Research Article

使用静脉内自互补己糖胺酶载体治疗成年 Sandhoff 小鼠 GM2 神经节苷脂沉积症

卷 22, 期 3, 2022

发表于: 24 November, 2021

页: [262 - 276] 页: 15

弟呕挨: 10.2174/1566523221666210916153051

价格: $65

摘要

背景:GM2 神经节苷脂沉积症是一种由 β-氨基己糖苷酶 A 酶 (Hex A)(一种 α/β-亚基异二聚体)缺乏引起的神经退行性溶酶体贮积病。由 HEX M 编码的人类氨基己糖苷酶 α 亚基的新变体先前已被证明可形成稳定的同型二聚体 Hex M,可在体内水解 GM2 神经节苷脂 (GM2)。 材料与方法:目前的研究评估了静脉内 (IV) 递送结合 HEXM 转基因 scAAV9/HEXM 的自我互补腺相关病毒血清型 9 (scAAV9) 载体的功效,包括基于提供给研究人员的剂量的结果。桑霍夫 (SD) 小鼠。六周大的 SD 小鼠被注射 2.5E+12 载体基因组(低剂量,LD)或 1.0E+13vg(高剂量,HD)。我们假设,在检查成年 SD 小鼠中 scAAV9/HEXM 的剂量比较时,HD 组将比 LD 组有更多的有益结果。评估包括生存、行为结果、载体生物分布和中枢神经系统内的酶活性。 结果:在 HD 队列中观察到毒性,14 只小鼠中有 8 只在注射后一个月内死亡。与具有 16 周典型生存期的未治疗 SD 小鼠相比,LD 组和剩余的 HD 小鼠具有显着的生存获益,平均/中位生存期分别为 40.6/34.5 和 55.9/56.7 周。还观察到显着的行为、生化和分子益处。该研究的第二个目的是研究静脉输注甘露醇对 LD scAAV9/HEXM 载体的生物分布和 SD 小鼠存活的影响。观察到载体的生物分布以及生存益处(平均/中位数为 41.6/49.3 周)均有所增加。 结论:这些结果证明了使用 IV 递送的 AAV 载体治疗 GM2 神经节苷脂沉积症的潜在益处和严重局限性。

关键词: Sandhoff,tay sachs,基因治疗,AAV,腺相关病毒,己糖胺酶 A,GM2 神经节苷脂,GM2 神经节苷脂

图形摘要

[1]
Sandhoff K. My journey into the world of sphingolipids and sphingolipidoses. Proc Jpn Acad, Ser B, Phys Biol Sci 2012; 88(10): 554-82.
[http://dx.doi.org/10.2183/pjab.88.554] [PMID: 23229750]
[2]
Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013; 33(25): 10195-208.
[http://dx.doi.org/10.1523/JNEUROSCI.0822-13.2013] [PMID: 23785136]
[3]
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta BBA - Mol Basis Dis 1999; 1455(2): 105-38.
[http://dx.doi.org/10.1016/S0925-4439(99)00074-5]
[4]
Conzelmann E, Sandhoff K. Biochemical basis of late-onset neurolipidoses. Dev Neurosci 1991; 13(4-5): 197-204.
[http://dx.doi.org/10.1159/000112160] [PMID: 1817024]
[5]
Conzelmann E, Sandhoff K. Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 1984; 6(1): 58-71.
[6]
Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992; 88(5): 513-23.
[http://dx.doi.org/10.1007/BF00219337] [PMID: 1348043]
[7]
Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013; 69: 82-8.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.004] [PMID: 22465202]
[8]
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther 2016; 27(7): 478-96.
[http://dx.doi.org/10.1089/hum.2016.087] [PMID: 27267688]
[9]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14(3): 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[10]
Sargeant TJ, Wang S, Bradley J, et al. Adeno-associated virus-mediated expression of β-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain. Hum Mol Genet 2011; 20(22): 4371-80.
[http://dx.doi.org/10.1093/hmg/ddr364] [PMID: 21852247]
[11]
Cachón-González MB, Wang SZ, McNair R, et al. Gene transfer corrects acute GM2 gangliosidosis-potential therapeutic contribution of perivascular enzyme flow. Mol Ther 2012; 20(8): 1489-500.
[http://dx.doi.org/10.1038/mt.2012.44] [PMID: 22453766]
[12]
Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 2006; 103(27): 10373-8.
[http://dx.doi.org/10.1073/pnas.0603765103] [PMID: 16801539]
[13]
Bradbury AM, Cochran JN, McCurdy VJ, et al. Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 2013; 21(7): 1306-15.
[http://dx.doi.org/10.1038/mt.2013.86] [PMID: 23689599]
[14]
Cachón-González MB, Wang SZ, Ziegler R, Cheng SH, Cox TM. Reversibility of neuropathology in Tay-Sachs-related diseases. Hum Mol Genet 2014; 23(3): 730-48.
[http://dx.doi.org/10.1093/hmg/ddt459] [PMID: 24057669]
[15]
Bourgoin C, Emiliani C, Kremer EJ, et al. Widespread distribution of beta-hexosaminidase activity in the brain of a Sandhoff mouse model after coinjection of adenoviral vector and mannitol. Gene Ther 2003; 10(21): 1841-9.
[http://dx.doi.org/10.1038/sj.gt.3302081] [PMID: 12960974]
[16]
Mastakov MY, Baer K, Xu R, Fitzsimons H, During MJ. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 2001; 3(2): 225-32.
[http://dx.doi.org/10.1006/mthe.2001.0246] [PMID: 11237679]
[17]
Brown RC, Egleton RD, Davis TP. Mannitol opening of the blood-brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res 2004; 1014(1-2): 221-7.
[http://dx.doi.org/10.1016/j.brainres.2004.04.034] [PMID: 15213006]
[18]
Carty N, Lee D, Dickey C, et al. Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010; 194(1): 144-53.
[http://dx.doi.org/10.1016/j.jneumeth.2010.10.010] [PMID: 20951738]
[19]
Walia JS, Altaleb N, Bello A, et al. Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol Ther 2015; 23(3): 414-22.
[http://dx.doi.org/10.1038/mt.2014.240] [PMID: 25515709]
[20]
Niemir N, Rouvière L, Besse A, et al. Intravenous administration of scAAV9-Hexb normalizes lifespan and prevents pathology in Sandhoff disease mice. Hum Mol Genet 2018; 27(6): 954-68.
[http://dx.doi.org/10.1093/hmg/ddy012] [PMID: 29325092]
[21]
Osmon KJ, Woodley E, Thompson P, et al. Systemic gene transfer of a hexosaminidase variant using an scAAV9.47 vector corrects GM2 gangliosidosis in sandhoff mice. Hum Gene Ther 2016; 27(7): 497-508.
[http://dx.doi.org/10.1089/hum.2016.015] [PMID: 27199088]
[22]
Tropak MB, Yonekawa S, Karumuthil-Melethil S, et al. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol Ther Methods Clin Dev 2016; 3: 15057.
[http://dx.doi.org/10.1038/mtm.2015.57] [PMID: 26966698]
[23]
Kyrkanides S, Miller JH, Brouxhon SM, Olschowka JA, Federoff HJ. beta-hexosaminidase lentiviral vectors: transfer into the CNS via systemic administration. Brain Res Mol Brain Res 2005; 133(2): 286-98.
[http://dx.doi.org/10.1016/j.molbrainres.2004.10.026] [PMID: 15710246]
[24]
Guidotti JE, Mignon A, Haase G, et al. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum Mol Genet 1999; 8(5): 831-8.
[http://dx.doi.org/10.1093/hmg/8.5.831] [PMID: 10196372]
[25]
Martino S, Marconi P, Tancini B, et al. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 2005; 14(15): 2113-23.
[http://dx.doi.org/10.1093/hmg/ddi216] [PMID: 15961412]
[26]
Rockwell HE, McCurdy VJ, Eaton SC, et al. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro 2015; 7(2): 1759091415569908. Availalble from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720176/
[http://dx.doi.org/10.1177/1759091415569908] [PMID: 25873306]
[27]
McCurdy VJ, Rockwell HE, Arthur JR, et al. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease. Gene Ther 2015; 22(2): 181-9.
[http://dx.doi.org/10.1038/gt.2014.108] [PMID: 25474439]
[28]
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF. Adeno-associated virus gene therapy in a sheep model of tay-sachs disease. Hum Gene Ther 2018; 29(3): 312-26.
[PMID: 28922945]
[29]
Karumuthil-Melethil S, Nagabhushan Kalburgi S, Thompson P. Novel vector design and hexosaminidase variant enabling self- complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum Gene Ther 2016; 27(7): 509-21.
[http://dx.doi.org/10.1089/hum.2016.013] [PMID: 27197548]
[30]
Woodley E, Osmon KJL, Thompson P, et al. Efficacy of a bicistronic vector for correction of Sandhoff disease in a mouse model. Mol Ther Methods Clin Dev 2018; 12: 47-57.
[http://dx.doi.org/10.1016/j.omtm.2018.10.011] [PMID: 30534578]
[31]
Arfi A, Bourgoin C, Basso L, et al. Bicistronic lentiviral vector corrects beta-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 2005; 20(2): 583-93.
[http://dx.doi.org/10.1016/j.nbd.2005.04.017] [PMID: 15953731]
[32]
Igdoura SA, Mertineit C, Trasler JM, Gravel RA. Sialidase-mediated depletion of GM2 ganglioside in Tay-Sachs neuroglia cells. Hum Mol Genet 1999; 8(6): 1111-6.
[http://dx.doi.org/10.1093/hmg/8.6.1111] [PMID: 10332044]
[33]
Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19(6): 1058-69.
[http://dx.doi.org/10.1038/mt.2011.72] [PMID: 21487395]
[34]
McCown TJ. Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 2005; 5(3): 333-8.
[http://dx.doi.org/10.2174/1566523054064995] [PMID: 15975010]
[35]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[36]
Duque S, Joussemet B, Riviere C, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17(7): 1187-96.
[http://dx.doi.org/10.1038/mt.2009.71] [PMID: 19367261]
[37]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[38]
Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med 2008; 10(7): 717-33.
[http://dx.doi.org/10.1002/jgm.1205] [PMID: 18452237]
[39]
Sango K, McDonald MP, Crawley JN, et al. Mice lacking both subunits of lysosomal β-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet 1996; 14(3): 348-52.
[http://dx.doi.org/10.1038/ng1196-348] [PMID: 8896570]
[40]
Sango K, Yamanaka S, Hoffmann A, et al. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 1995; 11(2): 170-6.
[http://dx.doi.org/10.1038/ng1095-170] [PMID: 7550345]
[41]
Jackson laboratory - B6;129S4-Hexb tm1Rlp/J. Availalble from: https://www.jax.org/strain/002914 [Cited 2019 Mar 6]
[42]
Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013; 20(4): 450-9.
[http://dx.doi.org/10.1038/gt.2012.101] [PMID: 23303281]
[43]
Osmon KJL, Vyas M, Woodley E, Thompson P, Walia JS. Battery of behavioral tests assessing general locomotion, muscular strength, and coordination in mice. J Vis Exp 2018; (131): e55491-1.
[http://dx.doi.org/10.3791/55491] [PMID: 29443024]
[44]
Maegawa GHB, Tropak M, Buttner J, et al. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J Biol Chem 2007; 282(12): 9150-61.
[http://dx.doi.org/10.1074/jbc.M609304200] [PMID: 17237499]
[45]
Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D. Pharmacological enhancement of β-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J Biol Chem 2004; 279(14): 13478-87.
[http://dx.doi.org/10.1074/jbc.M308523200] [PMID: 14724290]
[46]
Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 2010; 18(3): 570-8.
[http://dx.doi.org/10.1038/mt.2009.292] [PMID: 20040913]
[47]
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
[http://dx.doi.org/10.1016/S0021-9258(18)64849-5] [PMID: 13428781]
[48]
Folch J, Ascoli I, Lees M, Meath JA, LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem 1951; 191(2): 833-41.
[http://dx.doi.org/10.1016/S0021-9258(18)55987-1] [PMID: 14861228]
[49]
Tropak MB, Bukovac SW, Rigat BA, Yonekawa S, Wakarchuk W, Mahuran DJ. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates. Glycobiology 2010; 20(3): 356-65.
[http://dx.doi.org/10.1093/glycob/cwp183] [PMID: 19917668]
[50]
Wherrett JR, Cumings NJ. Detection and resolution of gangliosides in lipid extracts by thin-layer chromatography. Biochem J 1963; 86(2): 378-82.
[http://dx.doi.org/10.1042/bj0860378] [PMID: 14000254]
[51]
Yamada T, Bando H, Takeuchi S, et al. Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells. Cancer Sci 2011; 102(12): 2157-63.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02093.x] [PMID: 21895875]
[52]
Suzuki K, Proia RL, Suzuki K. Mouse models of human lysosomal diseases. Brain Pathol 1998; 8(1): 195-215.
[http://dx.doi.org/10.1111/j.1750-3639.1998.tb00145.x] [PMID: 9458176]
[53]
Phaneuf D, Wakamatsu N, Huang J-Q, et al. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 1996; 5(1): 1-14.
[http://dx.doi.org/10.1093/hmg/5.1.1] [PMID: 8789434]
[54]
Pulicherla N, Shen S, Yadav S, et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 2011; 19(6): 1070-8.
[http://dx.doi.org/10.1038/mt.2011.22] [PMID: 21364538]
[55]
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 2018; 29(3): 285-98.
[http://dx.doi.org/10.1089/hum.2018.015] [PMID: 29378426]
[56]
Golebiowski D, van der Bom IMJ, Kwon C-S, et al. Direct intracranial injection of AAVrh8 encoding monkey β-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum Gene Ther 2017; 28(6): 510-22.
[http://dx.doi.org/10.1089/hum.2016.109] [PMID: 28132521]
[57]
Walkley SU, Vanier MT. Pathomechanisms in lysosomal storage disorders. Biochim Biophys Acta 2009; 1793(4): 726-36.
[http://dx.doi.org/10.1016/j.bbamcr.2008.11.014] [PMID: 19111580]
[58]
Fandino W. Understanding the physiological changes induced by mannitol: From the theory to the clinical practice in neuroanaesthesia. J Neuroanaesth Crit Care 2017; (4): 138-46.
[http://dx.doi.org/10.4103/jnacc.jnacc_31_17]
[59]
Archer DP, Freymond D, Ravussin P. Utilisation du mannitol en neuroanesthésie et neuroréanimation. Ann Fr Anesth Reanim 1995; 14(1): 77-82.
[http://dx.doi.org/10.1016/S0750-7658(05)80154-6] [PMID: 7677291]
[60]
Winkler SR, Munoz-Ruiz L. Mechanism of action of mannitol. Surg Neurol 1995; 43(1): 59.
[http://dx.doi.org/10.1016/0090-3019(95)80039-J] [PMID: 7701425]
[61]
McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H. Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 2009; 16(11): 1340-52.
[http://dx.doi.org/10.1038/gt.2009.85] [PMID: 19587708]
[62]
Foley CP, Rubin DG, Santillan A, et al. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J Control Release 2014; 196: 71-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.018] [PMID: 25270115]
[63]
Donsante A, Vogler C, Muzyczka N, et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 2001; 8(17): 1343-6.
[http://dx.doi.org/10.1038/sj.gt.3301541] [PMID: 11571571]
[64]
Russell DW. AAV vectors, insertional mutagenesis, and cancer. Mol Ther 2007; 15(10): 1740-3.
[http://dx.doi.org/10.1038/sj.mt.6300299] [PMID: 17882145]
[65]
Bell P, Moscioni AD, McCarter RJ, et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006; 14(1): 34-44.
[http://dx.doi.org/10.1016/j.ymthe.2006.03.008] [PMID: 16682254]
[66]
Chandler RJ, LaFave MC, Varshney GK, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015; 125(2): 870-80.
[http://dx.doi.org/10.1172/JCI79213] [PMID: 25607839]
[67]
Ruan C, Liu L, Wang Q, et al. Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Appl Mater Interfaces 2018; 10(12): 10398-408.
[http://dx.doi.org/10.1021/acsami.8b01712] [PMID: 29498264]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy