Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Overview of Lignocellulolytic Enzyme Systems with Special Reference to Valorization of Lignocellulosic Biomass

Author(s): Hina Qaiser, Afshan Kaleem, Roheena Abdullah*, Mehwish Iqtedar and Daniel C. Hoessli

Volume 28, Issue 12, 2021

Published on: 03 December, 2021

Page: [1349 - 1364] Pages: 16

DOI: 10.2174/0929866528666211105110643

Price: $65

Abstract

Abstract: Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.

Keywords: Lignocellulosic biomass, lignocellulolytic enzymes, microbial sources, valorization, value added products, industrial bioconversion processes.

Graphical Abstract

[1]
Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol., 2008, 35(5), 377-391.
[http://dx.doi.org/10.1007/s10295-008-0327-8] [PMID: 18338189]
[2]
Demain, A.L.; Newcomb, M.; Wu, J.H. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev., 2005, 69(1), 124-154.
[http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005] [PMID: 15755956]
[3]
Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv., 2009, 27(2), 185-194.
[http://dx.doi.org/10.1016/j.biotechadv.2008.11.001] [PMID: 19100826]
[4]
Pérez, J.J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose. Int. Microbiol., 2002, 5(2), 53-63.
[http://dx.doi.org/10.1007/s10123-002-0062-3] [PMID: 12180781]
[5]
Howard, R.; Abotsi, E.; Van Rensburg, E.J.; Howard, S. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol., 2003, 2(12), 602-619.
[http://dx.doi.org/10.5897/AJB2003.000-1115]
[6]
Malherbe, S.; Cloete, T.E. Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol., 2002, 1(2), 105-114.
[http://dx.doi.org/10.1023/A:1020858910646]
[7]
Coombs, J. EEC resources and strategies. Philos. Trans. R. Soc. A, 1987, 321(1561), 405-422.
[8]
Oberoi, H.S.; Vadlani, P.V.; Brijwani, K.; Bhargav, V.K.; Patil, R.T. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem., 2010, 45(8), 1299-1306.
[http://dx.doi.org/10.1016/j.procbio.2010.04.017]
[9]
Buaban, B.; Inoue, H.; Yano, S.; Tanapongpipat, S.; Ruanglek, V.; Champreda, V.; Pichyangkura, R.; Rengpipat, S.; Eurwilaichitr, L. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J. Biosci. Bioeng., 2010, 110(1), 18-25.
[http://dx.doi.org/10.1016/j.jbiosc.2009.12.003] [PMID: 20541110]
[10]
Amiri, H.; Karimi, K.; Zilouei, H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol., 2014, 152(152), 450-456.
[http://dx.doi.org/10.1016/j.biortech.2013.11.038] [PMID: 24321608]
[11]
Al-Shorgani, N.K.N.; Kalil, M.S.; Yusoff, W.M.W. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng., 2012, 35(5), 817-826.
[http://dx.doi.org/10.1007/s00449-011-0664-2] [PMID: 22147105]
[12]
Qureshi, N.; Singh, V.; Liu, S.; Ezeji, T.C.; Saha, B.C.; Cotta, M.A. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour. Technol., 2014, 154(154), 222-228.
[http://dx.doi.org/10.1016/j.biortech.2013.11.080] [PMID: 24398150]
[13]
Lai, Z.; Zhu, M.; Yang, X.; Wang, J.; Li, S. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnol. Biofuels, 2014, 7(1), 119.
[PMID: 25184001]
[14]
Kim, M.; Yang, Y.; Morikawa-Sakura, M.S.; Wang, Q.; Lee, M.V.; Lee, D-Y.; Feng, C.; Zhou, Y.; Zhang, Z. Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge. Int. J. Hydrogen Energy, 2012, 37(4), 3142-3149.
[http://dx.doi.org/10.1016/j.ijhydene.2011.10.116]
[15]
Song, Z.; Yang, G.; Han, X.; Feng, Y.; Ren, G. Optimization of the alkaline pretreatment of rice straw for enhanced methane yield. BioMed Res. Int., 2013, 2013, 968692.
[http://dx.doi.org/10.1155/2013/968692] [PMID: 23509824]
[16]
Lei, Z.; Chen, J.; Zhang, Z.; Sugiura, N. Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation. Bioresour. Technol., 2010, 101(12), 4343-4348.
[http://dx.doi.org/10.1016/j.biortech.2010.01.083] [PMID: 20153179]
[17]
Deng, W.; Zhang, Q.; Wang, Y. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal. Today, 2014, 234, 31-41.
[http://dx.doi.org/10.1016/j.cattod.2013.12.041]
[18]
Kumar, A.; Jain, V. Solid state fermentation studies of citric acid production. Afr. J. Biotechnol., 2008, 7(5), 644-650.
[19]
Khosravi-Darani, K.; Zoghi, A. Comparison of pretreatment strategies of sugarcane baggase: Experimental design for citric acid production. Bioresour. Technol., 2008, 99(15), 6986-6993.
[http://dx.doi.org/10.1016/j.biortech.2008.01.024] [PMID: 18334291]
[20]
Wang, G.; Huang, D.; Li, Y.; Wen, J.; Jia, X. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresour. Technol., 2015, 180(180), 119-127.
[http://dx.doi.org/10.1016/j.biortech.2014.12.091] [PMID: 25594507]
[21]
Tirpanalan, Ö.; Reisinger, M.; Smerilli, M.; Huber, F.; Neureiter, M.; Kneifel, W.; Novalin, S. Wheat bran biorefinery- an insight into the process chain for the production of lactic acid. Bioresour. Technol., 2015, 180(180), 242-249.
[http://dx.doi.org/10.1016/j.biortech.2015.01.021] [PMID: 25616238]
[22]
Carvalho, W.; Silva, S.S.; Vitolo, M.; Felipe, M.G.; Mancilha, I.M. Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. Z. Naturforsch. C J. Biosci., 2002, 57(1-2), 109-112.
[http://dx.doi.org/10.1515/znc-2002-1-219] [PMID: 11930897]
[23]
Chukwuma, O.B.; Rafatullah, M.; Tajarudin, H.A.; Ismail, N. Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability, 2020, 12(18), 72-82.
[http://dx.doi.org/10.3390/su12187282]
[24]
Aswathy, U.S.; Sukumaran, R.K.; Devi, G.L.; Rajasree, K.P.; Singhania, R.R.; Pandey, A. Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresour. Technol., 2010, 101(3), 925-930.
[http://dx.doi.org/10.1016/j.biortech.2009.08.019] [PMID: 19796935]
[25]
Pathak, P.; Bhardwaj, N.K.; Singh, A.K. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl. Biochem. Biotechnol., 2014, 172(8), 3776-3797.
[http://dx.doi.org/10.1007/s12010-014-0758-9] [PMID: 24574249]
[26]
Singh, S.; Tyagi, C.H.; Dutt, D.; Upadhyaya, J.S. Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. N. Biotechnol., 2009, 26(3-4), 165-170.
[http://dx.doi.org/10.1016/j.nbt.2009.09.004] [PMID: 19761879]
[27]
Dutt, D.; Tyagi, C.; Singh, R.; Gautam, A.; Agnohotri, S.; Kumar, A. Isolation and biochemical characterization of crude xylanase from Coprinus cinereus AT-1 MTCC 9695 and its effectiveness in biodeinking of SOP. Cellul. Chem. Technol., 2013, 47(3-4), 203-217.
[28]
Songulashvili, G.; Spindler, D.; Jimenéz-Tobón, G.A.; Jaspers, C.; Kerns, G.; Penninckx, M.J. Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran. C.R. Biol., 2015, 338(2), 121-125.
[http://dx.doi.org/10.1016/j.crvi.2014.12.001] [PMID: 25573330]
[29]
Singh, S.; Singh, S.; Bali, V.; Sharma, L.; Mangla, J. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Res Int., 2014, 215748.
[http://dx.doi.org/10.1155/2014/215748]
[30]
Falony, G.; Armas, J.C.; Mendoza, J.C.D.; Hernández, J.L.M. Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technol. Biotechnol., 2006, 44(2), 235-240.
[31]
Pan, C.; Fan, Y.; Hou, H. Fermentative production of hydrogen from wheat bran by mixed anaerobic cultures. Ind. Eng. Chem. Res., 2008, 47(16), 5812-5818.
[http://dx.doi.org/10.1021/ie701789c]
[32]
Kalogeris, E.; Iniotaki, F.; Topakas, E.; Christakopoulos, P.; Kekos, D.; Macris, B.J. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour. Technol., 2003, 86(3), 207-213.
[http://dx.doi.org/10.1016/S0960-8524(02)00175-X] [PMID: 12688461]
[33]
Qureshi, N.; Saha, B.C.; Hector, R.E.; Hughes, S.R.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass Bioenergy, 2008, 32(2), 168-175.
[http://dx.doi.org/10.1016/j.biombioe.2007.07.004]
[34]
Soni, R.; Nazir, A.; Chadha, B. Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind. Crops Prod., 2010, 31(2), 277-283.
[http://dx.doi.org/10.1016/j.indcrop.2009.11.007]
[35]
Rocky-Salimi, K.; Hamidi-Esfahani, Z. Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Trichoderma reesei QM9414 using response surface methodology. Food Bioprod. Process., 2010, 88(1), 61-66.
[http://dx.doi.org/10.1016/j.fbp.2009.06.006]
[36]
Melzoch, K.; Votruba, J.; Hábová, V.; Rychtera, M. Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J. Biotechnol., 1997, 56(1), 25-31.
[http://dx.doi.org/10.1016/S0168-1656(97)00074-6] [PMID: 9246789]
[37]
Singh, A.; Bajar, S.; Bishnoi, N.R. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co- culture. Fuel, 2014, 116, 699-702.
[http://dx.doi.org/10.1016/j.fuel.2013.08.072]
[38]
Rambo, M.K.; Bevilaqua, D.B.; Brenner, C.G.; Martins, A.F.; Mario, D.N.; Alves, S.H.; Mallmann, C.A. Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation. Quim. Nova, 2013, 36(5), 634-639.
[http://dx.doi.org/10.1590/S0100-40422013000500004]
[39]
Liming, X.; Xueliang, S. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol., 2004, 91(3), 259-262.
[http://dx.doi.org/10.1016/S0960-8524(03)00195-0] [PMID: 14607485]
[40]
Guo, X.; Zhang, R.; Li, Z.; Dai, D.; Li, C.; Zhou, X. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour. Technol., 2013, 128(128), 547-552.
[http://dx.doi.org/10.1016/j.biortech.2012.10.155] [PMID: 23211479]
[41]
Panagiotopoulos, I.; Bakker, R.; De Vrije, T.; Koukios, E.; Claassen, P. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int. J. Hydrogen Energy, 2010, 35(15), 7738-7747.
[http://dx.doi.org/10.1016/j.ijhydene.2010.05.075]
[42]
Mamma, D.; Kourtoglou, E.; Christakopoulos, P. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol., 2008, 99(7), 2373-2383.
[http://dx.doi.org/10.1016/j.biortech.2007.05.018] [PMID: 17604624]
[43]
Pan, C-M.; Ma, H-C.; Fan, Y-T.; Hou, H-W. Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int. J. Hydrogen Energy, 2011, 36(8), 4852-4862.
[http://dx.doi.org/10.1016/j.ijhydene.2011.01.114]
[44]
Mekala, N.K.; Singhania, R.R.; Sukumaran, R.K.; Pandey, A. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: Statistical optimization of process parameters. Appl. Biochem. Biotechnol., 2008, 151(2-3), 122-131.
[http://dx.doi.org/10.1007/s12010-008-8156-9] [PMID: 18975142]
[45]
Farinas, C.S.; Vitcosque, G.L.; Fonseca, R.F.; Neto, V.B.; Couri, S. Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind. Crops Prod., 2011, 34(1), 1186-1192.
[http://dx.doi.org/10.1016/j.indcrop.2011.04.006]
[46]
Marques, S.; Alves, L.; Roseiro, J.; Gírio, F. Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenergy, 2008, 32(5), 400-406.
[http://dx.doi.org/10.1016/j.biombioe.2007.10.011]
[47]
Budhavaram, N.K.; Fan, Z. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresour. Technol., 2009, 100(23), 5966-5972.
[http://dx.doi.org/10.1016/j.biortech.2009.01.080] [PMID: 19577925]
[48]
Sharma, S.K.; Kalra, K.L.; Kocher, G.S. Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass Bioenergy, 2004, 27(4), 399-402.
[http://dx.doi.org/10.1016/j.biombioe.2004.03.005]
[49]
Nigam, J.N. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol., 2002, 97(2), 107-116.
[http://dx.doi.org/10.1016/S0168-1656(02)00013-5] [PMID: 12067517]
[50]
Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M-F.; Lidén, G.; Zacchi, G. Bio-ethanol- the fuel of tomorrow from the residues of today. Trends Biotechnol., 2006, 24(12), 549-556. .
[http://dx.doi.org/10.1016/j.tibtech.2006.10.004] [PMID: 17050014]
[51]
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol., 2005, 96(6), 673-686.
[http://dx.doi.org/10.1016/j.biortech.2004.06.025] [PMID: 15588770]
[52]
Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci., 2008, 9(9), 1621-1651.
[http://dx.doi.org/10.3390/ijms9091621] [PMID: 19325822]
[53]
Shi, J.; Chinn, M.S.; Sharma-Shivappa, R.R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour. Technol., 2008, 99(14), 6556-6564.
[http://dx.doi.org/10.1016/j.biortech.2007.11.069] [PMID: 18242083]
[54]
Anderson, W.F.; Akin, D.E. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol., 2008, 35(5), 355-366.
[http://dx.doi.org/10.1007/s10295-007-0291-8] [PMID: 18188624]
[55]
Arora, D.S.; Chander, M.; Gill, P.K. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegradation, 2002, 50(2), 115-120.
[http://dx.doi.org/10.1016/S0964-8305(02)00064-1]
[56]
Ferraz, A.; Córdova, A.M.; Machuca, A. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme Microb. Technol., 2003, 32(1), 59-65.
[http://dx.doi.org/10.1016/S0141-0229(02)00267-3]
[57]
Turner, P.; Mamo, G.; Karlsson, E.N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact., 2007, 6(1), 9.
[http://dx.doi.org/10.1186/1475-2859-6-9] [PMID: 17359551]
[58]
Viikari, L.; Alapuranen, M.; Puranen, T.; Vehmaanperä, J.; Siika-Aho, M. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol., 2007, 108, 121-145.
[http://dx.doi.org/10.1007/10_2007_065] [PMID: 17589813]
[59]
Chu, B.C.; Lee, H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv., 2007, 25(5), 425-441.
[http://dx.doi.org/10.1016/j.biotechadv.2007.04.001] [PMID: 17524590]
[60]
Schneider, H.; Wang, P.; Chan, Y.; Maleszka, R. Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol. Lett., 1981, 3(2), 89-92.
[http://dx.doi.org/10.1007/BF00145116]
[61]
McMillan, J.D.; Boynton, B.L. Arbinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotechnol., 1994, 45-46(1), 569-584.
[http://dx.doi.org/10.1007/BF02941831] [PMID: 8010769]
[62]
Karhumaa, K.; Wiedemann, B.; Hahn-Hägerdal, B.; Boles, E.; Gorwa-Grauslund, M-F. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact., 2006, 5(1), 18.
[http://dx.doi.org/10.1186/1475-2859-5-18] [PMID: 16606456]
[63]
Larsson, S.; Quintana-Sáinz, A.; Reimann, A.; Nilvebrant, N-O.; Jönsson, L.J. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae.Twenty- First Symposium on Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, 2000, pp. 617-632.
[64]
Martín, C.; Marcet, M.; Almazán, O.; Jönsson, L.J. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol., 2007, 98(9), 1767-1773.
[http://dx.doi.org/10.1016/j.biortech.2006.07.021] [PMID: 16934451]
[65]
Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol., 2010, 101(13), 4775-4800.
[http://dx.doi.org/10.1016/j.biortech.2010.01.088] [PMID: 20171088]
[66]
Thi Tuong An Tran, T.K.P.L. Alcohol Fuels - Current Technologies and Future Prospect; Yun, Y., Ed.; IntechOpen: London, United Kingdom, 2019, pp. 65-78.
[67]
Kyrpides, N.C.; Hugenholtz, P.; Eisen, J.A.; Woyke, T.; Göker, M.; Parker, C.T.; Amann, R.; Beck, B.J.; Chain, P.S.; Chun, J. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol., 2014, 12(8), e1001920.
[http://dx.doi.org/10.1371/journal.pbio.1001920] [PMID: 25093819]
[68]
Polizeli, M.L.; Rizzatti, A.C.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol., 2005, 67(5), 577-591.
[http://dx.doi.org/10.1007/s00253-005-1904-7] [PMID: 15944805]
[69]
DeAngelis, K.M.; Gladden, J.M.; Allgaier, M.; D’haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.S.; Silver, W.L. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities. BioEnergy Res., 2010, 3(2), 146-158.
[http://dx.doi.org/10.1007/s12155-010-9089-z]
[70]
Bird, A.R.; Conlon, M.A.; Christophersen, C.T.; Topping, D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes, 2010, 1(4), 423-431.
[http://dx.doi.org/10.3920/BM2010.0041] [PMID: 21831780]
[71]
Hall, A.B.; Tolonen, A.C.; Xavier, R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet., 2017, 18(11), 690-699.
[http://dx.doi.org/10.1038/nrg.2017.63] [PMID: 28824167]
[72]
Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res., 2013, 69(1), 52-60.
[http://dx.doi.org/10.1016/j.phrs.2012.10.020] [PMID: 23147033]
[73]
Kala, A.; Kamra, D.N.; Kumar, A.; Agarwal, N.; Chaudhary, L.C.; Joshi, C.G. Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS One, 2017, 12(2), e0172051.
[http://dx.doi.org/10.1371/journal.pone.0172051] [PMID: 28207851]
[74]
Del Pozo, M.V.; Fernández-Arrojo, L.; Gil-Martínez, J.; Montesinos, A.; Chernikova, T.N.; Nechitaylo, T.Y.; Waliszek, A.; Tortajada, M.; Rojas, A.; Huws, S.A.; Golyshina, O.V.; Newbold, C.J.; Polaina, J.; Ferrer, M.; Golyshin, P.N. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol. Biofuels, 2012, 5(1), 73.
[http://dx.doi.org/10.1186/1754-6834-5-73] [PMID: 22998985]
[75]
Hess, M.; Sczyrba, A.; Egan, R.; Kim, T-W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; Mackie, R.I.; Pennacchio, L.A.; Tringe, S.G.; Visel, A.; Woyke, T.; Wang, Z.; Rubin, E.M. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 2011, 331(6016), 463-467.
[http://dx.doi.org/10.1126/science.1200387] [PMID: 21273488]
[76]
Jones, D.R.; Thomas, D.; Alger, N.; Ghavidel, A.; Inglis, G.D.; Abbott, D.W. SACCHARIS: An automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Biotechnol. Biofuels, 2018, 11(1), 27.
[http://dx.doi.org/10.1186/s13068-018-1027-x] [PMID: 29441125]
[77]
Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J. Biomethanation and its potential. Methods Enzymol., 2011, 494(494), 327-351.
[http://dx.doi.org/10.1016/B978-0-12-385112-3.00016-0] [PMID: 21402222]
[78]
Thauer, R.K.; Kaster, A-K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol., 2008, 6(8), 579-591.
[http://dx.doi.org/10.1038/nrmicro1931] [PMID: 18587410]
[79]
Hackmann, T.J.; Spain, J.N. Invited review: Ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci., 2010, 93(4), 1320-1334.
[http://dx.doi.org/10.3168/jds.2009-2071] [PMID: 20338409]
[80]
Gong, X.; Gruninger, R.J.; Qi, M.; Paterson, L.; Forster, R.J.; Teather, R.M.; McAllister, T.A. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res. Notes, 2012, 5(1), 566.
[http://dx.doi.org/10.1186/1756-0500-5-566] [PMID: 23062472]
[81]
Wright, A-D.G.; Klieve, A.V. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim. Feed Sci. Technol., 2011, 2011(166), 248-253.
[http://dx.doi.org/10.1016/j.anifeedsci.2011.04.015]
[82]
Thapa, S.; Mishra, J.; Arora, N.; Mishra, P.; Li, H. O′ Hair, J.; Bhatti, S.; Zhou, S. Microbial cellulolytic enzymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev. Environ. Sci. Biotechnol., 2020, 2020(19), 621-648.
[http://dx.doi.org/10.1007/s11157-020-09536-y]
[83]
Bansal, S.; Goel, G. Rumen Microbiology: From Evolution to Revolution; Springer, 2015, pp. 281-291.
[84]
Scully, E.D.; Geib, S.M.; Carlson, J.E.; Tien, M.; McKenna, D.; Hoover, K. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics, 2014, 15(1), 1096.
[http://dx.doi.org/10.1186/1471-2164-15-1096] [PMID: 25495900]
[85]
Lee, R.E., Jr; Lee, M.R.; Strong-Gunderson, J.M. Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. J. Insect Physiol., 1993, 39(1), 1-12.
[http://dx.doi.org/10.1016/0022-1910(93)90011-F]
[86]
Tarayre, C.; Brognaux, A.; Bauwens, J.; Brasseur, C.; Mattéotti, C.; Millet, C.; Destain, J.; Vandenbol, M.; Portetelle, D.; De Pauw, E.; Eric, H.; Francis, F.; Thonart, P. Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere. World J. Microbiol. Biotechnol., 2014, 30(5), 1655-1660.
[http://dx.doi.org/10.1007/s11274-013-1585-9] [PMID: 24353041]
[87]
Ben Guerrero, E.; Arneodo, J.; Bombarda Campanha, R.; Abrão de Oliveira, P.; Veneziano Labate, M.T.; Regiani Cataldi, T.; Campos, E.; Cataldi, A.; Labate, C.A.; Martins Rodrigues, C.; Talia, P. Prospection and evaluation of (Hemi) cellulolytic enzymes using untreated and pretreated biomasses in two argentinean native termites. PLoS One, 2015, 10(8), e0136573.
[http://dx.doi.org/10.1371/journal.pone.0136573] [PMID: 26313257]
[88]
Nakashima, K.; Watanabe, H.; Saitoh, H.; Tokuda, G.; Azuma, J-I. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Mol. Biol., 2002, 32(7), 777-784..
[http://dx.doi.org/10.1016/S0965-1748(01)00160-6] [PMID: 12044494]
[89]
Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.; McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; Sorek, R.; Tringe, S.G.; Podar, M.; Martin, H.G.; Kunin, V.; Dalevi, D.; Madejska, J.; Kirton, E.; Platt, D.; Szeto, E.; Salamov, A.; Barry, K.; Mikhailova, N.; Kyrpides, N.C.; Matson, E.G.; Ottesen, E.A.; Zhang, X.; Hernández, M.; Murillo, C.; Acosta, L.G.; Rigoutsos, I.; Tamayo, G.; Green, B.D.; Chang, C.; Rubin, E.M.; Mathur, E.J.; Robertson, D.E.; Hugenholtz, P.; Leadbetter, J.R. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169), 560-565.
[http://dx.doi.org/10.1038/nature06269] [PMID: 18033299]
[90]
Arakawa, G.; Watanabe, H.; Yamasaki, H.; Maekawa, H.; Tokuda, G. Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci. Biotechnol. Biochem., 2009, 73(3), 710-718.
[http://dx.doi.org/10.1271/bbb.80788] [PMID: 19270398]
[91]
Cairo, J.P.L.F.; Leonardo, F.C.; Alvarez, T.M.; Ribeiro, D.A.; Büchli, F.; Costa-Leonardo, A.M.; Carazzolle, M.F.; Costa, F.F.; Leme, A.F.P.; Pereira, G.A. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnol. Biofuels, 2011, 4(1), 1-11.
[PMID: 21269444]
[92]
Potts, R.; Hewitt, P. Some properties and reaction characteristics of the partially purified cellulase from the termite Trinervitermes trinervoides (Nasutitermitinae). Comp. Biochem. Physiol. B, 1974, 47(2), 327-337.
[http://dx.doi.org/10.1016/0305-0491(74)90062-5]
[93]
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol., 2014, 12(3), 168-180..
[http://dx.doi.org/10.1038/nrmicro3182] [PMID: 24487819]
[94]
Tokuda, G.; Lo, N.; Watanabe, H. Marked variations in patterns of cellulase activity against crystalline‐vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol. Entomol., 2005, 30(4), 372-380.
[http://dx.doi.org/10.1111/j.1365-3032.2005.00473.x]
[95]
López-Mondéjar, R.; Zühlke, D.; Becher, D.; Riedel, K.; Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep., 2016, 6(1), 25279.
[http://dx.doi.org/10.1038/srep25279] [PMID: 27125755]
[96]
Houfani, A.A.; Větrovský, T.; Navarrete, O.U.; Štursová, M.; Tláskal, V.; Beiko, R.G.; Boucherba, N.; Baldrian, P.; Benallaoua, S.; Jorquera, M.A. Cellulase− Hemicellulase activities and bacterial community composition of different soils from Algerian ecosystems. Microb. Ecol., 2019, 77(3), 713-725.
[http://dx.doi.org/10.1007/s00248-018-1251-8] [PMID: 30209585]
[97]
Wilhelm, R.C.; Singh, R.; Eltis, L.D.; Mohn, W.W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J., 2019, 13(2), 413-429.
[http://dx.doi.org/10.1038/s41396-018-0279-6] [PMID: 30258172]
[98]
Srivastava, N.; Srivastava, M.; Mishra, P.; Gupta, V.K.; Molina, G.; Rodriguez-Couto, S.; Manikanta, A.; Ramteke, P. Applications of fungal cellulases in biofuel production: Advances and limitations. Renew. Sust. Energ. Rev., 2018, 82, 2379-2386.
[99]
Ventorino, V.; Ionata, E.; Birolo, L.; Montella, S.; Marcolongo, L.; de Chiaro, A.; Espresso, F.; Faraco, V.; Pepe, O. Lignocellulose-adapted endo-cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Front. Microbiol, 2016, 7, 2061.
[http://dx.doi.org/10.3389/fmicb.2016.02061]
[100]
Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature, 2001, 409(6823), 1092-1101.
[http://dx.doi.org/10.1038/35059215] [PMID: 11234023]
[101]
Lee, B.H.; Blackburn, T.H. Cellulase production by a thermophilic clostridium species. Appl. Microbiol., 1975, 30(3), 346-353.
[http://dx.doi.org/10.1128/am.30.3.346-353.1975] [PMID: 16350033]
[102]
Béguin, P.; Cornet, P.; Aubert, J.P. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol., 1985, 162(1), 102-105.
[http://dx.doi.org/10.1128/jb.162.1.102-105.1985] [PMID: 3980433]
[103]
Kato, S.; Haruta, S.; Cui, Z.J.; Ishii, M.; Yokota, A.; Igarashi, Y. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Microbiol., 2004, 54(Pt 6), 2043-2047.
[http://dx.doi.org/10.1099/ijs.0.63148-0] [PMID: 15545431]
[104]
Kim, J.O.; Park, S.R.; Lim, W.J.; Ryu, S.K.; Kim, M.K.; An, C.L.; Cho, S.J.; Park, Y.W.; Kim, J.H.; Yun, H.D. Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem. Biophys. Res. Commun., 2000, 279(2), 420-426.
[http://dx.doi.org/10.1006/bbrc.2000.3956] [PMID: 11118302]
[105]
Patel, A.K.; Singhania, R.R.; Sim, S.J.; Pandey, A. Thermostable cellulases: Current status and perspectives. Bioresour. Technol., 2019, 279(279), 385-392.
[http://dx.doi.org/10.1016/j.biortech.2019.01.049] [PMID: 30685132]
[106]
Garsoux, G.; Lamotte, J.; Gerday, C.; Feller, G. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem. J., 2004, 384(Pt 2), 247-253.
[http://dx.doi.org/10.1042/BJ20040325] [PMID: 15287848]
[107]
Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G.K.; Gouet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J. Mol. Biol., 2005, 348(5), 1211-1224.
[http://dx.doi.org/10.1016/j.jmb.2005.03.026] [PMID: 15854656]
[108]
Juturu, V.; Wu, J.C. Microbial cellulases: Engineering, production and applications. Renew. Sustain. Energy Rev., 2014, 2014(33), 188-203.
[http://dx.doi.org/10.1016/j.rser.2014.01.077]
[109]
Kusube, M.; Sugihara, A.; Moriwaki, Y.; Ueoka, T.; Shimane, Y.; Minegishi, H. Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int. J. Syst. Evol. Microbiol., 2014, 64(Pt 7), 2257-2263.
[http://dx.doi.org/10.1099/ijs.0.061440-0] [PMID: 24711593]
[110]
Kim, J-Y.; Hur, S-H.; Hong, J-H. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett., 2005, 27(5), 313-316.
[http://dx.doi.org/10.1007/s10529-005-0685-5] [PMID: 15834791]
[111]
Grum-Grzhimaylo, A.A.; Falkoski, D.L.; van den Heuvel, J.; Valero-Jiménez, C.A.; Min, B.; Choi, I.G.; Lipzen, A.; Daum, C.G.; Aanen, D.K.; Tsang, A.; Henrissat, B.; Bilanenko, E.N.; de Vries, R.P.; van Kan, J.A.L.; Grigoriev, I.V.; Debets, A.J.M. The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet. Mol. Ecol., 2018, 27(23), 4808-4819.
[http://dx.doi.org/10.1111/mec.14912] [PMID: 30368956]
[112]
Bélaich, J.P.; Tardif, C.; Bélaich, A.; Gaudin, C. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol., 1997, 57(1-3), 3-14.
[http://dx.doi.org/10.1016/S0168-1656(97)00085-0] [PMID: 9335163]
[113]
Juturu, V.; Wu, J.C. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechnol. Appl. Biochem., 2018, 65(2), 145-149.
[http://dx.doi.org/10.1002/bab.1567] [PMID: 28436165]
[114]
Sá-Pereira, P.; Mesquita, A.; Duarte, J.C.; Barros, M.R.A.; Costa-Ferreira, M. Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme Microb. Technol., 2002, 30(7), 924-933.
[http://dx.doi.org/10.1016/S0141-0229(02)00034-0]
[115]
Sharma, A.; Adhikari, S.; Satyanarayana, T. Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J. Microbiol. Biotechnol., 2007, 23(4), 483-490.
[http://dx.doi.org/10.1007/s11274-006-9250-1]
[116]
Wang, C.M.; Shyu, C.L.; Ho, S.P.; Chiou, S.H. Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol., 2008, 47(1), 46-53.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02385.x] [PMID: 18554262]
[117]
Pechtl, A.; Rückert, C.; Maus, I.; Koeck, D.E.; Trushina, N.; Kornberger, P.; Schwarz, W.H.; Schlüter, A.; Liebl, W.; Zverlov, V.V. Complete genome sequence of the novel cellulolytic, anaerobic, thermophilic bacterium Herbivorax saccincola type strain GGR1, isolated from a lab scale biogas reactor as established by Illumina and Nanopore MinION sequencing. Genome Announc., 2018, 6(6), e01493-e17.
[http://dx.doi.org/10.1128/genomeA.01493-17] [PMID: 29439041]
[118]
Williams-Rhaesa, A.M.; Rubinstein, G.M.; Scott, I.M.; Lipscomb, G.L.; Poole Ii, F.L.; Kelly, R.M.; Adams, M.W.W. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab. Eng. Commun., 2018, 7(7), e00073.
[http://dx.doi.org/10.1016/j.mec.2018.e00073] [PMID: 30009131]
[119]
Yang, S-J.; Kataeva, I.; Hamilton-Brehm, S.D.; Engle, N.L.; Tschaplinski, T.J.; Doeppke, C.; Davis, M.; Westpheling, J.; Adams, M.W. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl. Environ. Microbiol., 2009, 75(14), 4762-4769.
[http://dx.doi.org/10.1128/AEM.00236-09] [PMID: 19465524]
[120]
Ahirwar, S.; Soni, H.; Prajapati, B.P.; Kango, N. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology, 2017, 8(3), 125-134.
[http://dx.doi.org/10.1080/21501203.2017.1337657]
[121]
Mahajan, C.; Basotra, N.; Singh, S.; Di Falco, M.; Tsang, A.; Chadha, B.S. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour. Technol., 2016, 200(200), 55-63.
[http://dx.doi.org/10.1016/j.biortech.2015.09.113] [PMID: 26476165]
[122]
Herrera, L.M.; Braña, V.; Franco Fraguas, L.; Castro-Sowinski, S. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol. Res., 2019, 223-225(223), 13-21.
[http://dx.doi.org/10.1016/j.micres.2019.03.009] [PMID: 31178046]
[123]
Médigue, C.; Krin, E.; Pascal, G.; Barbe, V.; Bernsel, A.; Bertin, P.N.; Cheung, F.; Cruveiller, S.; D’Amico, S.; Duilio, A.; Fang, G.; Feller, G.; Ho, C.; Mangenot, S.; Marino, G.; Nilsson, J.; Parrilli, E.; Rocha, E.P.; Rouy, Z.; Sekowska, A.; Tutino, M.L.; Vallenet, D.; von Heijne, G.; Danchin, A. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res., 2005, 15(10), 1325-1335.
[http://dx.doi.org/10.1101/gr.4126905] [PMID: 16169927]
[124]
Lee, J.P.; Seo, G-W.; An, S-D.; Kim, H. A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region. J. Appl. Biol. Chem., 2017, 60(3), 257-263.
[http://dx.doi.org/10.3839/jabc.2017.041]
[125]
Grigorevski-Lima, A.L.; Da Vinha, F.N.; Souza, D.T.; Bispo, A.S.; Bon, E.P.; Coelho, R.R.; Nascimento, R.P. Aspergillus fumigatus thermophilic and acidophilic endoglucanases. Appl. Biochem. Biotechnol., 2009, 155(1-3), 321-329.
[http://dx.doi.org/10.1007/s12010-008-8482-y] [PMID: 19127443]
[126]
Okereke, O.; Akanya, H.; Egwim, E. Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatal. Agric. Biotechnol., 2017, 12, 253-259.
[http://dx.doi.org/10.1016/j.bcab.2017.10.018]
[127]
Hakamada, Y.; Koike, K.; Yoshimatsu, T.; Mori, H.; Kobayashi, T.; Ito, S. Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles, 1997, 1(3), 151-156.
[http://dx.doi.org/10.1007/s007920050028] [PMID: 9680321]
[128]
Zhilina, T.N.; Kevbrin, V.V.; Turova, T.P.; Lysenko, A.M.; Kostrikina, N.A.; Zavarzin, G.A. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologiia, 2005, 74(5), 642-653.
[PMID: 16315983]
[129]
Aikawa, S.; Baramee, S.; Sermsathanaswadi, J.; Thianheng, P.; Tachaapaikoon, C.; Shikata, A.; Waeonukul, R.; Pason, P.; Ratanakhanokchai, K.; Kosugi, A. Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium. Syst. Appl. Microbiol., 2018, 41(4), 261-269.
[http://dx.doi.org/10.1016/j.syapm.2018.01.010] [PMID: 29482868]
[130]
Sravanthi, T.; Tushar, L.; Sasikala, C.; Ramana, C.V. Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int. J. Syst. Evol. Microbiol., 2016, 66(4), 1612-1619.
[http://dx.doi.org/10.1099/ijsem.0.000865] [PMID: 26704619]
[131]
Vega, K.; Villena, G.K.; Sarmiento, V.H.; Ludeña, Y.; Vera, N.; Gutiérrez-Correa, M. Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of peru. Biotechnol. Res. Int., 2012, 2012, 934325.
[http://dx.doi.org/10.1155/2012/934325] [PMID: 23213539]
[132]
Trincone, A. Enzymatic processes in marine biotechnology. Mar. Drugs, 2017, 15(4), 93.
[http://dx.doi.org/10.3390/md15040093] [PMID: 28346336]
[133]
Balabanova, L.; Slepchenko, L.; Son, O.; Tekutyeva, L. Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front. Microbiol., 2018, 9(9), 1527.
[http://dx.doi.org/10.3389/fmicb.2018.01527] [PMID: 30050513]
[134]
Trivedi, N.; Reddy, C.; Radulovich, R.; Jha, B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res., 2015, 2015(9), 48-54.
[http://dx.doi.org/10.1016/j.algal.2015.02.025]
[135]
Mukherjee, S.; Chandrababunaidu, M.M.; Panda, A.; Khowala, S.; Tripathy, S. Tricking Arthrinium malaysianum into producing industrially important enzymes under 2-deoxy D-glucose treatment. Front. Microbiol., 2016, 7(7), 596.
[http://dx.doi.org/10.3389/fmicb.2016.00596] [PMID: 27242677]
[136]
Dos Santos, Y.Q.; de Veras, B.O.; de França, A.F.J.; Gorlach-Lira, K.; Velasques, J.; Migliolo, L.; Dos Santos, E.A. A new salt-tolerant thermostable cellulase from a marine Bacillus sp. strain. J. Microbiol. Biotechnol., 2018, 28(7), 1078-1085.
[http://dx.doi.org/10.4014/jmb.1802.02037] [PMID: 29926709]
[137]
Zeng, R.; Xiong, P.; Wen, J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles, 2006, 10(1), 79-82.
[http://dx.doi.org/10.1007/s00792-005-0475-y] [PMID: 16133657]
[138]
Cristóbal, H.A.; Breccia, J.D.; Abate, C.M. Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active β-D-glucosidases. J. Basic Microbiol., 2008, 48(1), 16-24.
[http://dx.doi.org/10.1002/jobm.200700146] [PMID: 18247390]
[139]
Nakagawa, T.; Ikehata, R.; Uchino, M.; Miyaji, T.; Takano, K.; Tomizuka, N. Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol. Res., 2006, 161(1), 75-79.
[http://dx.doi.org/10.1016/j.micres.2005.07.003] [PMID: 16338594]
[140]
Collins, T.; Meuwis, M-A.; Stals, I.; Claeyssens, M.; Feller, G.; Gerday, C. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem., 2002, 277(38), 35133-35139.
[http://dx.doi.org/10.1074/jbc.M204517200] [PMID: 12089151]
[141]
Del-Cid, A.; Ubilla, P.; Ravanal, M-C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez, R. Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl. Biochem. Biotechnol., 2014, 172(1), 524-532.
[http://dx.doi.org/10.1007/s12010-013-0551-1] [PMID: 24096527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy