Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

TMEM16A Protein: Calcium-Binding Site and its Activation Mechanism

Author(s): Wanying Ji, Donghong Shi, Sai Shi, Xiao Yang, Yafei Chen, Hailong An and Chunli Pang*

Volume 28, Issue 12, 2021

Published on: 03 December, 2021

Page: [1338 - 1348] Pages: 11

DOI: 10.2174/0929866528666211105112131

Price: $65

Abstract

Abstract: TMEM16A mediates the calcium-activated transmembrane flow of chloride ions and a variety of physiological functions. The binding of cytoplasmic calcium ions of TMEM16A and the consequent conformational changes of it are the key issues to explore the structure-function relationship. In recent years, researchers have explored this issue through electrophysiological experiments, structure resolving, molecular dynamic simulation, and other methods. The structures of TMEM16 family members determined by cryo-Electron microscopy (cryo-EM) and X-ray crystallization provide the primary basis for the investigation of the molecular mechanism of TMEM16A. However, the binding and activation mechanism of calcium ions in TMEM16A are still unclear and controversial. This mini-review discusses four Ca2+ sensing sites of TMEM16A and analyzes activation properties of TMEM16A by them, which will help understand the structure-function relationship of TMEM16A and throw light on the molecular design targeting the TMEM16A channel.

Keywords: TMEM16A, CaCCs, Ca2+-binding site, stereostructure, structure-function relationship, activation mechanism.

Graphical Abstract

[1]
Boese, S.H.; Aziz, O.; Simmons, N.L.; Gray, M.A. Kinetics and regulation of a Ca2+-activated Cl- conductance in mouse renal inner medullary collecting duct cells. Am. J. Physiol. Renal Physiol., 2004, 286(4), F682-F692.
[http://dx.doi.org/10.1152/ajprenal.00123.2003] [PMID: 14678946]
[2]
Huang, F.; Rock, J.R.; Harfe, B.D.; Cheng, T.; Huang, X.; Jan, Y.N.; Jan, L.Y. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc. Natl. Acad. Sci. USA, 2009, 106(50), 21413-21418.
[http://dx.doi.org/10.1073/pnas.0911935106] [PMID: 19965375]
[3]
Oh, U.; Jung, J. Cellular functions of TMEM16/anoctamin. Pflugers Arch., 2016, 468(3), 443-453.
[http://dx.doi.org/10.1007/s00424-016-1790-0] [PMID: 26811235]
[4]
Hartzell, C.; Putzier, I.; Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol., 2005, 67, 719-758.
[http://dx.doi.org/10.1146/annurev.physiol.67.032003.154341] [PMID: 15709976]
[5]
Barish, M.E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol., 1983, 342, 309-325.
[http://dx.doi.org/10.1113/jphysiol.1983.sp014852] [PMID: 6313909]
[6]
Miledi, R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc. R. Soc. Lond., B, 1982, 215(1201), 491-497.
[http://dx.doi.org/10.1098/rspb.1982.0056] [PMID: 6127718]
[7]
Caputo, A.; Caci, E.; Ferrera, L.; Pedemonte, N.; Barsanti, C.; Sondo, E.; Pfeffer, U.; Ravazzolo, R.; Zegarra-Moran, O.; Galietta, L.J. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science, 2008, 322(5901), 590-594.
[http://dx.doi.org/10.1126/science.1163518] [PMID: 18772398]
[8]
Schroeder, B.C.; Cheng, T.; Jan, Y.N.; Jan, L.Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell, 2008, 134(6), 1019-1029.
[http://dx.doi.org/10.1016/j.cell.2008.09.003] [PMID: 18805094]
[9]
Yang, Y.D.; Cho, H.; Koo, J.Y.; Tak, M.H.; Cho, Y.; Shim, W.S.; Park, S.P.; Lee, J.; Lee, B.; Kim, B.M.; Raouf, R.; Shin, Y.K.; Oh, U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature, 2008, 455(7217), 1210-1215.
[http://dx.doi.org/10.1038/nature07313] [PMID: 18724360]
[10]
Stöhr, H.; Heisig, J.B.; Benz, P.M.; Schöberl, S.; Milenkovic, V.M.; Strauss, O.; Aartsen, W.M.; Wijnholds, J.; Weber, B.H.; Schulz, H.L. TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J. Neurosci., 2009, 29(21), 6809-6818.
[http://dx.doi.org/10.1523/JNEUROSCI.5546-08.2009] [PMID: 19474308]
[11]
Pifferi, S.; Dibattista, M.; Menini, A. TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch., 2009, 458(6), 1023-1038.
[http://dx.doi.org/10.1007/s00424-009-0684-9] [PMID: 19475416]
[12]
Picollo, A.; Malvezzi, M.; Accardi, A. TMEM16 proteins: unknown structure and confusing functions. J. Mol. Biol., 2015, 427(1), 94-105.
[http://dx.doi.org/10.1016/j.jmb.2014.09.028] [PMID: 25451786]
[13]
Falzone, M.E.; Malvezzi, M.; Lee, B.C.; Accardi, A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J. Gen. Physiol., 2018, 150(7), 933-947.
[http://dx.doi.org/10.1085/jgp.201711957] [PMID: 29915161]
[14]
Boccaccio, A.; Di Zanni, E.; Gradogna, A.; Scholz-Starke, J. Lifting the veils on TMEM16E function. Channels (Austin), 2019, 13(1), 33-35.
[http://dx.doi.org/10.1080/19336950.2018.1557470] [PMID: 30672373]
[15]
Schreiber, R.; Ousingsawat, J.; Kunzelmann, K. Targeting of intracellular TMEM16 proteins to the plasma membrane and activation by purinergic signaling. Int. J. Mol. Sci., 2020, 21(11), E4065.
[http://dx.doi.org/10.3390/ijms21114065] [PMID: 32517157]
[16]
Brunner, J.D.; Schenck, S.; Dutzler, R. Structural basis for phospholipid scrambling in the TMEM16 family. Curr. Opin. Struct. Biol., 2016, 39, 61-70.
[http://dx.doi.org/10.1016/j.sbi.2016.05.020] [PMID: 27295354]
[17]
Suzuki, J.; Umeda, M.; Sims, P.J.; Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature, 2010, 468(7325), 834-838.
[http://dx.doi.org/10.1038/nature09583] [PMID: 21107324]
[18]
Yang, H.; Kim, A.; David, T.; Palmer, D.; Jin, T.; Tien, J.; Huang, F.; Cheng, T.; Coughlin, S.R.; Jan, Y.N.; Jan, L.Y. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell, 2012, 151(1), 111-122.
[http://dx.doi.org/10.1016/j.cell.2012.07.036] [PMID: 23021219]
[19]
Cabrita, I.; Benedetto, R.; Wanitchakool, P.; Lerias, J.; Centeio, R.; Ousingsawat, J.; Schreiber, R.; Kunzelmann, K. TMEM16A mediates mucus production in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 50-58.
[http://dx.doi.org/10.1165/rcmb.2019-0442OC] [PMID: 33026825]
[20]
Benedetto, R.; Ousingsawat, J.; Wanitchakool, P.; Zhang, Y.; Holtzman, M.J.; Amaral, M.; Rock, J.R.; Schreiber, R.; Kunzelmann, K. Epithelial chloride transport by CFTR requires TMEM16A. Sci. Rep., 2017, 7(1), 12397.
[http://dx.doi.org/10.1038/s41598-017-10910-0] [PMID: 28963502]
[21]
Cho, C.H.; Lee, S.; Kim, A.; Yarishkin, O.; Ryoo, K.; Lee, Y.S.; Jung, H.G.; Yang, E.; Lee, D.Y.; Lee, B.; Kim, H.; Oh, U.; Im, H.I.; Hwang, E.M.; Park, J.Y. TMEM16A expression in cholinergic neurons of the medial habenula mediates anxiety-related behaviors. EMBO Rep., 2020, 21(2), e48097.
[http://dx.doi.org/10.15252/embr.201948097] [PMID: 31782602]
[22]
Hong, G.S.; Lee, S.H.; Lee, B.; Choi, J.H.; Oh, S.J.; Jang, Y.; Hwang, E.M.; Kim, H.; Jung, J.; Kim, I.B.; Oh, U. ANO1/TMEM16A regulates process maturation in radial glial cells in the developing brain. Proc. Natl. Acad. Sci. USA, 2019, 116(25), 12494-12499.
[http://dx.doi.org/10.1073/pnas.1901067116] [PMID: 31147466]
[23]
Suzuki, T.; Yasumoto, M.; Suzuki, Y.; Asai, K.; Imaizumi, Y.; Yamamura, H. TMEM16A Ca2+-activated Cl- channel regulates the proliferation and migration of brain capillary endothelial cells. Mol. Pharmacol., 2020, 98(1), 61-71.
[http://dx.doi.org/10.1124/mol.119.118844] [PMID: 32358165]
[24]
Nilius, B.; Prenen, J.; Szücs, G.; Wei, L.; Tanzi, F.; Voets, T.; Droogmans, G. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J. Physiol., 1997, 498(Pt 2), 381-396.
[http://dx.doi.org/10.1113/jphysiol.1997.sp021865]
[25]
Tang, T.; Chen, Q.; Ma, C.; Ni, L.; Jiang, J.; Li, N. Expression of TMEM16A in the colon of intractable functional constipation patients and its clinical implications. Zhonghua Wei Chang Wai Ke Za Zhi, 2015, 18(7), 713-717.
[PMID: 26211778]
[26]
Zygmunt, A.C. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am. J. Physiol., 1994, 267(5 Pt 2), H1984-H1995.
[PMID: 7977830]
[27]
Yokoyama, T.; Takemoto, M.; Hirakawa, M.; Saino, T. Different immunohistochemical localization for TMEM16A and CFTR in acinar and ductal cells of rat major salivary glands and exocrine pancreas. Acta Histochem., 2019, 121(1), 50-55.
[http://dx.doi.org/10.1016/j.acthis.2018.10.013] [PMID: 30389171]
[28]
Zeng, X.L.; Sun, L.; Zheng, H.Q.; Wang, G.L.; Du, Y.H.; Lv, X.F.; Ma, M.M.; Guan, Y.Y. Smooth muscle-specific TMEM16A expression protects against angiotensin II-induced cerebrovascular remodeling via suppressing extracellular matrix deposition. J. Mol. Cell. Cardiol., 2019, 134, 131-143.
[http://dx.doi.org/10.1016/j.yjmcc.2019.07.002] [PMID: 31301303]
[29]
Bill, A.; Alex Gaither, L. The mechanistic role of the calcium-activated chloride channel ANO1 in tumor growth and signaling. Adv. Exp. Med. Biol., 2017, 966, 1-14.
[http://dx.doi.org/10.1007/5584_2016_201] [PMID: 28293832]
[30]
Dulin, N.O. Calcium-activated chloride channel ANO1/TMEM16A: Regulation of expression and signaling. Front. Physiol., 2020, 11, 590262.
[http://dx.doi.org/10.3389/fphys.2020.590262] [PMID: 33250781]
[31]
Crottès, D.; Jan, L.Y. The multifaceted role of TMEM16A in cancer. Cell Calcium, 2019, 82, 102050.
[http://dx.doi.org/10.1016/j.ceca.2019.06.004] [PMID: 31279157]
[32]
Papp, R.; Nagaraj, C.; Zabini, D.; Nagy, B.M.; Lengyel, M.; Skofic Maurer, D.; Sharma, N.; Egemnazarov, B.; Kovacs, G.; Kwapiszewska, G.; Marsh, L.M.; Hrzenjak, A.; Höfler, G.; Didiasova, M.; Wygrecka, M.; Sievers, L.K.; Szucs, P.; Enyedi, P.; Ghanim, B.; Klepetko, W.; Olschewski, H.; Olschewski, A. Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension. Eur. Respir. J., 2019, 53(6), 1800965.
[http://dx.doi.org/10.1183/13993003.00965-2018] [PMID: 31023847]
[33]
Wang, B.; Li, C.; Huai, R.; Qu, Z. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension. J. Mol. Cell. Cardiol., 2015, 82, 22-32.
[http://dx.doi.org/10.1016/j.yjmcc.2015.02.020] [PMID: 25739000]
[34]
Berglund, E.; Akcakaya, P.; Berglund, D.; Karlsson, F.; Vukojević, V.; Lee, L.; Bogdanović, D.; Lui, W.O.; Larsson, C.; Zedenius, J.; Fröbom, R.; Bränström, R. Functional role of the Ca²⁺-activated Cl- channel DOG1/TMEM16A in gastrointestinal stromal tumor cells. Exp. Cell Res., 2014, 326(2), 315-325.
[http://dx.doi.org/10.1016/j.yexcr.2014.05.003] [PMID: 24825187]
[35]
Dixit, R.; Kemp, C.; Kulich, S.; Seethala, R.; Chiosea, S.; Ling, S.; Ha, P.K.; Duvvuri, U. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation. Sci. Rep., 2015, 5, 16657.
[http://dx.doi.org/10.1038/srep16657] [PMID: 26563938]
[36]
Bill, A.; Gutierrez, A.; Kulkarni, S.; Kemp, C.; Bonenfant, D.; Voshol, H.; Duvvuri, U.; Gaither, L.A. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget, 2015, 6(11), 9173-9188.
[http://dx.doi.org/10.18632/oncotarget.3277] [PMID: 25823819]
[37]
Wang, H.; Yao, F.; Luo, S.; Ma, K.; Liu, M.; Bai, L.; Chen, S.; Song, C.; Wang, T.; Du, Q.; Wu, H.; Wei, M.; Fang, Y.; Xiao, Q. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett., 2019, 455, 48-59.
[http://dx.doi.org/10.1016/j.canlet.2019.04.027] [PMID: 31042586]
[38]
Choi, E.J.; Yun, J.A.; Jabeen, S.; Jeon, E.K.; Won, H.S.; Ko, Y.H.; Kim, S.Y. Prognostic significance of TMEM16A, PPFIA1, and FADD expression in invasive ductal carcinoma of the breast. World J. Surg. Oncol., 2014, 12, 137.
[http://dx.doi.org/10.1186/1477-7819-12-137] [PMID: 24886289]
[39]
Crottès, D.; Lin, Y.T.; Peters, C.J.; Gilchrist, J.M.; Wiita, A.P.; Jan, Y.N.; Jan, L.Y. TMEM16A controls EGF-induced calcium signaling implicated in pancreatic cancer prognosis. Proc. Natl. Acad. Sci. USA, 2019, 116(26), 13026-13035.
[http://dx.doi.org/10.1073/pnas.1900703116] [PMID: 31182586]
[40]
Liu, W.; Lu, M.; Liu, B.; Huang, Y.; Wang, K. Inhibition of Ca(2+)-activated Cl-channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett., 2012, 326(1), 41-51.
[http://dx.doi.org/10.1016/j.canlet.2012.07.015] [PMID: 22820160]
[41]
Duvvuri, U. ANO1 plays a critical role in prostatic hyperplasia. Proc. Natl. Acad. Sci. USA, 2015, 112(31), 9506-9507.
[http://dx.doi.org/10.1073/pnas.1512075112] [PMID: 26216998]
[42]
Hu, C.; Zhang, R.; Jiang, D. TMEM16A as a potential biomarker in the diagnosis and prognosis of lung cancer. Arch. Iran Med., 2019, 22(1), 32-38.
[PMID: 30821158]
[43]
Li, K.X.; He, M.; Ye, W.; Simms, J.; Gill, M.; Xiang, X.; Jan, Y.N.; Jan, L.Y. TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. eLife, 2019, 8, e47106.
[http://dx.doi.org/10.7554/eLife.47106] [PMID: 31482844]
[44]
Pietra, G.; Dibattista, M.; Menini, A.; Reisert, J.; Boccaccio, A. The Ca2+-activated Cl- channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. J. Gen. Physiol., 2016, 148(4), 293-311.
[http://dx.doi.org/10.1085/jgp.201611622] [PMID: 27619419]
[45]
Wang, R.; Lu, Y.; Cicha, M.Z.; Singh, M.V.; Benson, C.J.; Madden, C.J.; Chapleau, M.W.; Abboud, F.M. TMEM16B determines cholecystokinin sensitivity of intestinal vagal afferents of nodose neurons. JCI Insight, 2019, 4(5), 122058.
[http://dx.doi.org/10.1172/jci.insight.122058] [PMID: 30843875]
[46]
Grigoriev, V.V. Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes. Biomed. Khim., 2021, 67(1), 17-33.
[http://dx.doi.org/10.18097/pbmc20216701017] [PMID: 33645519]
[47]
Gyobu, S.; Miyata, H.; Ikawa, M.; Yamazaki, D.; Takeshima, H.; Suzuki, J.; Nagata, S. A role of TMEM16E carrying a scrambling domain in sperm motility. Mol. Cell. Biol., 2015, 36(4), 645-659.
[http://dx.doi.org/10.1128/MCB.00919-15] [PMID: 26667038]
[48]
Fujii, T.; Sakata, A.; Nishimura, S.; Eto, K.; Nagata, S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc. Natl. Acad. Sci. USA, 2015, 112(41), 12800-12805.
[http://dx.doi.org/10.1073/pnas.1516594112] [PMID: 26417084]
[49]
van Kruchten, R.; Mattheij, N.J.; Saunders, C.; Feijge, M.A.; Swieringa, F.; Wolfs, J.L.; Collins, P.W.; Heemskerk, J.W.; Bevers, E.M. Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood, 2013, 121(10), 1850-1857.
[http://dx.doi.org/10.1182/blood-2012-09-454314] [PMID: 23303820]
[50]
Kaikkonen, E.; Rantapero, T.; Zhang, Q.; Taimen, P.; Laitinen, V.; Kallajoki, M.; Jambulingam, D.; Ettala, O.; Knaapila, J.; Boström, P.J.; Wahlström, G.; Sipeky, C.; Pursiheimo, J.P.; Tammela, T.; Kellokumpu-Lehtinen, P.L.; Fey, V.; Maehle, L.; Wiklund, F.; Wei, G.H.; Schleutker, J. ANO7 is associated with aggressive prostate cancer. Int. J. Cancer, 2018, 143(10), 2479-2487.
[http://dx.doi.org/10.1002/ijc.31746] [PMID: 30157291]
[51]
Jun, I.; Park, H.S.; Piao, H.; Han, J.W.; An, M.J.; Yun, B.G.; Zhang, X.; Cha, Y.H.; Shin, Y.K.; Yook, J.I.; Jung, J.; Gee, H.Y.; Park, J.S.; Yoon, D.S.; Jeung, H.C.; Lee, M.G. ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br. J. Cancer, 2017, 117(12), 1798-1809.
[http://dx.doi.org/10.1038/bjc.2017.355] [PMID: 29024940]
[52]
Tsuji, T.; Cheng, J.; Tatematsu, T.; Ebata, A.; Kamikawa, H.; Fujita, A.; Gyobu, S.; Segawa, K.; Arai, H.; Taguchi, T.; Nagata, S.; Fujimoto, T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl. Acad. Sci. USA, 2019, 116(27), 13368-13373.
[http://dx.doi.org/10.1073/pnas.1822025116] [PMID: 31217287]
[53]
Chang, Z.; Cai, C.; Han, D.; Gao, Y.; Li, Q.; Feng, L.; Zhang, W.; Zheng, J.; Jin, J.; Zhang, H.; Wei, Q. Anoctamin5 regulates cell migration and invasion in thyroid cancer. Int. J. Oncol., 2017, 51(4), 1311-1319.
[http://dx.doi.org/10.3892/ijo.2017.4113] [PMID: 28902351]
[54]
Zhao, P.; Torcaso, A.; Mariano, A.; Xu, L.; Mohsin, S.; Zhao, L.; Han, R. Anoctamin 6 regulates C2C12 myoblast proliferation. PLoS One, 2014, 9(3), e92749.
[http://dx.doi.org/10.1371/journal.pone.0092749] [PMID: 24663380]
[55]
Cereda, V.; Poole, D.J.; Palena, C.; Das, S.; Bera, T.K.; Remondo, C.; Gulley, J.L.; Arlen, P.M.; Yokokawa, J.; Pastan, I.; Schlom, J.; Tsang, K.Y. New gene expressed in prostate: A potential target for T cell-mediated prostate cancer immunotherapy. Cancer Immunol. Immunother., 2010, 59(1), 63-71.
[http://dx.doi.org/10.1007/s00262-009-0723-6] [PMID: 19495750]
[56]
Huang, F.; Wang, X.; Ostertag, E.M.; Nuwal, T.; Huang, B.; Jan, Y.N.; Basbaum, A.I.; Jan, L.Y. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat. Neurosci., 2013, 16(9), 1284-1290.
[http://dx.doi.org/10.1038/nn.3468] [PMID: 23872594]
[57]
Wang, T.A.; Chen, C.; Huang, F.; Feng, S.; Tien, J.; Braz, J.M.; Basbaum, A.I.; Jan, Y.N.; Jan, L.Y. TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures. Proc. Natl. Acad. Sci. USA, 2021, 118(20), e2023342118.
[http://dx.doi.org/10.1073/pnas.2023342118] [PMID: 33972431]
[58]
Ehlen, H. W.; Chinenkova, M.; Moser, M.; Munter, H. M.; Krause, Y.; Gross, S.; Brachvogel, B.; Wuelling, M.; Kornak, U.; Vortkamp, A. Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Mineral Res., 2013, 28(2), 246-259.
[59]
Li, C.; Cai, S.; Wang, X.; Jiang, Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget, 2015, 6(30), 29324-29334.
[http://dx.doi.org/10.18632/oncotarget.4979] [PMID: 26317553]
[60]
Griffin, D.A.; Johnson, R.W.; Whitlock, J.M.; Pozsgai, E.R.; Heller, K.N.; Grose, W.E.; Arnold, W.D.; Sahenk, Z.; Hartzell, H.C.; Rodino-Klapac, L.R. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum. Mol. Genet., 2016, 25(10), 1900-1911.
[http://dx.doi.org/10.1093/hmg/ddw063] [PMID: 26911675]
[61]
Mizuta, K.; Tsutsumi, S.; Inoue, H.; Sakamoto, Y.; Miyatake, K.; Miyawaki, K.; Noji, S.; Kamata, N.; Itakura, M. Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem. Biophys. Res. Commun., 2007, 357(1), 126-132.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.108] [PMID: 17418107]
[62]
Le, S.C.; Yang, H. An Additional Ca2+ binding site allosterically controls TMEM16A activation. Cell Rep., 2020, 33(13), 108570.
[http://dx.doi.org/10.1016/j.celrep.2020.108570] [PMID: 33378669]
[63]
Pedemonte, N.; Galietta, L.J. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev., 2014, 94(2), 419-459.
[http://dx.doi.org/10.1152/physrev.00039.2011] [PMID: 24692353]
[64]
Hartzell, H.C.; Yu, K.; Xiao, Q.; Chien, L.T.; Qu, Z. Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J. Physiol., 2009, 587(Pt 10), 2127-2139.
[http://dx.doi.org/10.1113/jphysiol.2008.163709] [PMID: 19015192]
[65]
Ohshiro, J.; Yamamura, H.; Saeki, T.; Suzuki, Y.; Imaizumi, Y. The multiple expression of Ca²⁺-activated Cl- channels via homo- and hetero-dimer formation of TMEM16A splicing variants in murine portal vein. Biochem. Biophys. Res. Commun., 2014, 443(2), 518-523.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.117] [PMID: 24321548]
[66]
Sondo, E.; Scudieri, P.; Tomati, V.; Caci, E.; Mazzone, A.; Farrugia, G.; Ravazzolo, R.; Galietta, L.J. Non-canonical translation start sites in the TMEM16A chloride channel. Biochim. Biophys. Acta, 2014, 1838(1 Pt B), 89-97.
[http://dx.doi.org/10.1016/j.bbamem.2013.08.010] [PMID: 23994600]
[67]
Ferrera, L.; Caputo, A.; Ubby, I.; Bussani, E.; Zegarra-Moran, O.; Ravazzolo, R.; Pagani, F.; Galietta, L.J. Regulation of TMEM16A chloride channel properties by alternative splicing. J. Biol. Chem., 2009, 284(48), 33360-33368.
[http://dx.doi.org/10.1074/jbc.M109.046607] [PMID: 19819874]
[68]
Brunner, J.D.; Lim, N.K.; Schenck, S.; Duerst, A.; Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature, 2014, 516(7530), 207-212.
[http://dx.doi.org/10.1038/nature13984] [PMID: 25383531]
[69]
Paulino, C.; Kalienkova, V.; Lam, A.K.M.; Neldner, Y.; Dutzler, R. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature, 2017, 552(7685), 421-425.
[http://dx.doi.org/10.1038/nature24652] [PMID: 29236691]
[70]
Dang, S.; Feng, S.; Tien, J.; Peters, C.J.; Bulkley, D.; Lolicato, M.; Zhao, J.; Zuberbühler, K.; Ye, W.; Qi, L.; Chen, T.; Craik, C.S.; Jan, Y.N.; Minor, D.L., Jr; Cheng, Y.; Jan, L.Y. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature, 2017, 552(7685), 426-429.
[http://dx.doi.org/10.1038/nature25024] [PMID: 29236684]
[71]
Guo, S.; Chen, Y.; Shi, S.; Wang, X.; Zhang, H.; Zhan, Y.; An, H. Arctigenin, a novel TMEM16A inhibitor for lung adenocarcinoma therapy. Pharmacol. Res., 2020, 155, 104721.
[http://dx.doi.org/10.1016/j.phrs.2020.104721] [PMID: 32097750]
[72]
Guo, S.; Bai, X.; Liu, Y.; Shi, S.; Wang, X.; Zhan, Y.; Kang, X.; Chen, Y.; An, H. Inhibition of TMEM16A by natural product silibinin: Potential lead compounds for treatment of Lung adenocarcinoma. Front. Pharmacol., 2021, 12, 643489.
[http://dx.doi.org/10.3389/fphar.2021.643489] [PMID: 33935737]
[73]
Huang, Y.; Guo, S.; Ren, S.; Chen, Y.; Zhan, Y.; An, H. The natural compound cinnamaldehyde is a novel activator of calcium-activated chloride channel. J. Membr. Biol., 2018, 251(5-6), 747-756.
[http://dx.doi.org/10.1007/s00232-018-0052-9] [PMID: 30382294]
[74]
Chai, R.; Chen, Y.; Yuan, H.; Wang, X.; Guo, S.; Qi, J.; Zhang, H.; Zhan, Y.; An, H. Identification of resveratrol, an herbal compound, as an activator of the calcium-activated chloride channel, TMEM16A. J. Membr. Biol., 2017, 250(5), 483-492.
[http://dx.doi.org/10.1007/s00232-017-9975-9] [PMID: 28852814]
[75]
Ji, Q.; Shi, S.; Guo, S.; Zhan, Y.; Zhang, H.; Chen, Y.; An, H. Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J., 2020, 34(10), 13430-13444.
[http://dx.doi.org/10.1096/fj.202000443RR] [PMID: 32812278]
[76]
Jeng, G.; Aggarwal, M.; Yu, W.P.; Chen, T.Y. Independent activation of distinct pores in dimeric TMEM16A channels. J. Gen. Physiol., 2016, 148(5), 393-404.
[http://dx.doi.org/10.1085/jgp.201611651] [PMID: 27799319]
[77]
Lim, N.K.; Lam, A.K.; Dutzler, R. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J. Gen. Physiol., 2016, 148(5), 375-392.
[http://dx.doi.org/10.1085/jgp.201611650] [PMID: 27799318]
[78]
Le, S.C.; Jia, Z.; Chen, J.; Yang, H. Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A. Nat. Commun., 2019, 10(1), 3769.
[http://dx.doi.org/10.1038/s41467-019-11784-8] [PMID: 31434906]
[79]
Arreola, J.; Hartzell, H.C. Wasted TMEM16A channels are rescued by phosphatidylinositol 4,5-bisphosphate. Cell Calcium, 2019, 84, 102103.
[http://dx.doi.org/10.1016/j.ceca.2019.102103] [PMID: 31683182]
[80]
Tembo, M.; Wozniak, K.L.; Bainbridge, R.E.; Carlson, A.E. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ are both required to open the Cl- channel TMEM16A. J. Biol. Chem., 2019, 294(33), 12556-12564.
[http://dx.doi.org/10.1074/jbc.RA118.007128] [PMID: 31266809]
[81]
Xiao, Q.; Yu, K.; Perez-Cornejo, P.; Cui, Y.; Arreola, J.; Hartzell, H.C. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8891-8896.
[http://dx.doi.org/10.1073/pnas.1102147108] [PMID: 21555582]
[82]
Kuruma, A.; Hartzell, H.C. Bimodal control of a Ca(2+)-activated Cl(-) channel by different Ca(2+) signals. J. Gen. Physiol., 2000, 115(1), 59-80.
[http://dx.doi.org/10.1085/jgp.115.1.59] [PMID: 10613919]
[83]
Arreola, J.; Melvin, J.E.; Begenisich, T. Activation of calcium-dependent chloride channels in rat parotid acinar cells. J. Gen. Physiol., 1996, 108(1), 35-47.
[http://dx.doi.org/10.1085/jgp.108.1.35] [PMID: 8817383]
[84]
Procyshyn, R.M.; Reid, R.E. A structure/activity study of calcium affinity and selectivity using a synthetic peptide model of the helix-loop-helix calcium-binding motif. J. Biol. Chem., 1994, 269(3), 1641-1647.
[http://dx.doi.org/10.1016/S0021-9258(17)42075-8] [PMID: 8294410]
[85]
Maki, M. A family of the intracellular calcium-binding proteins with five EF-hand motifs. Seikagaku, 1998, 70(3), 202-207.
[PMID: 9591464]
[86]
Lewit-Bentley, A.; Réty, S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol., 2000, 10(6), 637-643.
[http://dx.doi.org/10.1016/S0959-440X(00)00142-1] [PMID: 11114499]
[87]
Oku, A.; Imanishi, M.; Noshiro, D.; Murayama, T.; Takeuchi, T.; Nakase, I.; Futaki, S. Calmodulin EF-hand peptides as Ca2+ -switchable recognition tags. Biopolymers, 2017, 108(1), e22937.
[http://dx.doi.org/10.1002/bip.22937] [PMID: 27554421]
[88]
Corbalán-García, S.; Guerrero-Valero, M.; Marín-Vicente, C.; Gómez-Fernández, J.C. The C2 domains of classical/conventional PKCs are specific PtdIns(4,5)P(2)-sensing domains. Biochem. Soc. Trans., 2007, 35(Pt 5), 1046-1048.
[http://dx.doi.org/10.1042/BST0351046] [PMID: 17956275]
[89]
Pappa, H.; Murray-Rust, J.; Dekker, L. V.; Parker, P. J.; McDonald, N. Q. Crystal structure of the C2 domain from protein kinase C-delta. Structure (London, England : 1993), 1998, 6(7), 885-894.
[90]
Duncan, R.R.; Shipston, M.J.; Chow, R.H. Double C2 protein. A review. Biochimie, 2000, 82(5), 421-426.
[http://dx.doi.org/10.1016/S0300-9084(00)00214-5] [PMID: 10865129]
[91]
Schreiber, M.; Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J., 1997, 73(3), 1355-1363.
[http://dx.doi.org/10.1016/S0006-3495(97)78168-2] [PMID: 9284303]
[92]
Bao, L.; Kaldany, C.; Holmstrand, E.C.; Cox, D.H. Mapping the BKCa channel’s “Ca2+ bowl”: side-chains essential for Ca2+ sensing. J. Gen. Physiol., 2004, 123(5), 475-489.
[http://dx.doi.org/10.1085/jgp.200409052] [PMID: 15111643]
[93]
Zeng, X.H.; Xia, X.M.; Lingle, C.J. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J. Gen. Physiol., 2005, 125(3), 273-286.
[http://dx.doi.org/10.1085/jgp.200409239] [PMID: 15738049]
[94]
Lytle, B.L.; Volkman, B.F.; Westler, W.M.; Heckman, M.P.; Wu, J.H. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. J. Mol. Biol., 2001, 307(3), 745-753.
[http://dx.doi.org/10.1006/jmbi.2001.4522] [PMID: 11273698]
[95]
Sheng, J.Z.; Weljie, A.; Sy, L.; Ling, S.; Vogel, H.J.; Braun, A.P. Homology modeling identifies C-terminal residues that contribute to the Ca2+ sensitivity of a BKCa channel. Biophys. J., 2005, 89(5), 3079-3092.
[http://dx.doi.org/10.1529/biophysj.105.063610] [PMID: 16100257]
[96]
Guan, R.; Zhou, H.; Li, J.; Xiao, S.; Pang, C.; Chen, Y.; Du, X.; Ke, S.; Tang, Q.; Su, J.; Zhan, Y.; An, H. Allosteric-activation mechanism of BK channel gating ring triggered by calcium ions. PLoS One, 2017, 12(9), e0182067.
[http://dx.doi.org/10.1371/journal.pone.0182067] [PMID: 28953901]
[97]
Wang, X.L.; Lu, T.; Sun, X.; Lee, H.C. Membrane trafficking of large conductance Ca2+- and voltage-activated K+ (BK) channels is regulated by Rab4 GTPase. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(4), 118646.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118646] [PMID: 31926210]
[98]
Lee, U.S.; Cui, J. BK channel activation: structural and functional insights. Trends Neurosci., 2010, 33(9), 415-423.
[http://dx.doi.org/10.1016/j.tins.2010.06.004] [PMID: 20663573]
[99]
Yang, H.; Zhang, G.; Cui, J. BK channels: Multiple sensors, one activation gate. Front. Physiol., 2015, 6, 29.
[http://dx.doi.org/10.3389/fphys.2015.00029] [PMID: 25705194]
[100]
Pang, C.L.; Yuan, H.B.; Cao, T.G.; Su, J.G.; Chen, Y.F.; Liu, H.; Yu, H.; Zhang, H.L.; Zhan, Y.; An, H.L.; Han, Y.B. Molecular simulation assisted identification of Ca(2+) binding residues in TMEM16A. J. Comput. Aided Mol. Des., 2015, 29(11), 1035-1043.
[http://dx.doi.org/10.1007/s10822-015-9876-x] [PMID: 26481648]
[101]
Xiao, Q.; Cui, Y. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of anoctamin1/TMEM16A. PLoS One, 2014, 9(6), e99376.
[http://dx.doi.org/10.1371/journal.pone.0099376] [PMID: 24901998]
[102]
Strege, P.R.; Gibbons, S.J.; Mazzone, A.; Bernard, C.E.; Beyder, A.; Farrugia, G. EAVK segment “c” sequence confers Ca2+-dependent changes to the kinetics of full-length human Ano1. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(6), G572-G579.
[http://dx.doi.org/10.1152/ajpgi.00429.2016] [PMID: 28336549]
[103]
Yu, K.; Duran, C.; Qu, Z.; Cui, Y.Y.; Hartzell, H.C. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ. Res., 2012, 110(7), 990-999.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.264440] [PMID: 22394518]
[104]
Tien, J.; Peters, C.J.; Wong, X.M.; Cheng, T.; Jan, Y.N.; Jan, L.Y.; Yang, H. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. eLife, 2014, 3, 3.
[http://dx.doi.org/10.7554/eLife.02772] [PMID: 24980701]
[105]
Lam, A.K.M.; Dutzler, R. Mechanism of pore opening in the calcium-activated chloride channel TMEM16A. Nat. Commun., 2021, 12(1), 786.
[http://dx.doi.org/10.1038/s41467-020-20788-8] [PMID: 33542228]
[106]
Alvadia, C.; Lim, N.K.; Clerico Mosina, V.; Oostergetel, G.T.; Dutzler, R.; Paulino, C. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. eLife, 2019, 8, e44365.
[http://dx.doi.org/10.7554/eLife.44365] [PMID: 30785399]
[107]
Bushell, S.R.; Pike, A.C.W.; Falzone, M.E.; Rorsman, N.J.G.; Ta, C.M.; Corey, R.A.; Newport, T.D.; Christianson, J.C.; Scofano, L.F.; Shintre, C.A.; Tessitore, A.; Chu, A.; Wang, Q.; Shrestha, L.; Mukhopadhyay, S.M.M.; Love, J.D.; Burgess-Brown, N.A.; Sitsapesan, R.; Stansfeld, P.J.; Huiskonen, J.T.; Tammaro, P.; Accardi, A.; Carpenter, E.P. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat. Commun., 2019, 10(1), 3956.
[http://dx.doi.org/10.1038/s41467-019-11753-1] [PMID: 31477691]
[108]
Balreira, A.; Boczonadi, V.; Barca, E.; Pyle, A.; Bansagi, B.; Appleton, M.; Graham, C.; Hargreaves, I.P.; Rasic, V.M.; Lochmüller, H.; Griffin, H.; Taylor, R.W.; Naini, A.; Chinnery, P.F.; Hirano, M.; Quinzii, C.M.; Horvath, R. ANO10 mutations cause ataxia and coenzyme Q10 deficiency. J. Neurol., 2014, 261(11), 2192-2198.
[http://dx.doi.org/10.1007/s00415-014-7476-7] [PMID: 25182700]
[109]
Grabarek, Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol., 2006, 359(3), 509-525.
[http://dx.doi.org/10.1016/j.jmb.2006.03.066] [PMID: 16678204]
[110]
Tak, M.H.; Jang, Y.; Son, W.S.; Yang, Y.D.; Oh, U. EF-hand like region in the N-terminus of Anoctamin 1 modulates channel activity by Ca2+ and voltage. Exp. Neurobiol., 2019, 28(6), 658-669.
[http://dx.doi.org/10.5607/en.2019.28.6.658] [PMID: 31902154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy