.org/10.1016/j.jacc.2019.07.077] [PMID: 31548097]
[35]
Schrage B, Dabboura S, Yan I, et al. Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheter Cardiovasc Interv 2020; 96(3): E213-9.
[http://dx.doi.org/10.1002/ccd.28707] [PMID: 31925996]
[36]
Wayangankar SA, Bangalore S, McCoy LA, et al. Temporal trends and outcomes of patients undergoing percutaneous coronary interventions for cardiogenic shock in the setting of acute myocardial infarction: A report from the CathPCI registry. JACC Cardiovasc Interv 2016; 9(4): 341-51.
[http://dx.doi.org/10.1016/j.jcin.2015.10.039] [PMID: 26803418]
[37]
Garcia S, Schmidt CW, Garberich R, et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003-2018. Catheter Cardiovasc Interv 2020.
[http://dx.doi.org/10.1002/ccd.28901] [PMID: 32294799]
[38]
Helgestad OKL, Josiassen J, Hassager C, et al. Temporal trends in incidence and patient characteristics in cardiogenic shock following acute myocardial infarction from 2010 to 2017: A Danish cohort study. Eur J Heart Fail 2019; 21(11): 1370-8.
[http://dx.doi.org/10.1002/ejhf.1566] [PMID: 31339222]
[39]
Damluji AA, Bandeen-Roche K, Berkower C, et al. Percutaneous coronary intervention in older patients with ST-segment elevation myocardial infarction and cardiogenic shock. J Am Coll Cardiol 2019; 73(15): 1890-900.
[http://dx.doi.org/10.1016/j.jacc.2019.01.055] [PMID: 30999991]
[40]
Helgestad OKL, Josiassen J, Hassager C, et al. Contemporary trends in use of mechanical circulatory support in patients with acute MI and cardiogenic shock. Open Heart 2020; 7(1): e001214.
[http://dx.doi.org/10.1136/openhrt-2019-001214] [PMID: 32201591]
[41]
Esposito ML, Kapur NK. Acute mechanical circulatory support for cardiogenic shock: The “door to support” time. F1000 Res 2017; 6: 737.
[http://dx.doi.org/10.12688/f1000research.11150.1] [PMID: 28580136]
[42]
Omer MA, Tyler JM, Henry TD, et al. Clinical characteristics and outcomes of STEMI patients with cardiogenic shock and cardiac arrest. JACC Cardiovasc Interv 2020; 13(10): 1211-9.
[http://dx.doi.org/10.1016/j.jcin.2020.04.004] [PMID: 32438992]
[43]
Vallabhajosyula S, Dunlay SM, Barsness GW, et al. Temporal trends, predictors, and outcomes of acute kidney injury and hemodialysis use in acute myocardial infarction-related cardiogenic shock. PLoS One 2019; 14(9): e0222894.
[http://dx.doi.org/10.1371/journal.pone.0222894] [PMID: 31532793]
[44]
Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal trends and outcomes of mechanical complications in patients with acute myocardial infarction. JACC Cardiovasc Interv 2019; 12(18): 1825-36.
[http://dx.doi.org/10.1016/j.jcin.2019.04.039] [PMID: 31537282]
[45]
Shaefi S, O’Gara B, Kociol RD, et al. Effect of cardiogenic shock hospital volume on mortality in patients with cardiogenic shock. J Am Heart Assoc 2015; 4(1): e001462.
[http://dx.doi.org/10.1161/JAHA.114.001462] [PMID: 25559014]
[46]
Kochar A, Al-Khalidi HR, Hansen SM, et al. Delays in primary percutaneous coronary intervention in ST-segment elevation myocardial infarction patients presenting with cardiogenic shock. JACC Cardiovasc Interv 2018; 11(18): 1824-33.
[http://dx.doi.org/10.1016/j.jcin.2018.06.030] [PMID: 30236355]
[47]
Scholz KH, Maier SKG, Maier LS, et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur Heart J 2018; 39(13): 1065-74.
[http://dx.doi.org/10.1093/eurheartj/ehy004] [PMID: 29452351]
[48]
Freund A, Jobs A, Lurz P, et al. Frequency and impact of bleeding on outcome in patients with cardiogenic shock. JACC Cardiovasc Interv 2020; 13(10): 1182-93.
[http://dx.doi.org/10.1016/j.jcin.2020.02.042] [PMID: 32438988]
[49]
Alviar CL, Miller PE, McAreavey D, et al. Diepen Sv, Solomon MA and Morrow DA. Positive pressure ventilation in the cardiac intensive care unit. J Am Coll Cardiol 2018; 72: 1532-53.
[http://dx.doi.org/10.1016/j.jacc.2018.06.074] [PMID: 30236315]
[50]
Henry TD, Tomey MI, Tamis-Holland JE, et al. Invasive management of acute myocardial infarction complicated by cardiogenic shock: A Scientific statement from the American heart association. Circulation 2021; 143(15): e815-29.
[http://dx.doi.org/10.1161/CIR.0000000000000959] [PMID: 33657830]
[51]
Vallabhajosyula S, Kashani K, Dunlay SM, et al. Acute respiratory failure and mechanical ventilation in cardiogenic shock complicating acute myocardial infarction in the USA, 2000-2014. Ann Intensive Care 2019; 9(1): 96.
[http://dx.doi.org/10.1186/s13613-019-0571-2] [PMID: 31463598]
[52]
Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 2011; 184(10): 1114-24.
[http://dx.doi.org/10.1164/rccm.201104-0662CI] [PMID: 21700906]
[53]
van Diepen S, Hochman JS, Stebbins A, Alviar CL, Alexander JH, Lopes RD. Association between delays in mechanical ventilation initiation and mortality in patients with refractory cardiogenic shock. JAMA Cardiol 2020; 5(8): 965-7.
[http://dx.doi.org/10.1001/jamacardio.2020.1274] [PMID: 32432650]
[54]
Ferrante G, Rao SV, Jüni P, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: A meta-analysis of randomized trials. JACC Cardiovasc Interv 2016; 9(14): 1419-34.
[http://dx.doi.org/10.1016/j.jcin.2016.04.014] [PMID: 27372195]
[55]
Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for coronary stent implantation. Cathet Cardiovasc Diagn 1993; 30(2): 173-8.
[http://dx.doi.org/10.1002/ccd.1810300220] [PMID: 8221875]
[56]
Valle JA, Kaltenbach LA, Bradley SM, et al. Variation in the adoption of transradial access for ST-segment elevation myocardial infarction: Insights from the NCDR CathPCI registry. JACC Cardiovasc Interv 2017; 10(22): 2242-54.
[http://dx.doi.org/10.1016/j.jcin.2017.07.020] [PMID: 29102582]
[57]
Mason PJ, Shah B, Tamis-Holland JE, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: A scientific statement from the American heart association. Circ Cardiovasc Interv 2018; 11(9): e000035.
[http://dx.doi.org/10.1161/HCV.0000000000000035] [PMID: 30354598]
[58]
Corcos T. Distal radial access for coronary angiography and percutaneous coronary intervention: A state-of-the-art review. Catheter Cardiovasc Interv 2019; 93(4): 639-44.
[http://dx.doi.org/10.1002/ccd.28016] [PMID: 30536709]
[59]
Kiemeneij F. Left distal transradial access in the anatomical snuffbox for coronary angiography (ldTRA) and interventions (ldTRI). EuroIntervention 2017; 13(7): 851-7.
[http://dx.doi.org/10.4244/EIJ-D-17-00079] [PMID: 28506941]
[60]
Sgueglia GA, Di Giorgio A, Gaspardone A, Babunashvili A. Anatomic basis and physiological rationale of distal radial artery access for percutaneous coronary and endovascular procedures. JACC Cardiovasc Interv 2018; 11(20): 2113-9.
[http://dx.doi.org/10.1016/j.jcin.2018.04.045] [PMID: 30336816]
[61]
Tehrani BN, Damluji AA, Sherwood MW, et al. Transradial access in acute myocardial infarction complicated by cardiogenic shock: Stratified analysis by shock severity. Catheter Cardiovasc Interv 2021; 97(7): 1354-66.
[http://dx.doi.org/10.1002/ccd.29098] [PMID: 32744434]
[62]
Mamas MA, Anderson SG, Ratib K, et al. Arterial access site utilization in cardiogenic shock in the United Kingdom: Is radial access feasible? Am Heart J 2014; 167(6): 900-8.e1.
[http://dx.doi.org/10.1016/j.ahj.2014.03.007] [PMID: 24890541]
[63]
Kopin D, Seth M, Sukul D, et al. Primary and secondary vascular access site complications associated with percutaneous coronary intervention: Insights from the BMC2 registry. JACC Cardiovasc Interv 2019; 12(22): 2247-56.
[http://dx.doi.org/10.1016/j.jcin.2019.05.051] [PMID: 31473240]
[64]
Abdelaal E, Brousseau-Provencher C, Montminy S, et al. Risk score, causes, and clinical impact of failure of transradial approach for percutaneous coronary interventions. JACC Cardiovasc Interv 2013; 6(11): 1129-37.
[http://dx.doi.org/10.1016/j.jcin.2013.05.019] [PMID: 24139933]
[65]
Le May M, Wells G, So D, et al. Safety and efficacy of femoral access vs. radial access in ST-segment elevation myocardial infarction: The SAFARI-STEMI randomized clinical trial. JAMA Cardiol 2020; 5(2): 126-34.
[http://dx.doi.org/10.1001/jamacardio.2019.4852] [PMID: 31895439]
[66]
Seto AH, Roberts JS, Abu-Fadel MS, et al. Real-time ultrasound guidance facilitates transradial access: RAUST (Radial Artery access with Ultrasound Trial). JACC Cardiovasc Interv 2015; 8(2): 283-91.
[http://dx.doi.org/10.1016/j.jcin.2014.05.036] [PMID: 25596790]
[67]
Soverow J, Oyama J, Lee MS. Adoption of routine ultrasound guidance for femoral arterial access for cardiac catheterization. J Invasive Cardiol 2016; 28(8): 311-4.
[PMID: 27466273]
[68]
Sandoval Y, Burke MN, Lobo AS, et al. Contemporary arterial access in the cardiac catheterization laboratory. JACC Cardiovasc Interv 2017; 10(22): 2233-41.
[http://dx.doi.org/10.1016/j.jcin.2017.08.058] [PMID: 29169493]
[69]
Shroff AR, Gulati R, Drachman DE, et al. SCAI expert consensus statement update on best practices for transradial angiography and intervention. Catheter Cardiovasc Interv 2020; 95(2): 245-52.
[http://dx.doi.org/10.1002/ccd.28672] [PMID: 31880380]
[70]
Dahal K, Rijal J, Lee J, Korr KS, Azrin M. Transulnar versus transradial access for coronary angiography or percutaneous coronary intervention: A meta-analysis of randomized controlled trials. Catheter Cardiovasc Interv 2016; 87(5): 857-65.
[http://dx.doi.org/10.1002/ccd.26221] [PMID: 26332022]
[71]
Patrono C, Morais J, Baigent C, et al. Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J Am Coll Cardiol 2017; 70(14): 1760-76.
[http://dx.doi.org/10.1016/j.jacc.2017.08.037] [PMID: 28958334]
[72]
Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361(11): 1045-57.
[http://dx.doi.org/10.1056/NEJMoa0904327] [PMID: 19717846]
[73]
Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357(20): 2001-15.
[http://dx.doi.org/10.1056/NEJMoa0706482] [PMID: 17982182]
[74]
Iqbal J, Sumaya W, Tatman V, et al. Incidence and predictors of stent thrombosis: A single-centre study of 5,833 consecutive patients undergoing coronary artery stenting. EuroIntervention 2013; 9(1): 62-9.
[http://dx.doi.org/10.4244/EIJV9I1A10] [PMID: 23685296]
[75]
Gorog DA, Price S, Sibbing D, et al. Antithrombotic therapy in patients with acute coronary syndrome complicated by cardiogenic shock or out-of-hospital cardiac arrest: A joint position paper from the European society of cardiology (ESC) working group on thrombosis, in association with the acute cardiovascular care association (ACCA) and European association of percutaneous cardiovascular interventions (EAPCI). Eur Heart J Cardiovasc Pharmacother 2021; 7(2): 125-40.
[http://dx.doi.org/10.1093/ehjcvp/pvaa009] [PMID: 32049278]
[76]
Marquis-Gravel G, Zeitouni M, Kochar A, et al. Technical consideration in acute myocardial infarction with cardiogenic shock: A review of antithrombotic and PCI therapies. Catheter Cardiovasc Interv 2020; 95(5): 924-31.
[http://dx.doi.org/10.1002/ccd.28455] [PMID: 31435999]
[77]
Rollini F, Franchi F, Hu J, et al. Crushed prasugrel tablets in patients with STEMI undergoing primary percutaneous coronary intervention: The CRUSH Study. J Am Coll Cardiol 2016; 67(17): 1994-2004.
[http://dx.doi.org/10.1016/j.jacc.2016.02.045] [PMID: 27012781]
[78]
Parodi G, Xanthopoulou I, Bellandi B, et al. Ticagrelor crushed tablets administration in STEMI patients: the MOJITO study. J Am Coll Cardiol 2015; 65(5): 511-2.
[http://dx.doi.org/10.1016/j.jacc.2014.08.056] [PMID: 25660931]
[79]
Damluji AA, Otalvaro L, Cohen MG. Anticoagulation for percutaneous coronary intervention: a contemporary review. Curr Opin Cardiol 2015; 30(4): 311-8.
[http://dx.doi.org/10.1097/HCO.0000000000000182] [PMID: 26049375]
[80]
Orban M, Mayer K, Morath T, et al. Prasugrel vs. clopidogrel in cardiogenic shock patients undergoing primary PCI for acute myocardial infarction. Results of the ISAR-SHOCK registry. Thromb Haemost 2014; 112(6): 1190-7.
[http://dx.doi.org/10.1160/TH14-06-0489] [PMID: 25183544]
[81]
Bhatt DL, Stone GW, Mahaffey KW, et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med 2013; 368(14): 1303-13.
[http://dx.doi.org/10.1056/NEJMoa1300815] [PMID: 23473369]
[82]
Majmundar M, Kansara T, Jain A, et al. Meta-analysis of the role of cangrelor for patients undergoing percutaneous coronary intervention. Am J Cardiol 2019; 123(7): 1069-75.
[http://dx.doi.org/10.1016/j.amjcard.2018.12.039] [PMID: 30654930]
[83]
Prüller F, Bis L, Milke OL, et al. Cangrelor induces more potent platelet inhibition without increasing bleeding in resuscitated patients. J Clin Med 2018; 7(11): 442.
[http://dx.doi.org/10.3390/jcm7110442] [PMID: 30445678]
[84]
Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 2019; 40(2): 87-165.
[http://dx.doi.org/10.1093/eurheartj/ehy394] [PMID: 30165437]
[85]
Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: An update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the society for cardiovascular angiography and interventions. Catheter Cardiovasc Interv 2016; 87(6): 1001-19.
[http://dx.doi.org/10.1002/ccd.26325] [PMID: 26489034]
[86]
Bonello L, De Labriolle A, Roy P, et al. Bivalirudin with provisional glycoprotein IIb/IIIa inhibitors in patients undergoing primary angioplasty in the setting of cardiogenic shock. Am J Cardiol 2008; 102(3): 287-91.
[http://dx.doi.org/10.1016/j.amjcard.2008.03.052] [PMID: 18638588]
[87]
Pourdjabbar A, Hibbert B, Maze R, et al. Bivalirudin for primary percutaneous coronary interventions in patients with cardiogenic shock: Outcome assessment in the capital stemi registry. Can J Cardiol 2014; 30: S68.
[http://dx.doi.org/10.1016/j.cjca.2014.07.045]
[88]
Chioncel O, Parissis J, Mebazaa A, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock - a position statement from the heart failure association of the European society of cardiology. European Journal of Heart Failure 2020; 22(8): 1315-41.
[http://dx.doi.org/10.1002/ejhf.1922]
[89]
Webb JG, Lowe AM, Sanborn TA, et al. Percutaneous coronary intervention for cardiogenic shock in the SHOCK trial. J Am Coll Cardiol 2003; 42(8): 1380-6.
[http://dx.doi.org/10.1016/S0735-1097(03)01050-7] [PMID: 14563578]
[90]
Atti V, Gwon Y, Narayanan MA, et al. Multivessel versus culprit-only revascularization in STEMI and multivessel coronary artery disease: Meta-analysis of randomized trials. Meta-analysis of randomized trials 2020; 13(13): 1571-82.
[http://dx.doi.org/10.1016/j.jcin.2020.04.055] [PMID: 32646699]
[91]
Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J Am Heart Assoc 2014; 3(1): e000590.
[http://dx.doi.org/10.1161/JAHA.113.000590] [PMID: 24419737]
[92]
Mehta RH, Lopes RD, Ballotta A, et al. Percutaneous coronary intervention or coronary artery bypass surgery for cardiogenic shock and multivessel coronary artery disease? Am Heart J 2010; 159(1): 141-7.
[http://dx.doi.org/10.1016/j.ahj.2009.10.035] [PMID: 20102880]
[93]
White HD, Assmann SF, Sanborn TA, et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: Results from the should we emergently revascularize occluded coronaries for cardiogenic shock (SHOCK) trial. Circulation 2005; 112(13): 1992-2001.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.540948] [PMID: 16186436]
[94]
Sun LY, Gaudino M, Chen RJ, Bader Eddeen A, Ruel M. Long-term outcomes in patients with severely reduced left ventricular ejection fraction undergoing percutaneous coronary intervention vs. coronary artery bypass grafting. JAMA Cardiol 2020; 5(6): 631-41.
[http://dx.doi.org/10.1001/jamacardio.2020.0239] [PMID: 32267465]
[95]
Acharya D, Gulack BC, Loyaga-Rendon RY, et al. Clinical characteristics and outcomes of patients with myocardial infarction and cardiogenic shock undergoing coronary artery bypass surgery: Data from the society of thoracic surgeons national database. Ann Thorac Surg 2016; 101(2): 558-66.
[http://dx.doi.org/10.1016/j.athoracsur.2015.10.051] [PMID: 26718859]
[96]
Cavender MA, Milford-Beland S, Roe MT, Peterson ED, Weintraub WS, Rao SV. Prevalence, predictors, and in-hospital outcomes of non-infarct artery intervention during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction (from the National Cardiovascular Data Registry). Am J Cardiol 2009; 104(4): 507-13.
[http://dx.doi.org/10.1016/j.amjcard.2009.04.016] [PMID: 19660603]
[97]
van der Schaaf RJ, Claessen BE, Vis MM, et al. Effect of multivessel coronary disease with or without concurrent chronic total occlusion on one-year mortality in patients treated with primary percutaneous coronary intervention for cardiogenic shock. Am J Cardiol 2010; 105(7): 955-9.
[http://dx.doi.org/10.1016/j.amjcard.2009.11.014] [PMID: 20346312]
[98]
Bauer T, Zeymer U, Hochadel M, et al. Use and outcomes of multivessel percutaneous coronary intervention in patients with acute myocardial infarction complicated by cardiogenic shock (from the EHS-PCI Registry). Am J Cardiol 2012; 109(7): 941-6.
[http://dx.doi.org/10.1016/j.amjcard.2011.11.020] [PMID: 22236463]
[99]
Mylotte D, Morice MC, Eltchaninoff H, et al. Primary percutaneous coronary intervention in patients with acute myocardial infarction, resuscitated cardiac arrest, and cardiogenic shock: The role of primary multivessel revascularization. JACC Cardiovasc Interv 2013; 6(2): 115-25.
[http://dx.doi.org/10.1016/j.jcin.2012.10.006] [PMID: 23352816]
[100]
Cavender MA, Rajeswaran J, DiPaola L, et al. Outcomes of culprit versus multivessel PCI in patients with multivessel coronary artery disease presenting with ST-elevation myocardial infarction complicated by shock. J Invasive Cardiol 2013; 25(5): 218-24.
[PMID: 23645045]
[101]
Yang JH, Hahn JY, Song PS, et al. Percutaneous coronary intervention for nonculprit vessels in cardiogenic shock complicating ST-segment elevation acute myocardial infarction. Crit Care Med 2014; 42(1): 17-25.
[http://dx.doi.org/10.1097/CCM.0b013e3182a2701d] [PMID: 24105454]
[102]
Zeymer U, Werdan K, Schuler G, et al. Editor’s choice- impact of immediate multivessel percutaneous coronary intervention versus culprit lesion intervention on 1-year outcome in patients with acute myocardial infarction complicated by cardiogenic shock: Results of the randomised IABP-SHOCK II trial. Eur Heart J Acute Cardiovasc Care 2017; 6(7): 601-9.
[http://dx.doi.org/10.1177/2048872616668977] [PMID: 27655918]
[103]
McNeice A, Nadra IJ, Robinson SD, et al. The prognostic impact of revascularization strategy in acute myocardial infarction and cardiogenic shock: Insights from the British Columbia cardiac registry. Catheter Cardiovasc Interv 2018; 92(5): E356-67.
[http://dx.doi.org/10.1002/ccd.27648] [PMID: 29698573]
[104]
Lemor A, Basir MB, Patel K, et al. Multivessel versus culprit-vessel percutaneous coronary intervention in cardiogenic shock. JACC Cardiovasc Interv 2020; 13(10): 1171-8.
[http://dx.doi.org/10.1016/j.jcin.2020.03.012] [PMID: 32360256]
[105]
Thiele H, Akin I, Sandri M, et al. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med 2018; 379(18): 1699-710.
[http://dx.doi.org/10.1056/NEJMoa1808788] [PMID: 30145971]
[106]
Burke DA, Kundi H, Almonacid A, et al. The value of left ventricular support in patients with reduced left ventricular function undergoing extensive revascularization: An analysis from the PROTECT-II randomized trial. JACC Cardiovasc Interv 2019; 12(19): 1985-7.
[http://dx.doi.org/10.1016/j.jcin.2019.07.050] [PMID: 31601396]
[107]
Henriques JP, Hoebers LP, Råmunddal T, et al. Percutaneous intervention for concurrent chronic total occlusions in patients with STEMI: The EXPLORE Trial. J Am Coll Cardiol 2016; 68(15): 1622-32.
[http://dx.doi.org/10.1016/j.jacc.2016.07.744] [PMID: 27712774]
[108]
Patel MR, Calhoon JH, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2016 appropriate use criteria for coronary revascularization in patients with acute coronary syndromes: A report of the American college of cardiology appropriate use criteria task force, American association for thoracic surgery, American heart association, american society of echocardiography, American society of nuclear cardiology, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and the society of thoracic surgeons. J Am Coll Cardiol 2017; 69(5): 570-91.
[http://dx.doi.org/10.1016/j.jacc.2016.10.034] [PMID: 28012615]
[109]
Torrado J, Buckley L, Durán A, et al. Restenosis, stent thrombosis, and bleeding complications: Navigating between scylla and charybdis. J Am Coll Cardiol 2018; 71(15): 1676-95.
[http://dx.doi.org/10.1016/j.jacc.2018.02.023] [PMID: 29650125]
[110]
Chen DY, Mao CT, Tsai ML, et al. Clinical outcomes of drug-eluting stents versus bare-metal stents in patients with cardiogenic shock complicating acute myocardial infarction. Int J Cardiol 2016; 215: 98-104.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.014] [PMID: 27111168]
[111]
Ledwoch J, Fuernau G, Desch S, et al. Drug-eluting stents versus bare-metal stents in acute myocardial infarction with cardiogenic shock. Heart 2017; 103(15): 1177-84.
[http://dx.doi.org/10.1136/heartjnl-2016-310403] [PMID: 28174212]
[112]
Kastrati A, Dibra A, Mehilli J, et al. Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation 2006; 113(19): 2293-300.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.601823] [PMID: 16682614]
[113]
Mehran R, Baber U, Sharma SK, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med 2019; 381(21): 2032-42.
[http://dx.doi.org/10.1056/NEJMoa1908419] [PMID: 31556978]
[114]
Shah M, Patnaik S, Patel B, et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin Res Cardiol 2018; 107(4): 287-303.
[http://dx.doi.org/10.1007/s00392-017-1182-2] [PMID: 29134345]
[115]
Panhwar MS, Gupta T, Karim A, et al. Trends in the use of short-term mechanical circulatory support in the United States - An analysis of the 2012 - 2015 national inpatient sample. Struct Heart 2019; 3: 499-506.
[http://dx.doi.org/10.1080/24748706.2019.1669234]
[116]
Thiele H, Jobs A, Ouweneel DM, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: A systematic review and collaborative meta-analysis of randomized trials. Eur Heart J 2017; 38(47): 3523-31.
[http://dx.doi.org/10.1093/eurheartj/ehx363] [PMID: 29020341]
[117]
Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: Endorsed by the American heart assocation, the cardiological society of India, and sociedad Latino Americana de cardiologia intervencion; affirmation of value by the Canadian association of interventional cardiology-association Canadienne de cardiologie d’intervention. J Am Coll Cardiol 2015; 65(19): e7-e26.
[http://dx.doi.org/10.1016/j.jacc.2015.03.036] [PMID: 25861963]
[118]
Riley RF, Henry TD, Mahmud E, et al. SCAI position statement on optimal percutaneous coronary interventional therapy for complex coronary artery disease. Catheter Cardiovasc Interv 2020; 96(2): 346-62.
[http://dx.doi.org/10.1002/ccd.28994] [PMID: 32406991]
[119]
Narang N, Chung B, Nguyen A, et al. Discordance between clinical assessment and invasive hemodynamics in patients with advanced heart failure. J Card Fail 2020; 26(2): 128-35.
[http://dx.doi.org/10.1016/j.cardfail.2019.08.004] [PMID: 31442494]
[120]
Taleb I, Koliopoulou AG, Tandar A, et al. Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: A proof of concept. Circulation 2019; 140(1): 98-100.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040654] [PMID: 31549877]
[121]
Nalluri N, Patel NJ, Atti V, Kumar V, Basir MB, O’Neill WW. Temporal trends in utilization of right-sided heart catheterization among percutaneous ventricular assist device recipients in acute myocardial infarction complicated by cardiogenic shock. Am J Cardiol 2018; 122(12): 2014-7.
[http://dx.doi.org/10.1016/j.amjcard.2018.08.065] [PMID: 30297267]
[122]
Rab T, Ratanapo S, Kern KB, et al. Cardiac shock care centers: JACC review topic of the week. J Am Coll Cardiol 2018; 72(16): 1972-80.
[http://dx.doi.org/10.1016/j.jacc.2018.07.074] [PMID: 30309475]
[123]
Prondzinsky R, Unverzagt S, Russ M, et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: The prospective, randomized IABP shock trial. Shock 2012; 37(4): 378-84.
[http://dx.doi.org/10.1097/SHK.0b013e31824a67af] [PMID: 22266974]
[124]
Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: Long-Term 6-Year outcome of the randomized IABP-SHOCK II Trial. Circulation 2019; 139(3): 395-403.
[PMID: 30586721]
[125]
Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 2008; 52(19): 1584-8.
[http://dx.doi.org/10.1016/j.jacc.2008.05.065] [PMID: 19007597]
[126]
Schäfer A, Werner N, Burkhoff D, et al. Influence of timing and predicted risk on mortality in impella-treated infarct-related cardiogenic shock patients. Front Cardiovasc Med 2020; 7: 74.
[http://dx.doi.org/10.3389/fcvm.2020.00074] [PMID: 32478095]
[127]
Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol 2015; 66(23): 2663-74.
[http://dx.doi.org/10.1016/j.jacc.2015.10.017] [PMID: 26670067]
[128]
Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152(3): 469.e1-8.
[http://dx.doi.org/10.1016/j.ahj.2006.05.031] [PMID: 16923414]
[129]
Guglin M, Zucker MJ, Bazan VM, et al. Venoarterial ECMO for adults: jacc scientific expert panel. J Am Coll Cardiol 2019; 73(6): 698-716.
[http://dx.doi.org/10.1016/j.jacc.2018.11.038] [PMID: 30765037]
[130]
Cogswell R, John R, Estep JD, et al. An early investigation of outcomes with the new 2018 donor heart allocation system in the United States. J Heart Lung Transplant 2020; 39(1): 1-4.
[http://dx.doi.org/10.1016/j.healun.2019.11.002] [PMID: 31810767]
[131]
Danial P, Hajage D, Nguyen LS, et al. Percutaneous versus surgical femoro-femoral veno-arterial ECMO: A propensity score matched study. Intensive Care Med 2018; 44(12): 2153-61.
[http://dx.doi.org/10.1007/s00134-018-5442-z] [PMID: 30430207]
[132]
Cheng R, Hachamovitch R, Kittleson M, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg 2014; 97(2): 610-6.
[http://dx.doi.org/10.1016/j.athoracsur.2013.09.008] [PMID: 24210621]
[133]
Schmidt M, Burrell A, Roberts L, et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J 2015; 36(33): 2246-56.
[http://dx.doi.org/10.1093/eurheartj/ehv194] [PMID: 26033984]
[134]
Peigh G, Cavarocchi N, Keith SW, Hirose H. Simple new risk score model for adult cardiac extracorporeal membrane oxygenation: Simple cardiac ECMO score. J Surg Res 2015; 198(2): 273-9.
[http://dx.doi.org/10.1016/j.jss.2015.04.044] [PMID: 25990694]
[135]
Anderson MB, Goldstein J, Milano C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the impella RP device. J Heart Lung Transplant 2015; 34(12): 1549-60.
[http://dx.doi.org/10.1016/j.healun.2015.08.018] [PMID: 26681124]
[136]
United States food and drug administration. Post-approval studies (PAS): impella RP-RWE eval and reporting. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma_pas.cfm?t_id=615919&c_id=4557
[137]
Jentzer JC, Henry TD, Barsness GW, Menon V, Baran DA, Van Diepen S. Influence of cardiac arrest and SCAI shock stage on cardiac intensive care unit mortality. Catheter Cardiovasc Interv 2020; 96(7): 1350-9.
[http://dx.doi.org/10.1002/ccd.28854] [PMID: 32180344]
[138]
Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-Segment elevation. N Engl J Med 2019; 380(15): 1397-407.
[http://dx.doi.org/10.1056/NEJMoa1816897] [PMID: 30883057]
[139]
Levy B, Clere-Jehl R, Legras A, et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018; 72(2): 173-82.
[http://dx.doi.org/10.1016/j.jacc.2018.04.051] [PMID: 29976291]
[140]
Maupain C, Bougouin W, Lamhaut L, et al. The CAHP (cardiac arrest hospital prognosis) score: A tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J 2016; 37(42): 3222-8.
[http://dx.doi.org/10.1093/eurheartj/ehv556] [PMID: 26497161]
[141]
Bartos JA, Grunau B, Carlson C, et al. Improved survival with extracorporeal cardiopulmonary resuscitation despite progressive metabolic derangement associated with prolonged resuscitation. Circulation 2020; 141(11): 877-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042173] [PMID: 31896278]
[142]
Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet 2020; 396(10245): 199-212.
[http://dx.doi.org/10.1016/S0140-6736(20)31047-3] [PMID: 32682486]
[143]
Donnino MW, Andersen LW, Berg KM, et al. Temperature management after cardiac arrest: An advisory statement by the advanced life support task force of the international liaison committee on resuscitation and the American heart association emergency cardiovascular care committee and the council on cardiopulmonary, critical care, perioperative and resuscitation. Circulation 2015; 132(25): 2448-56.
[http://dx.doi.org/10.1161/CIR.0000000000000313] [PMID: 26434495]
[144]
Damluji AA, Forman DE, van Diepen S, et al. Older adults in the cardiac intensive care unit: Factoring geriatric syndromes in the management, prognosis, and process of care: A scientific statement from the American heart association. Circulation 2020; 141(2): e6-e32.
[http://dx.doi.org/10.1161/CIR.0000000000000741] [PMID: 31813278]
[145]
Damluji AA, Huang J, Bandeen-Roche K, et al. Frailty among older adults with acute myocardial infarction and outcomes from percutaneous coronary interventions. J Am Heart Assoc 2019; 8(17): e013686.
[http://dx.doi.org/10.1161/JAHA.119.013686] [PMID: 31475601]
[146]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed) 2016; 69(12): 1167.
[http://dx.doi.org/10.1016/j.rec.2016.11.005] [PMID: 27894487]
[147]
Kapur NK, Esposito ML, Bader Y, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation 2017; 136(3): 314-26.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025290] [PMID: 28716832]
[148]
Korabathina R, Heffernan KS, Paruchuri V, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv 2012; 80(4): 593-600.
[http://dx.doi.org/10.1002/ccd.23309] [PMID: 21954053]
[149]
Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail 2016; 22(2): 110-6.
[http://dx.doi.org/10.1016/j.cardfail.2015.10.019] [PMID: 26564619]
[150]
Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 2016; 35(1): 67-73.
[http://dx.doi.org/10.1016/j.healun.2015.06.009] [PMID: 26212656]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy