Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Organocatalytic Synthesis and Antitumor Activity of Novel 1,2,3-triazoles Derived from Fatty β-ketoesters

Author(s): Carolina B. Gomes, Caroline L. Corrêa, Diego C. Cabrera, Marcelo G. M. D'Oca, Martha Ruiz, Tiago Collares, Lucielli Savegnago, Fabiana K. Seixas* and Diego Alves*

Volume 18, Issue 4, 2022

Page: [463 - 472] Pages: 10

DOI: 10.2174/1573406417666210921143646

Price: $65

Abstract

Background: Developing methods to synthesize highly functionalized and complex 1,2,3- triazoles from various combinations of substrates remains a significant challenge in organic synthesis. Thus, to the best of our knowledge, an organocatalytic approach to synthesize 1,2,3-triazoles derived from fatty acids has not been explored.

Objective: In this sense, we describe here the organocatalyzed synthesis and preliminary results of antitumor and cytotoxic activity of a range of 1,2,3-triazoles derived from fatty esters.

Methods: To synthesize 1,2,3-triazoles 3 derived from fatty β-ketoesters, we performed the reaction of appropriate aryl azides 2a-j with β -ketoesters 1a-c in the presence of 5 mol% of DBU using DMSO as a solvent at 70 °C for 24 h. The viability of 5637 cells was determined by measuring the reduction of soluble MTT to water-insoluble formazan. The IC50 concentration that inhibits 50% of cell growth and the results were obtained by at least three independent experiments in triplicate for each test.

Results: Through enolate-mediated organocatalysis, 1,2,3-triazoles 3 derived from fatty β-ketoesters were synthesized in moderate to excellent yields by reacting fatty esters 1 with aryl azides 2 in the presence of a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (5 mol%). All compounds derived from palmitic acetoacetate 1a were evaluated regarding induced cytotoxicity in vitro in a human bladder cancer cell line, and compounds 3a, 3d, 3e, and 3g were shown to be promising alternatives for bladder cancer treatment and presented the lowest inhibitory concentration of IC50.

Conclusion: We described a synthetic procedure to prepare 1,2,3-triazoles derived from fatty β - ketoesters by DBU-catalyzed 1,3-dipolar cycloaddition reactions of fatty esters with different aryl azides. Compounds derived from palmitic acetoacetate were screened for antitumor and cytotoxic activity in vitro in human bladder cancer cell lines, and compounds 3a, 3d, 3e, and 3g showed potential to treat bladder cancer.

Keywords: Fatty acids, fatty esters, organocatalysis, antitumoral, 1, 2, 3-triazoles, bladder cancer.

Graphical Abstract

[1]
Dehaen, W.; Bakulev, V.A. In Chemistry of 1,2,3-triazoles, 1st; Springer International Publishing: New York, 2014.
[2]
Huisgen, R. 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2, 565-598.
[http://dx.doi.org/10.1002/anie.196305651]
[3]
Breugst, M.; Reissig, H-U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(30), 12293-12307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[4]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[5]
TornØe C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[6]
Krasiński, A.; Radić, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K.B.; Kolb, H.C. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J. Am. Chem. Soc., 2005, 127(18), 6686-6692.
[http://dx.doi.org/10.1021/ja043031t] [PMID: 15869290]
[7]
Lee, L.V.; Mitchell, M.L.; Huang, S.J.; Fokin, V.V.; Sharpless, K.B.; Wong, C.H. A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc., 2003, 125(32), 9588-9589.
[http://dx.doi.org/10.1021/ja0302836] [PMID: 12904015]
[8]
Hein, J.E.; Tripp, J.C.; Krasnova, L.B.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew. Chem. Int. Ed. Engl., 2009, 48(43), 8018-8021.
[http://dx.doi.org/10.1002/anie.200903558] [PMID: 19774581]
[9]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[10]
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
[11]
McNulty, J.; Keskar, K.; Vemula, R. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chemistry, 2011, 17(52), 14727-14730.
[http://dx.doi.org/10.1002/chem.201103244] [PMID: 22125272]
[12]
McNulty, J.; Keskar, K. Discovery of a robust and efficient homogeneous silver(I) catalyst for the cycloaddition of azides onto terminal alkynes. Eur. J. Org. Chem., 2012, 5462-5470.
[http://dx.doi.org/10.1002/ejoc.201200930]
[13]
Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
[14]
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2-3), 65-87.
[http://dx.doi.org/10.1016/j.tox.2011.03.001] [PMID: 21414382]
[15]
Gierlich, J.; Burley, G.A.; Gramlich, P.M.E.; Hammond, D.M.; Carell, T. Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org. Lett., 2006, 8(17), 3639-3642.
[http://dx.doi.org/10.1021/ol0610946] [PMID: 16898780]
[16]
Lallana, E.; Fernandez-Megia, E.; Riguera, R. Surpassing the use of copper in the click functionalization of polymeric nanostructures: a strain-promoted approach. J. Am. Chem. Soc., 2009, 131(16), 5748-5750.
[http://dx.doi.org/10.1021/ja8100243] [PMID: 19348483]
[17]
Link, A.J.; Vink, M.K.S.; Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc., 2004, 126(34), 10598-10602.
[http://dx.doi.org/10.1021/ja047629c] [PMID: 15327317]
[18]
Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003, 189(1-2), 147-163.
[http://dx.doi.org/10.1016/S0300-483X(03)00159-8] [PMID: 12821289]
[19]
Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
[20]
Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry, 2011, 17(13), 3584-3587.
[http://dx.doi.org/10.1002/chem.201002775] [PMID: 21341323]
[21]
Belkheira, M.; El Abed, D.; Pons, J-M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. Chemistry, 2011, 17(46), 12917-12921.
[http://dx.doi.org/10.1002/chem.201102046] [PMID: 21984230]
[22]
Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.
[http://dx.doi.org/10.1002/chem.201103393] [PMID: 22461307]
[23]
Yeung, D.K.J.; Gao, T.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent. Green Chem., 2013, 15, 2384-2388.
[http://dx.doi.org/10.1039/c3gc41126e]
[24]
Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.
[http://dx.doi.org/10.1002/chem.201301412] [PMID: 24038664]
[25]
Li, W.; Du, Z.; Huang, J.; Jia, Q.; Zhang, K.; Wang, J. Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chem., 2014, 16, 3003-3006.
[http://dx.doi.org/10.1039/C4GC00406J]
[26]
Saraiva, M.T.; Costa, G.P.; Seus, N.; Schumacher, R.F.; Perin, G.; Paixão, M.W.; Luque, R.; Alves, D. Room-temperature organocatalytic cycloaddition of azides with β-keto sulfones: toward sulfonyl-1,2,3-triazoles. Org. Lett., 2015, 17(24), 6206-6209.
[http://dx.doi.org/10.1021/acs.orglett.5b03196] [PMID: 26632867]
[27]
Seus, N.; Goldani, B.; Lenardão, E.J.; Savegnago, L.; Paixão, M.W.; Alves, D. Organocatalytic synthesis of (arylselanyl)phenyl-1h-1,2,3-triazole-4-carboxamides by cycloaddition between azidophenyl arylselenides and β-oxo-amides. Eur. J. Org. Chem., 2014, 5, 1059-1065.
[http://dx.doi.org/10.1002/ejoc.201301547]
[28]
Seus, N.; Gonçalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixão, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456-10463.
[http://dx.doi.org/10.1016/j.tet.2012.10.007]
[29]
Alves, D.; Goldani, B.; Lenardão, E.J.; Perin, G.; Schumacher, R.F.; Paixão, M.W. Copper catalysis and organocatalysis showing the way: synthesis of selenium-containing highly functionalized 1,2,3-triazoles. Chem. Rec., 2018, 18(5), 527-542.
[http://dx.doi.org/10.1002/tcr.201700058] [PMID: 29235236]
[30]
Ali, A.; Corrêa, A.G.; Alves, D.; Zukerman-Schpector, J.; Westermann, B.; Ferreira, M.A.B.; Paixão, M.W. An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem. Commun. (Camb.), 2014, 50(80), 11926-11929.
[http://dx.doi.org/10.1039/C4CC04678A] [PMID: 25157576]
[31]
Shashank, A.B.; Karthik, S.; Madhavachary, R.; Ramachary, D.B. An enolate-mediated organocatalytic azide-ketone [3+2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1,2,3-triazoles. Chemistry, 2014, 20(51), 16877-16881.
[http://dx.doi.org/10.1002/chem.201405501] [PMID: 25367870]
[32]
Ramachary, D.B.; Shashank, A.B.; Karthik, S. An organocatalytic azide-aldehyde [3+2] cycloaddition: high-yielding regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10420-10424.
[http://dx.doi.org/10.1002/anie.201406721] [PMID: 25079606]
[33]
Jalani, H.B.; Karagöz, A.Ç.; Tsogoeva, S.B. Synthesis of substituted 1,2,3-triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synthesis, 2017, 49, 29-41.
[34]
Venepally, V.; Reddy Jala, R.C. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules. Eur. J. Med. Chem., 2017, 141, 113-137.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.069] [PMID: 29031060]
[35]
Rahman, V.P.M.; Mukhtar, S.; Ansari, W.H.; Lemiere, G. Synthesis, stereochemistry and biological activity of some novel long alkyl chain substituted thiazolidin-4-ones and thiazan-4-one from 10-undecenoic acid hydrazide. Eur. J. Med. Chem., 2005, 40(2), 173-184.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.003] [PMID: 15694652]
[36]
Takahashi, H.; Kosaka, M.; Watanabe, Y.; Nakade, K.; Fukuyama, Y. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg. Med. Chem., 2003, 11(8), 1781-1788.
[http://dx.doi.org/10.1016/S0968-0896(02)00666-1] [PMID: 12659764]
[37]
Brinkerhoff, R.C.; Santa-Helena, E.; Amaral, P.C.; Cabrera, D.C.; Ongaratto, R.F.; Oliveira, P.M.; D’Oca, C.M.; Gonçalves, C.A.; Nery, L.E.M.; D’Oca, M.G.M. Evaluation of the antioxidant activities of fatty polyhydroquinolines synthesized by Hantzsch multicomponent reactions. RSC Advances, 2019, 9, 24688.
[http://dx.doi.org/10.1039/C9RA04758A]
[38]
Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res., 2008, 57(6), 451-455.
[http://dx.doi.org/10.1016/j.phrs.2008.05.002] [PMID: 18583147]
[39]
Beck, P.; Sandos, J.M.; Kuhn, B.L.; Moreira, D.N.; Flores, A.F.C.; Martins, M.A.P.; D’Oca, M.G.M.; Piovesan, L.A. Regiospecific synthesis of new fatty n-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs). J. Braz. Chem. Soc., 2012, 23, 2122-2127.
[http://dx.doi.org/10.1590/S0103-50532012005000071]
[40]
Ghiano, D.G.; de la Iglesia, A.; Liu, N.; Tonge, P.J.; Morbidoni, H.R.; Labadie, G.R. Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur. J. Med. Chem., 2017, 125, 842-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.086] [PMID: 27750201]
[41]
Salman, S.M. Triazoles with long chain alkyl groups as a potential biological compounds. Int. J. Res. Pharm. Sci., 2019, 10, 2334-2341.
[42]
Nagao, Y.; Mustafa, J.; Sano, S.; Ochiai, M.; Tazuko, T.; Shigeru, T. Different mechanism of action of long chain fatty acid esters of podophyllotoxin and esters of epipodophyllotoxin against P388 lymphocytic leukemia in mice. Med. Chem. Res., 1991, 1, 295-299.
[43]
Jie, M.S.F.L.K.; Mustafa, J.; Pasha, M.K. Synthesis and spectral characteristics of some unusual fatty esters of podophyllotoxin. Chem. Phys. Lipids, 1999, 100, 165-170.
[http://dx.doi.org/10.1016/S0009-3084(99)00064-X]
[44]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[45]
Naselli, A.; Hurle, R.; Paparella, S.; Buffi, N.M.; Lughezzani, G.; Lista, G.; Casale, P.; Saita, A.; Lazzeri, M.; Guazzoni, G. Role of restaging transurethral resection for T1 non-muscle invasive bladder cancer: a systematic review and meta-analysis. Eur. Urol. Focus, 2018, 4(4), 558-567.
[http://dx.doi.org/10.1016/j.euf.2016.12.011] [PMID: 28753839]
[46]
Frantzi, M.; Vlahou, A.; Knowles, M.A.; Burger, M. Bladder cancer. Bladder Cancer, 2017, 3(1), 1-18.
[http://dx.doi.org/10.3233/BLC-160073] [PMID: 28149930]
[47]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[48]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4, 571.
[http://dx.doi.org/10.1186/s40064-015-1352-5] [PMID: 26543706]
[49]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-catalyzed decarboxylative/click cascade reaction: regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[50]
Sonego, M.S.; Segatto, N.V.; Damé, L.; Fronza, M.; Gomes, C.B.; Oliveira, T.L.; Seixas, F.K.; Savegnago, L.; Schachtschneider, K.M.; Alves, D.; Collares, T. 7-Chloroquinoline-1,2,3-triazoyl carboxamides induce cell cycle arrest and apoptosis in human bladder carcinoma cells. Invest. New Drugs, 2020, 38(4), 1020-1030.
[http://dx.doi.org/10.1007/s10637-019-00861-w] [PMID: 31696365]
[51]
Gontijo, V.S.; Oliveira, M.E.; Resende, R.J.; Fonseca, A.L.; Nunes, R.R.; Junior, M.C.; Taranto, A.G.; Torres, N.M.P.O.; Viana, G.H.R.; Silva, L.M.; Alves, R.B.; Varotti, F.P.; Freitas, R.P. Long-chain alkyltriazoles as antitumor agents: synthesis, physicochemical properties, and biological and computational evaluation. Med. Chem. Res., 2015, 24, 430-441.
[http://dx.doi.org/10.1007/s00044-014-1137-3]
[52]
Li, F.; Liu, Y.; Wang, S.; Wei, G.; Cheng, M. Novel 1,2,3-triazole-substituted 3-oxo-oleanolic acid derivatives. Chem. Res. Chin. Univ., 2016, 32, 938-942.
[http://dx.doi.org/10.1007/s40242-016-6301-5]
[53]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[54]
Tessmann, J.W.; Buss, J.; Begnini, K.R.; Berneira, L.M.; Paula, F.R.; de Pereira, C.M.P.; Collares, T.; Seixas, F.K. Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells. Biomed. Pharmacother., 2017, 94, 37-46.
[http://dx.doi.org/10.1016/j.biopha.2017.07.060] [PMID: 28750358]
[55]
Nedel, F.; Campos, V.F.; Alves, D.; McBride, A.J.A.; Dellagostin, O.A.; Collares, T.; Savegnago, L.; Seixas, F.K. Substituted diaryl diselenides: cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci., 2012, 91(9-10), 345-352.
[http://dx.doi.org/10.1016/j.lfs.2012.07.023] [PMID: 22884807]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy