Review Article

Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges and Opportunities

Author(s): Rakesh K. Sindhu*, Piyush Madaan, Parteek Chandel, Rokeya Akter, Griddaluri Adilakshmi and Md. Habibur Rahman*

Volume 22, Issue 3, 2022

Page: [245 - 261] Pages: 17

DOI: 10.2174/1566523221666210916113609

Price: $65

Abstract

Background: Autoimmune diseases are the diseases that result due to the overactive immune response, and comprehend systemic autoimmune diseases like Rheumatoid Arthritis (RA), Sjӧgren’s Syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), Myasthenia Gravis (MG), and Inflammatory Bowel Disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases.

Objective: The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy.

Methods: Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article.

Results: The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby compete with the progression of autoimmune diseases.

Conclusion: Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.

Keywords: Immune system, autoimmune diseases, gene therapy, rheumatoid arthritis, type-1 diabetes mellitus, inflammatory bowel disease.

Graphical Abstract

[1]
Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 2019; 25(1): 13-26.
[http://dx.doi.org/10.1016/j.chom.2018.12.006] [PMID: 30629914]
[2]
Alderuccio F, Nasa Z, Chung J, Ko HJ, Chan J, Toh BH. Hematopoietic stem cell gene therapy as a treatment for autoimmune diseases. Mol Pharm 2011; 8(5): 1488-94.
[http://dx.doi.org/10.1021/mp2001523] [PMID: 21732672]
[3]
Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol 2005; 116(2): 241-9.
[http://dx.doi.org/10.1016/j.jaci.2005.05.036] [PMID: 16083775]
[4]
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[5]
Kubelkova K, Macela A. Innate immune recognition: an issue more complex than expected. Front Cell Infect Microbiol 2019; 9: 241.
[http://dx.doi.org/10.3389/fcimb.2019.00241] [PMID: 31334134]
[6]
Lee KH, Ahn BS, Cha D, et al. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun Rev 2020; 19(3): 102469.
[http://dx.doi.org/10.1016/j.autrev.2020.102469] [PMID: 31918027]
[7]
Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol 2017; 18(7): 716-24.
[http://dx.doi.org/10.1038/ni.3731] [PMID: 28632714]
[8]
Phillips BE, Trucco M. Immunotherapy-based strategies for the treatment of autoimmune diabetes: searching for the cure. Curr Pharm Des 2011; 17(29): 3217-23.
[http://dx.doi.org/10.2174/138161211798157603] [PMID: 21864264]
[9]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[10]
Diny NL, Rose NR, Čiháková D. Eosinophils in autoimmune diseases. Front Immunol 2017; 8: 484.
[http://dx.doi.org/10.3389/fimmu.2017.00484] [PMID: 28496445]
[11]
Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. Am J Pathol 2008; 173(3): 600-9.
[http://dx.doi.org/10.2353/ajpath.2008.071008] [PMID: 18688037]
[12]
Nakajima A, Seroogy CM, Sandora MR, et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001; 107(10): 1293-301.
[http://dx.doi.org/10.1172/JCI12037] [PMID: 11375419]
[13]
Patil SR, Al-Zoubi IA, Raghuram PH, Misra N, Yadav N, Alam M. Gene therapy: A comprehensive review. Int Med J 2018; 25(6): 361-4.
[14]
Patil PM, Chaudhari PD, Sahu M, Duragkar NJ. Review article on gene therapy. Res J Pharmacol Pharmacodyn 2012; 4(2): 77-83.
[15]
Lang KS, Burow A, Kurrer M, Lang PA, Recher M. The role of the innate immune response in autoimmune disease. J Autoimmun 2007; 29(4): 206-12.
[http://dx.doi.org/10.1016/j.jaut.2007.07.018] [PMID: 17904335]
[16]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[17]
Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu Rev Biochem 2005; 74: 711-38.
[http://dx.doi.org/10.1146/annurev.biochem.74.050304.091637] [PMID: 15952901]
[18]
Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med 2000; 343(1): 37-49.
[http://dx.doi.org/10.1056/NEJM200007063430107] [PMID: 10882768]
[19]
Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20(1): 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[20]
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291-5.
[http://dx.doi.org/10.1126/science.1183021] [PMID: 20075244]
[21]
Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S33-40.
[http://dx.doi.org/10.1016/j.jaci.2009.09.017] [PMID: 20061006]
[22]
Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018; 14(Suppl. 2): 49.
[http://dx.doi.org/10.1186/s13223-018-0278-1] [PMID: 30263032]
[23]
Davidson A, Diamond B. Autoimmune diseases. N Engl J Med 2001; 345(5): 340-50.
[http://dx.doi.org/10.1056/NEJM200108023450506] [PMID: 11484692]
[24]
Munakata Y, Saito S, Hoshino A, et al. Somatic mutation in autoantibody-associated VH genes of circulating IgM+IgD+ B cells. Eur J Immunol 1998; 28(5): 1435-44.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1435::AID-IMMU1435>3.0.CO;2-R] [PMID: 9603448]
[25]
Smilek DE, Ehlers MR, Nepom GT. Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis Model Mech 2014; 7(5): 503-13.
[http://dx.doi.org/10.1242/dmm.015099] [PMID: 24795433]
[26]
Konforte D, Diamandis EP, van Venrooij WJ, Lories R, Ward MM. Autoimmune diseases: early diagnosis and new treatment strategies. Clin Chem 2012; 58(11): 1510-4.
[http://dx.doi.org/10.1373/clinchem.2012.189480] [PMID: 22761474]
[27]
Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 2009; 27: 363-91.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132653] [PMID: 19302045]
[28]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[29]
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5(11): 1642-61.
[http://dx.doi.org/10.1002/emmm.201202287] [PMID: 24106209]
[30]
Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2005; 28(S37)(Suppl. 1): S37-42.
[PMID: 15618111]
[31]
Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev 2017; 13(1): 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[32]
Bailes BK. Diabetes mellitus and its chronic complications. AORN J 2002; 76(2): 266-76.
[http://dx.doi.org/10.1016/S0001-2092(06)61065-X] [PMID: 12194653]
[33]
Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself 2010; 1(3): 165-75.
[http://dx.doi.org/10.4161/self.1.3.12643] [PMID: 21487475]
[34]
Agarwal P, Khatri P, Billack B, Low WK, Shao J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 2014; 31(12): 3404-14.
[http://dx.doi.org/10.1007/s11095-014-1430-3] [PMID: 24928365]
[35]
Jansari S, Devashri N, Dhanani A, Chauhan N. Differentiation of stem cells into pancreatic β-cells: regenerative medicine for diabetes. IJBPR 2014; 5(12): 901-9.
[36]
So WY, Ng MC, Lee SC, Sanke T, Lee HK, Chan JC. Genetics of type 2 diabetes mellitus. Hong Kong Med J 2000; 6(1): 69-76.
[PMID: 10793405]
[37]
Chellappan DK, Sivam NS, Teoh KX, et al. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108: 1188-200.
[http://dx.doi.org/10.1016/j.biopha.2018.09.138] [PMID: 30372820]
[38]
Liu X, Zhang S, Li X, Zheng P, Hu F, Zhou Z. Vaccination with a co-expression DNA plasmid containing GAD65 fragment gene and IL-10 gene induces regulatory CD4(+) T cells that prevent experimental autoimmune diabetes. Diabetes Metab Res Rev 2016; 32(6): 522-33.
[http://dx.doi.org/10.1002/dmrr.2780] [PMID: 26797873]
[39]
Jerram ST, Leslie RD. The genetic architecture of type 1 diabetes. Genes (Basel) 2017; 8(8): 209.
[http://dx.doi.org/10.3390/genes8080209] [PMID: 28829396]
[40]
Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel) 2013; 4(3): 499-521.
[http://dx.doi.org/10.3390/genes4030499] [PMID: 24705215]
[41]
Mallol C, Casana E, Jimenez V, et al. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6(7): 664-80.
[http://dx.doi.org/10.1016/j.molmet.2017.05.007] [PMID: 28702323]
[42]
Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 2010; 62(2): 199-236.
[http://dx.doi.org/10.1124/pr.109.002469] [PMID: 20392809]
[43]
Kaino Y, Hirai H, Ito T, Kida K. Insulin-like growth factor I (IGF-I) delays the onset of diabetes in non-obese diabetic (NOD) mice. Diabetes Res Clin Pract 1996; 34(1): 7-11.
[http://dx.doi.org/10.1016/S0168-8227(96)01326-5] [PMID: 8968685]
[44]
Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol 2016; 99(6): 1131-40.
[http://dx.doi.org/10.1189/jlb.3A0815-371RRR] [PMID: 26667474]
[45]
Rao P, Cozar-Castellano I, Roccisana J, Vasavada RC, Garcia-Ocaña A. Hepatocyte growth factor gene therapy for islet transplantation. Expert Opin Biol Ther 2004; 4(4): 507-18.
[http://dx.doi.org/10.1517/14712598.4.4.507] [PMID: 15102600]
[46]
Song S, Goudy K, Campbell-Thompson M, et al. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther 2004; 11(2): 181-6.
[http://dx.doi.org/10.1038/sj.gt.3302156] [PMID: 14712302]
[47]
Fleixo-Lima G, Ventura H, Medini M, Bar L, Strauss P, Lewis EC. Mechanistic evidence in support of alpha1-antitrypsin as a therapeutic approach for type 1 diabetes. J Diabetes Sci Technol 2014; 8(6): 1193-203.
[http://dx.doi.org/10.1177/1932296814547096] [PMID: 25155845]
[48]
Yue Z, Zhang L, Li C, et al. Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnol Biotechnol Equip 2019; 33(1): 1150-7.
[http://dx.doi.org/10.1080/13102818.2019.1643783]
[49]
Wang J, Wen J, Bai D, Guo Y. Injection of submandibular gland with recombinant Exendin-4 and adeno-associated virus for the treatment of diabetic rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40(11): 1179-85.
[PMID: 26643419]
[50]
Chen J, Chen S, Huang P, et al. In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia 2015; 58(5): 1036-44.
[http://dx.doi.org/10.1007/s00125-015-3521-z] [PMID: 25720603]
[51]
Abderrazak A, El Hadri K, Bosc E, et al. Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic β-cells from apoptosis, and prevents type 2 diabetes mellitus development in ApoE2Ki mice on a chronic high-fat diet. J Pharmacol Exp Ther 2016; 357(3): 487-94.
[http://dx.doi.org/10.1124/jpet.116.232934] [PMID: 27044804]
[52]
Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2018; 10(8): e8791.
[http://dx.doi.org/10.15252/emmm.201708791] [PMID: 29987000]
[53]
Strowski MZ. Impact of FGF21 on glycemic control. Horm Mol Biol Clin Investig 2017; 30(2): 1-6.
[http://dx.doi.org/10.1515/hmbci-2017-0001] [PMID: 28593912]
[54]
Shiezadeh Z, Sajedi H, Aflakie E. Diagnosis of rheumatoid arthritis using an ensemble learning approach. Comput Sci Inf Technol(CS & IT) 2015; 5(15): 139-48.
[http://dx.doi.org/10.5121/csit.2015.51512]
[55]
Deviatkin AA, Vakulenko YA, Akhmadishina LV, et al. Emerging concepts and challenges in rheumatoid arthritis gene therapy. Biomedicines 2020; 8(1): 9.
[http://dx.doi.org/10.3390/biomedicines8010009] [PMID: 31936504]
[56]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[57]
Heidari B. Rheumatoid arthritis: Early diagnosis and treatment outcomes. Caspian J Intern Med 2011; 2(1): 161-70.
[PMID: 24024009]
[58]
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40: 67-73.
[http://dx.doi.org/10.1016/j.coph.2018.03.013] [PMID: 29625332]
[59]
Sun Y, Lv X, Ding P, et al. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97: 93-104.
[http://dx.doi.org/10.1016/j.actbio.2019.06.059] [PMID: 31386928]
[60]
Tas SW, Adriaansen J, Hajji N, et al. Amelioration of arthritis by intraarticular dominant negative Ikk β gene therapy using adeno-associated virus type 5. Hum Gene Ther 2006; 17(8): 821-32.
[http://dx.doi.org/10.1089/hum.2006.17.821] [PMID: 16942442]
[61]
Adriaansen J, Vervoordeldonk MJ, Tak PP. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology (Oxford) 2006; 45(6): 656-68.
[http://dx.doi.org/10.1093/rheumatology/kel047] [PMID: 16510530]
[62]
Tarner IH, Neumann E, Gay S, Fathman CG, Müller-Ladner U. Developing the concept of adoptive cellular gene therapy of rheumatoid arthritis. Autoimmun Rev 2006; 5(2): 148-52.
[http://dx.doi.org/10.1016/j.autrev.2005.09.009] [PMID: 16431349]
[63]
Nakajima A. Application of cellular gene therapy for rheumatoid arthritis. Mod Rheumatol 2006; 16(5): 269-75.
[http://dx.doi.org/10.3109/s10165-006-0501-7] [PMID: 17039306]
[64]
Smeets RL, van de Loo FA, Arntz OJ, Bennink MB, Joosten LA, van den Berg WB. Adenoviral delivery of IL-18 binding protein C ameliorates collagen-induced arthritis in mice. Gene Ther 2003; 10(12): 1004-11.
[http://dx.doi.org/10.1038/sj.gt.3301986] [PMID: 12776157]
[65]
Hsu YH, Hsieh PP, Chang MS. Interleukin-19 blockade attenuates collagen-induced arthritis in rats. Rheumatology (Oxford) 2012; 51(3): 434-42.
[http://dx.doi.org/10.1093/rheumatology/ker127] [PMID: 21719423]
[66]
Palmer G, Talabot-Ayer D, Lamacchia C, et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 2009; 60(3): 738-49.
[http://dx.doi.org/10.1002/art.24305] [PMID: 19248109]
[67]
Steen-Louws C, Hartgring SAY, Popov-Celeketic J, et al. IL4-10 fusion protein: a novel immunoregulatory drug combining activities of interleukin 4 and interleukin 10. Clin Exp Immunol 2019; 195(1): 1-9.
[http://dx.doi.org/10.1111/cei.13224] [PMID: 30307604]
[68]
Gouze E, Ghivizzani SC, Robbins PD, Evans CH. Gene therapy for rheumatoid arthritis. Curr Rheumatol Rep 2001; 3(1): 79-85.
[http://dx.doi.org/10.1007/s11926-001-0054-x] [PMID: 11177774]
[69]
Jonsson R, Haga HJ, Gordon TP. Current concepts on diagnosis, autoantibodies and therapy in Sjögren’s syndrome. Scand J Rheumatol 2000; 29(6): 341-8.
[http://dx.doi.org/10.1080/030097400447525] [PMID: 11132201]
[70]
Hertl M. Autoimmune diseases of the skin pathogenesis, diagnosis, management. NewYork: Springer Wien 2001; pp. 1-469.
[71]
Theander E, Jacobsson LT. Relationship of Sjögren’s syndrome to other connective tissue and autoimmune disorders. Rheum Dis Clin North Am 2008; 34(4): 935-47.
[http://dx.doi.org/10.1016/j.rdc.2008.08.009] [PMID: 18984413]
[72]
Kassan SS, Moutsopoulos HM. Clinical manifestations and early diagnosis of Sjögren syndrome. Arch Intern Med 2004; 164(12): 1275-84.
[http://dx.doi.org/10.1001/archinte.164.12.1275] [PMID: 15226160]
[73]
Brito-Zerón P, Baldini C, Bootsma H, et al. Sjögren syndrome. Nat Rev Dis Primers 2016; 2(1): 16047.
[http://dx.doi.org/10.1038/nrdp.2016.47] [PMID: 27383445]
[74]
Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, Bosch X, Tzioufas AG. Topical and systemic medications for the treatment of primary Sjögren’s syndrome. Nat Rev Rheumatol 2012; 8(7): 399-411.
[http://dx.doi.org/10.1038/nrrheum.2012.53] [PMID: 22549247]
[75]
Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Burmester GR, Dörner T. The diagnosis and treatment of Sjögren’s syndrome. Dtsch Arztebl Int 2017; 114(20): 354-61.
[http://dx.doi.org/10.3238/arztebl.2017.0354] [PMID: 28610655]
[76]
Bayetto K, Logan RM. Sjögren’s syndrome: a review of aetiology, pathogenesis, diagnosis and management. Aust Dent J 2010; 55(s1)(Suppl. 1): 39-47.
[http://dx.doi.org/10.1111/j.1834-7819.2010.01197.x] [PMID: 20553243]
[77]
Moutsopoulos HM. Sjögren’s syndrome: autoimmune epithelitis. Clin Immunol Immunopathol 1994; 72(2): 162-5.
[http://dx.doi.org/10.1006/clin.1994.1123] [PMID: 8050187]
[78]
Bolstad AI, Jonsson R. Gene therapeutics in Sjögren’s syndrome. Expert Opin Biol Ther 2005; 5(6): 763-72.
[http://dx.doi.org/10.1517/14712598.5.6.763] [PMID: 15952907]
[79]
Lai Z, Yin H, Cabrera-Pérez J, et al. Aquaporin gene therapy corrects Sjögren’s syndrome phenotype in mice. Proc Natl Acad Sci USA 2016; 113(20): 5694-9.
[http://dx.doi.org/10.1073/pnas.1601992113] [PMID: 27140635]
[80]
Voutetakis A, Kok MR, Zheng C, et al. Reengineered salivary glands are stable endogenous bioreactors for systemic gene therapeutics. Proc Natl Acad Sci USA 2004; 101(9): 3053-8.
[http://dx.doi.org/10.1073/pnas.0400136101] [PMID: 14978265]
[81]
Su HJ, Chiu YT, Chiu CT, et al. Inflammatory bowel disease and its treatment in 2018: Global and Taiwanese status updates. J Formos Med Assoc 2019; 118(7): 1083-92.
[http://dx.doi.org/10.1016/j.jfma.2018.07.005] [PMID: 30054112]
[82]
Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 2002; 15(1): 79-94.
[http://dx.doi.org/10.1128/CMR.15.1.79-94.2002] [PMID: 11781268]
[83]
Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel diseas. J Immunol Res 2019; 2019: 7247238.
[84]
Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126(6): 1504-17.
[http://dx.doi.org/10.1053/j.gastro.2004.01.063] [PMID: 15168363]
[85]
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113-22.
[PMID: 31406511]
[86]
Barbalho SM, Bechara MD, de Alvares Goulart R, et al. Reflections about inflammatory bowel disease and vitamins A and D. J Med Food 2016; 19(12): 1105-10.
[http://dx.doi.org/10.1089/jmf.2016.0101] [PMID: 27779898]
[87]
Meissner Y, Lamprecht A. Alternative drug delivery approaches for the therapy of inflammatory bowel disease. J Pharm Sci 2008; 97(8): 2878-91.
[http://dx.doi.org/10.1002/jps.21216] [PMID: 17948914]
[88]
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical regulator of ileal microbiota and Crohn’s disease. Front Immunol 2016; 7: 367.
[http://dx.doi.org/10.3389/fimmu.2016.00367] [PMID: 27703457]
[89]
Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 603-6.
[http://dx.doi.org/10.1038/35079114] [PMID: 11385577]
[90]
Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 599-603.
[http://dx.doi.org/10.1038/35079107] [PMID: 11385576]
[91]
Ido A, Numata M, Kodama M, Tsubouchi H. Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J Gastroenterol 2005; 40(10): 925-31.
[http://dx.doi.org/10.1007/s00535-005-1705-x] [PMID: 16261428]
[92]
Katayama K, Wada K, Nakajima A, et al. A novel PPAR γ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterology 2003; 124(5): 1315-24.
[http://dx.doi.org/10.1016/S0016-5085(03)00262-2] [PMID: 12730872]
[93]
Thanvi BR, Lo TC. Update on myasthenia gravis. Postgrad Med J 2004; 80(950): 690-700.
[http://dx.doi.org/10.1136/pgmj.2004.018903] [PMID: 15579606]
[94]
Jayam Trouth A, Dabi A, Solieman N, Kurukumbi M, Kalyanam J. Myasthenia gravis: a review. Autoimmune Dis 2012; 2012: 874680.
[http://dx.doi.org/10.1155/2012/874680]
[95]
Gilhus NE, Owe JF, Hoff JM, Romi F, Skeie GO, Aarli JA. Myasthenia gravis: a review of available treatment approaches. Postgrad Med J 2011; 80(950): 690-700.
[http://dx.doi.org/10.4061/2011/847393]
[96]
Jordan A, Freimer M. Recent advances in understanding and managing myasthenia gravis. F1000 Res 2018; 7: 7.
[http://dx.doi.org/10.12688/f1000research.15973.1] [PMID: 30443340]
[97]
Dalakas MC. Progress in the therapy of myasthenia gravis: getting closer to effective targeted immunotherapies. Curr Opin Neurol 2020; 33(5): 545-52.
[http://dx.doi.org/10.1097/WCO.0000000000000858] [PMID: 32833750]
[98]
Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000 Res 2016; 5: 5.
[http://dx.doi.org/10.12688/f1000research.8206.1] [PMID: 27408701]
[99]
Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002; 2(10): 797-804.
[http://dx.doi.org/10.1038/nri916] [PMID: 12360217]
[100]
Zagoriti Z, Kambouris ME, Patrinos GP, Tzartos SJ, Poulas K. Recent advances in genetic predisposition of myasthenia gravis. Biomed Res Int 2013; 2013: 404053.
[http://dx.doi.org/10.1155/2013/404053]
[101]
Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis - a comprehensive review. J Autoimmun 2014; 52: 146-53.
[http://dx.doi.org/10.1016/j.jaut.2013.12.001] [PMID: 24361103]
[102]
Zdanowicz MM. The pharmacology of immunosuppression. Am J Pharm Educ 2009; 73(8): 144.
[http://dx.doi.org/10.5688/aj7308144] [PMID: 20221337]
[103]
Jafarlou M, Baradaran B, Saedi TA, et al. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy. J Biol Regul Homeost Agents 2016; 30(2): 315-21.
[PMID: 27358116]
[104]
Danzon P, Towse A. The economics of gene therapy and of pharmacogenetics. Value Health 2002; 5(1): 5-13.
[http://dx.doi.org/10.1046/j.1524-4733.2002.51081.x] [PMID: 11873384]
[105]
Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013; 36(1): 1-22.
[PMID: 23435812]
[106]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[107]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[108]
Anson DS. The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet Vaccines Ther 2004; 2(1): 9.
[http://dx.doi.org/10.1186/1479-0556-2-9] [PMID: 15310406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy