Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Are Bacteriocins a Feasible Solution for Current Diverse Global Problems?

Author(s): Cristóbal Joel González-Pérez , Emmanuel Aispuro-Hernández, Irasema Vargas-Arispuro, Adrián Hernández-Mendoza , Jesús Fernando Ayala-Zavala and Miguel Ángel Martínez-Téllez*

Volume 28, Issue 12, 2021

Published on: 08 October, 2021

Page: [1330 - 1337] Pages: 8

DOI: 10.2174/0929866528666211008154430

Price: $65

Abstract

Abstract: The development of effective technologies to cope with persistent and progressive global problems in human health and sustainable development has become an imperative worldwide challenge. The search for natural alternatives has led to the discovery of bacteriocins, which are potent protein antimicrobial compounds produced by most bacteria. The relevance of these molecules is evidenced by more than 4,500 papers published in the last decade in Scopus indexed journals highlighting their versatility and potential to impact various aspects of daily life, including the food industry, medicine, and agriculture. Bacteriocins have demonstrated antibacterial, antifungal, antiviral, and anticancer activities, and they also act as microbiota regulators and plant growth promoters. This mini-review aims to provide insights into the current state and emerging roles of bacteriocins, as well as their potential and limitations as feasible solutions against current diverse global problems.

Keywords: Bacteriocin secretion pathways, toxicity of bacteriocins, anticancer agent, antiviral agent, microbiota regulator, plant growth promoter.

Graphical Abstract

[1]
Drider, D.; Bendali, F.; Naghmouchi, K.; Chikindas, M.L. Bacteriocins: not only antibacterial agents. Probiotics Antimicrob. Proteins, 2016, 8(4), 177-182.
[http://dx.doi.org/10.1007/s12602-016-9223-0] [PMID: 27481236]
[2]
Université-de-Lille, M. LABiocin database. 2018. Available from: https://labiocin.univ-lille.fr/ (Accessed on date: July 1, 2020).
[3]
Kassaa, I.A.; Rafei, R.; Moukhtar, M.; Zaylaa, M.; Gharsallaoui, A.; Asehraou, A.; Omari, K.E.; Shahin, A.; Hamze, M.; Chihib, N-E. LABiocin database: a new database designed specifically for lactic acid bacteria bacteriocins. Int. J. Antimicrob. Agents, 2019, 54(6), 771-779.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.07.012] [PMID: 31374334]
[4]
Tomita, H.; Kamei, E.; Ike, Y. Cloning and genetic analyses of the bacteriocin 41 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI14: a novel bacteriocin complemented by two extracellular components (lysin and activator). J. Bacteriol., 2008, 190(6), 2075-2085.
[http://dx.doi.org/10.1128/JB.01056-07] [PMID: 18203826]
[5]
Piva, A.; Headon, D.R. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology, 1994, 140(Pt 4), 697-702.
[http://dx.doi.org/10.1099/00221287-140-4-697] [PMID: 8012591]
[6]
Johnson, E.M.; Jung, D.Y.G.; Jin, D.Y.Y.; Jayabalan, D.R.; Yang, D.S.H.; Suh, J.W. Bacteriocins as food preservatives: challenges and emerging horizons. Crit. Rev. Food Sci. Nutr., 2018, 58(16), 2743-2767.
[http://dx.doi.org/10.1080/10408398.2017.1340870] [PMID: 28880573]
[7]
O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for food and feed; a bacteriocin perspective. Curr. Opin. Biotechnol., 2020, 61, 160-167.
[http://dx.doi.org/10.1016/j.copbio.2019.12.023] [PMID: 31968296]
[8]
Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol., 2016, 100(7), 2939-2951.
[http://dx.doi.org/10.1007/s00253-016-7343-9] [PMID: 26860942]
[9]
Yang, S-C.; Lin, C-H.; Sung, C.T.; Fang, J-Y. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol., 2014, 5, 241.
[PMID: 24904554]
[10]
Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol., 2013, 11(2), 95-105.
[http://dx.doi.org/10.1038/nrmicro2937] [PMID: 23268227]
[11]
Snyder, A.B.; Worobo, R.W. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J. Sci. Food Agric., 2014, 94(1), 28-44.
[http://dx.doi.org/10.1002/jsfa.6293] [PMID: 23818338]
[12]
Bechinger, B.; Gorr, S-U. Antimicrobial peptides: mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[13]
Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; Torrey, H.; Akopian, T.; Mueller, A.; Epstein, S.; Goldberg, A.; Clardy, J.; Lewis, K. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 2014, 21(4), 509-518.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.014] [PMID: 24684906]
[14]
Kuznedelov, K.; Semenova, E.; Knappe, T.A.; Mukhamedyarov, D.; Srivastava, A.; Chatterjee, S.; Ebright, R.H.; Marahiel, M.A.; Severinov, K. The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J. Mol. Biol., 2011, 412(5), 842-848.
[http://dx.doi.org/10.1016/j.jmb.2011.02.060] [PMID: 21396375]
[15]
Beis, K.; Rebuffat, S. Multifaceted ABC transporters associated to microcin and bacteriocin export. Res. Microbiol., 2019, 170(8), 399-406.
[http://dx.doi.org/10.1016/j.resmic.2019.07.002] [PMID: 31401108]
[16]
Gebhard, S. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation. Mol. Microbiol., 2012, 86(6), 1295-1317.
[http://dx.doi.org/10.1111/mmi.12078] [PMID: 23106164]
[17]
Zheng, S.; Sonomoto, K. Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl. Microbiol. Biotechnol., 2018, 102(10), 4243-4253.
[http://dx.doi.org/10.1007/s00253-018-8917-5] [PMID: 29560521]
[18]
Duquesne, S.; Destoumieux-Garzón, D.; Peduzzi, J.; Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep., 2007, 24(4), 708-734.
[http://dx.doi.org/10.1039/b516237h] [PMID: 17653356]
[19]
Romano, M.; Fusco, G.; Choudhury, H.G.; Mehmood, S.; Robinson, C.V.; Zirah, S.; Hegemann, J.D.; Lescop, E.; Marahiel, M.A.; Rebuffat, S.; De Simone, A.; Beis, K. Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem. Biol., 2018, 13(6), 1598-1609.
[http://dx.doi.org/10.1021/acschembio.8b00226] [PMID: 29757605]
[20]
FDA. Food additive status list. 2019. Available from: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list#ftnN (Accessed on: July 1, 2020).
[21]
Pei, J.; Yuan, Y.; Yue, T. Characterization of bacteriocin bificin C6165: a novel bacteriocin. J. Appl. Microbiol., 2013, 114(5), 1273-1284.
[http://dx.doi.org/10.1111/jam.12145] [PMID: 23347182]
[22]
Anacarso, I.; De Niederhaeusern, S.; Iseppi, R.; Sabia, C.; Bondi, M.; Messi, P. Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control, 2011, 22(12), 2076-2080.
[http://dx.doi.org/10.1016/j.foodcont.2011.06.001]
[23]
Narsaiah, K.; Wilson, R.A.; Gokul, K.; Mandge, H.; Jha, S.; Bhadwal, S.; Anurag, R.K.; Malik, R.; Vij, S. Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biol. Technol., 2015, 100, 212-218.
[http://dx.doi.org/10.1016/j.postharvbio.2014.10.003]
[24]
Rivas, F.P.; Castro, M.P.; Vallejo, M.; Marguet, E.; Campos, C.A. Sakacin Q produced by Lactobacillus curvatus ACU-1: functionality characterization and antilisterial activity on cooked meat surface. Meat Sci., 2014, 97(4), 475-479.
[http://dx.doi.org/10.1016/j.meatsci.2014.03.003] [PMID: 24769146]
[25]
Wayah, S.B.; Philip, K. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb. Cell Fact., 2018, 17, 125.
[http://dx.doi.org/10.1186/s12934-018-0972-1]
[26]
de Carvalho, A.A.; Vanetti, M.C.; Mantovani, H.C. Bovicin HC5 reduces thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. J. Appl. Microbiol., 2008, 104(6), 1685-1691.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03710.x] [PMID: 18217925]
[27]
Kaktcham, P.M.; Tchamani Piame, L.; Sandjong Sileu, G.M.; Foko Kouam, E.M.; Temgoua, J-B.; Zambou Ngoufack, F.; de Lourdes Pérez-Chabela, M. Bacteriocinogenic Lactococcus lactis subsp. lactis 3MT isolated from freshwater Nile Tilapia: isolation, safety traits, bacteriocin characterisation, and application for biopreservation in fish pâté. Arch. Microbiol., 2019, 201(9), 1249-1258.
[http://dx.doi.org/10.1007/s00203-019-01690-4] [PMID: 31197409]
[28]
Seo, H.J.; Kang, S.S. Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella typhimurium. Food Control, 2020, 117, 107361.
[http://dx.doi.org/10.1016/j.foodcont.2020.107361]
[29]
Nicolaou, K.C.; Rigol, S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. (Tokyo), 2018, 71(2), 153-184.
[http://dx.doi.org/10.1038/ja.2017.62] [PMID: 28676714]
[30]
Ansari, A.; Zohra, R.R.; Tarar, O.M.; Qader, S.A.U.; Aman, A. Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiol., 2018, 18(1), 192.
[http://dx.doi.org/10.1186/s12866-018-1337-y] [PMID: 30466388]
[31]
Baindara, P.; Chaudhry, V.; Mittal, G.; Liao, L.M.; Matos, C.O.; Khatri, N.; Franco, O.L.; Patil, P.B.; Korpole, S. Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob. Agents Chemother., 2015, 60(1), 580-591.
[http://dx.doi.org/10.1128/AAC.01813-15] [PMID: 26574006]
[32]
Yi, L.; Dang, J.; Zhang, L.; Wu, Y.; Liu, B.; Lü, X. Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control, 2016, 67, 53-62.
[http://dx.doi.org/10.1016/j.foodcont.2016.02.008]
[33]
Chandrakasan, G.; Rodríguez-Hernández, A-I.; Del Rocío López-Cuellar, M.; Palma-Rodríguez, H-M.; Chava- rría-Hernández, N. Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnol. Lett., 2019, 41(4-5), 453-469.
[http://dx.doi.org/10.1007/s10529-018-02635-5] [PMID: 30739282]
[34]
Gonzalez-Perez, C.; Vargas-Arispuro, I.; Aispuro-Hernández, E.; Aguilar-Gil, C.; Aguirre-Guzmán, Y.; Castillo, A.; Hernández-Mendoza, A.; Ayala-Zavala, J.; Martínez-Téllez, M. Potential control of foodborne pathogenic bacteria by Pediococcus pentosaceus and Lactobacillus graminis isolated from fresh vegetables. Microbiol. Biotechnol. Lett., 2019, 47(2), 183-194.
[http://dx.doi.org/10.4014/mbl.1808.08014]
[35]
Gomaa, E.Z. Synergistic antibacterial efficiency of Bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant bacteria. Int. J. Pept. Res. Ther., 2019, 25(3), 1113-1125.
[http://dx.doi.org/10.1007/s10989-018-9759-9]
[36]
Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front. Microbiol., 2017, 8, 1205.
[http://dx.doi.org/10.3389/fmicb.2017.01205] [PMID: 28706513]
[37]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[38]
Nesic, K.; Wakefield, M.; Kondrashova, O.; Scott, C.L.; McNeish, I.A. Targeting DNA repair: the genome as a potential biomarker. J. Pathol., 2018, 244(5), 586-597.
[http://dx.doi.org/10.1002/path.5025] [PMID: 29282716]
[39]
Baindara, P.; Korpole, S.; Grover, V. Bacteriocins: perspective for the development of novel anticancer drugs. Appl. Microbiol. Biotechnol., 2018, 102(24), 10393-10408.
[http://dx.doi.org/10.1007/s00253-018-9420-8] [PMID: 30338356]
[40]
Baindara, P.; Gautam, A.; Raghava, G.P.S.; Korpole, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci. Rep., 2017, 7, 46541.
[http://dx.doi.org/10.1038/srep46541] [PMID: 28422156]
[41]
Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med., 2012, 1(3), 295-305.
[http://dx.doi.org/10.1002/cam4.35] [PMID: 23342279]
[42]
Quintana, V.M.; Torres, N.I.; Wachsman, M.B.; Sinko, P.J.; Castilla, V.; Chikindas, M. Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J. Appl. Microbiol., 2014, 117(5), 1253-1259.
[http://dx.doi.org/10.1111/jam.12618] [PMID: 25087911]
[43]
Wachsman, M.B.; Farías, M.E.; Takeda, E.; Sesma, F.; de Ruiz Holgado, A.P.; de Torres, R.A.; Coto, C.E. Antiviral activity of enterocin CRL35 against herpesviruses. Int. J. Antimicrob. Agents, 1999, 12(4), 293-299.
[http://dx.doi.org/10.1016/S0924-8579(99)00078-3] [PMID: 10493605]
[44]
Wachsman, M.B.; Castilla, V.; de Ruiz Holgado, A.P.; de Torres, R.A.; Sesma, F.; Coto, C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res., 2003, 58(1), 17-24.
[http://dx.doi.org/10.1016/S0166-3542(02)00099-2] [PMID: 12719003]
[45]
Todorov, S.D.; Wachsman, M.; Tomé, E.; Dousset, X.; Destro, M.T.; Dicks, L.M.T.; Franco, B.D.; Vaz-Velho, M.; Drider, D. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol., 2010, 27(7), 869-879.
[http://dx.doi.org/10.1016/j.fm.2010.05.001] [PMID: 20688228]
[46]
Férir, G.; Petrova, M. I.; Andrei, G.; Huskens, D.; Hoorelbeke, B.; Snoeck, R.; Vanderleyden, J.; Balzarini, J.; Bartoschek, S.; Brönstrup, M. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PloS One, 2013, S5(5), e64010.
[http://dx.doi.org/10.1371/journal.pone.0064010]
[47]
Serkedjieva, J.; Danova, S.; Ivanova, I. Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl. Biochem. Biotechnol., 2000, 1-3, 285-298.
[http://dx.doi.org/10.1385/ABAB:88:1-3:285]
[48]
Prochnow, H.; Rox, K.; Birudukota, N.V.S.; Weichert, L.; Hotop, S-K.; Klahn, P.; Mohr, K.; Franz, S.; Banda, D.H.; Blockus, S.; Schreiber, J.; Haid, S.; Oeyen, M.; Martinez, J.P.; Süssmuth, R.D.; Wink, J.; Meyerhans, A.; Goffinet, C.; Messerle, M.; Schulz, T.F.; Kröger, A.; Schols, D.; Pietschmann, T.; Brönstrup, M. Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis. J. Virol., 2020, 94(2), 2.
[http://dx.doi.org/10.1128/JVI.01471-19] [PMID: 31666384]
[49]
Hols, P.; Ledesma-García, L.; Gabant, P.; Mignolet, J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol., 2019, 27(8), 690-702.
[http://dx.doi.org/10.1016/j.tim.2019.03.007] [PMID: 30987817]
[50]
Muñoz, M.; Mosquera, A.; Alméciga-Díaz, C.J.; Melendez, A.P.; Sánchez, O.F. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses. Anaerobe, 2012, 18(3), 321-330.
[http://dx.doi.org/10.1016/j.anaerobe.2012.01.007] [PMID: 22342961]
[51]
Guinane, C.M.; Lawton, E.M.; O’Connor, P.M.; O’Sullivan, Ó.; Hill, C.; Ross, R.P.; Cotter, P.D. The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.
[http://dx.doi.org/10.1016/j.anaerobe.2016.05.001] [PMID: 27154638]
[52]
Juturu, V.; Wu, J.C. Microbial production of bacteriocins: Latest research development and applications. Biotechnol. Adv., 2018, 36(8), 2187-2200.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.007] [PMID: 30385277]
[53]
Lee, K.D.; Gray, E.J.; Mabood, F.; Jung, W-J.; Charles, T.; Clark, S.R.; Ly, A.; Souleimanov, A.; Zhou, X.; Smith, D.L. The class IId bacteriocin thuricin-17 increases plant growth. Planta, 2009, 229(4), 747-755.
[http://dx.doi.org/10.1007/s00425-008-0870-6] [PMID: 19083012]
[54]
Subramanian, S.; Ricci, E.; Souleimanov, A.; Smith, D.L. A proteomic approach to lipochitooligosaccharide and Thuricin 17 effects on soybean germination unstressed and salt stress. PLoS One, 2016, 11(8), e0160660.
[http://dx.doi.org/10.1371/journal.pone.0160660] [PMID: 27560934]
[55]
Jung, W.J.; Mabood, F.; Souleimanov, A.; Smith, D.L. Effect of chitin hexamer and thuricin 17 on lignification-related and antioxidative enzymes in soybean plants. J. Plant Biol., 2008, 51(2), 145-149.
[http://dx.doi.org/10.1007/BF03030724]
[56]
Li, Z.; Song, C.; Yi, Y.; Kuipers, O.P. Characterization of plant growth-promoting rhizobacteria from perennial ryegrass and genome mining of novel antimicrobial gene clusters. BMC Genomics, 2020, 21(1), 157.
[http://dx.doi.org/10.1186/s12864-020-6563-7] [PMID: 32050906]
[57]
Mirzaee, H.; Neira Peralta, N.L.; Carvalhais, L.C.; Dennis, P.G.; Schenk, P.M. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. N. Biotechnol., 2021, 63, 54-61.
[http://dx.doi.org/10.1016/j.nbt.2021.03.003] [PMID: 33766789]
[58]
Rooney, W.M.; Grinter, R.W.; Correia, A.; Parkhill, J.; Walker, D.C.; Milner, J.J. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. Plant Biotechnol. J., 2020, 18(5), 1296-1306.
[http://dx.doi.org/10.1111/pbi.13294] [PMID: 31705720]
[59]
Martinez, R.C.R.; Wachsman, M.; Torres, N.I.; LeBlanc, J.G.; Todorov, S.D.; de Melo Franco, B.D.G. Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiol., 2013, 34(2), 376-381.
[60]
Lojewska, E.; Sakowicz, T.; Kowalczyk, A.; Konieczka, M.; Grzegorczyk, J.; Sitarek, P.; Skała, E.; Czarny, P.; Śliwiński, T. Production of recombinant colicin M in Nicotiana tabacum plants and its antimicrobial activity. Plant Biotechnol. Rep., 2013, 14(1), 33-43.
[61]
Steiner, I.; Errhalt, P.; Kubesch, K.; Hubner, M.; Holy, M.; Bauer, M.; Müller, M.; Hinterberger, S.; Widmann, R.; Mascher, D.; Freissmuth, M.; Kneussl, M. Pulmonary pharmacokinetics and safety of nebulized duramycin in healthy male volunteers. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 378(3), 323-333.
[http://dx.doi.org/10.1007/s00210-008-0293-8] [PMID: 18500510]
[62]
Fernández, L.; Delgado, S.; Herrero, H.; Maldonado, A.; Rodríguez, J.M. The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. J. Hum. Lact., 2008, 24(3), 311-316.
[http://dx.doi.org/10.1177/0890334408317435] [PMID: 18689718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy