Research Article

Computational Analysis Illustrates the Mechanism of Qingfei Paidu Decoction in Blocking the Transition of COVID-19 Patients from Mild to Severe Stage

Author(s): Xianhai Li, Liu Xiang, Yue Lin, Qiang Tang, Fanbo Meng and Wei Chen*

Volume 22, Issue 3, 2022

Published on: 07 September, 2021

Page: [277 - 289] Pages: 13

DOI: 10.2174/1566523221666210907162005

Price: $65

Abstract

Background: The epidemic of SARS-CoV-2 has made COVID-19 a serious threat to human health around the world. The severe infections of SARS-CoV-2 are usually accompanied by higher mortality. Although the Qingfei Paidu Decoction (QFPDD) has been proved to be effective in blocking the transition of COVID-19 patients from mild to severe stage, its mechanism remains unclear.

Objective: This study aims to explore the mechanism of QFPDD in blocking the transition of COVID- 19 patients from mild to severe stage.

Materials and Methods: In the process of screening active ingredients, oral bioavailability (OB) and drug likeness (DL) are key indicators, which can help to screen out pivotal compounds. Therefore, with the criteria of OB≥30% and DL≥0.18, we searched active ingredients of QFPDD in the Traditional Chinese Medicine Systems Pharmacology (TCMSP, https://tcmspw.com/) by using its 21 herbs as keywords.

Results: We filtered out 6 pivotal ingredients from QFPDD by using the bioinformatics method, namely quercetin, luteolin, berberine, hederagenin, shionone and kaempferol, which can inhibit the highly expressed genes (i.e. CXCR4, ICAM1, CXCL8, CXCL10, IL6, IL2, CCL2, IL1B, IL4, IFNG) in severe COVID-19 patients. By performing KEGG enrichment analysis, we found seven pathways, namely TNF signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, NFkappa B signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, and Th17 cell differentiation, by which QFPDD could block the transition of COVID-19 patients from mild to severe stage.

Conclusion: QFPDD can prevent the deterioration of COVID-19 in the following mechanisms, i.e. inhibiting SARS-CoV-2 invasion and replication, anti-inflammatory and immune regulation, and repairing body damage. These results will be helpful for the prevention and treatment of COVID-19.

Keywords: SARS-CoV-2, COVID-19, network pharmacology, protein-protein interaction, KEGG pathway, molecular docking.

« Previous
Graphical Abstract

[1]
Alsuliman T, Alasadi L, Alkharat B, Srour M, Alrstom A. A review of potential treatments to date in COVID-19 patients according to the stage of the disease. Curr Res Transl Med 2020; 68(3): 93-104.
[http://dx.doi.org/10.1016/j.retram.2020.05.004] [PMID: 32540367]
[2]
Duran MB, Yildirim O, Kizilkan Y, et al. Variations in the number of patients presenting with andrological problems during the coronavirus disease 2019 pandemic and the possible reasons for these variations: A multicenter study. Sex Med 2021; 9(1): 100292.
[http://dx.doi.org/10.1016/j.esxm.2020.100292] [PMID: 33318798]
[3]
Cheng L, Han X, Zhu Z, Qi C, Wang P, Zhang X. Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2. Brief Bioinform 2021; 22(2): 1442-50.
[http://dx.doi.org/10.1093/bib/bbab042] [PMID: 33580783]
[4]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[5]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[6]
Coronavirus disease (COVID-19) pandemic. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[7]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[8]
Li J, Wang X, Li N, et al. Feasibility of Mesenchymal Stem Cell Therapy for COVID-19: A Mini Review. Curr Gene Ther 2020; 20(4): 285-8.
[http://dx.doi.org/10.2174/1566523220999200820172829] [PMID: 32867652]
[9]
Zhao JY, Yan JY, Qu JM. Interpretations of “Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)”. Chin Med J (Engl) 2020; 133(11): 1347-9.
[http://dx.doi.org/10.1097/CM9.0000000000000866] [PMID: 32301757]
[10]
Li H, Lv W, Sun Y, et al. Clinical efficacy of traditional Chinese medicine among 749 patients with COVID-19:A real-world study. Zhonghua Zhongyiyao Zazhi 2020; 35(6): 3194-8.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[11]
Qiao Q, Wang R, Li T, Li X, Ni L. Traditional Chinese medicine nursing experience of 79 cases of COVID-19 with damp heat accumulating lung syndrome. Tianjin J Traditional Chinese Med 2021; 38(1): 25-8.
[http://dx.doi.org/10.1016/j.jep.2021.113869] [PMID: 33485973]
[12]
Chen J, Wang YK, Gao Y, et al. Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed Pharmacother 2020; 129: 110281.
[http://dx.doi.org/10.1016/j.biopha.2020.110281] [PMID: 32554251]
[13]
Hopkins AL. Network pharmacology. Nat Biotechnol 2007; 25(10): 1110-1.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[14]
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[15]
Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013; 145(1): 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[16]
Feng W, Ao H, Yue S, Peng C. Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs. Sci Rep 2018; 8(1): 16160.
[http://dx.doi.org/10.1038/s41598-018-34509-1] [PMID: 30385774]
[17]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6: 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[18]
Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019; 47(D1): D1102-9.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[19]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[20]
Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci Rep 2016; 6: 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[21]
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[22]
Li X, Tang H, Tang Q, Chen W. Decoding the mechanism of huanglian jiedu decoction in treating pneumonia based on network pharmacology and molecular docking. Front Cell Dev Biol 2021; 9: 638366.
[http://dx.doi.org/10.3389/fcell.2021.638366] [PMID: 33681222]
[23]
Xu HY, Zhang YQ, Liu ZM, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2019; 47(D1): D976-82.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[24]
Liu X, Ouyang S, Yu B, et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010; 38(Web Server issue): W609-14.
[http://dx.doi.org/10.1093/nar/gkq300]
[25]
Gong R, Ren S, Chen M, et al. Bioinformatics analysis reveals the altered gene expression of patients with postmenopausal osteoporosis using liuweidihuang pills treatment. BioMed Res Int 2019; 2019: 1907906.
[PMID: 30809532]
[26]
Consortium U. UniProt: A hub for protein information. Nucleic Acids Res 2015; 43(Database issue): D204-12.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[27]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[28]
Wang Y X, Dong B Z, Xue W J, et al. Anticancer effect of radix astragali on cholangiocarcinoma in vitro and its mechanism via network pharmacology. Med Sci Monit 2020; 26: e921162-1– e921162-20.
[http://dx.doi.org/10.12659/MSM.921162]
[29]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[30]
Yang X, Li Y, Lv R, et al. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology. Evid Based Complement Alternat Med 2019; 2019: 8957245.
[http://dx.doi.org/10.1155/2019/8957245]
[31]
Meng Z, Liu X, Wu J, et al. Mechanisms of compound kushen injection for the treatment of lung cancer based on network pharmacology. Evid Based Complement Alternat Med 2019; 2019: 4637839.
[http://dx.doi.org/10.1155/2019/4637839] [PMID: 4637839]
[32]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[33]
Zhou W, Wang J, Wu Z, Huang C, Lu A, Wang Y. Systems pharmacology exploration of botanic drug pairs reveals the mechanism for treating different diseases. Sci Rep 2016; 6: 36985.
[http://dx.doi.org/10.1038/srep36985] [PMID: 27841365]
[34]
Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021; 49(D1): D437-51.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[35]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[36]
Khan SA, Eggleston H, Myles KM, Adelman ZN. Differentially and co-expressed genes in embryo, germ-line and somatic tissues of tribolium castaneum. G3 (Bethesda) 2019; 9(7): 2363-73.
[http://dx.doi.org/10.1534/g3.119.400340]
[37]
Silvin A, Chapuis N, Dunsmore G, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 2020; 182(6): 1401-1418.e18.
[http://dx.doi.org/10.1016/j.cell.2020.08.002] [PMID: 32810439]
[38]
Uddin M, Mustafa F, Rizvi TA, et al. SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 2020; 12(5): E526.
[http://dx.doi.org/10.3390/v12050526] [PMID: 32397688]
[39]
Freeman TL, Swartz TH. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol 2020; 11: 1518.
[http://dx.doi.org/10.3389/fimmu.2020.01518] [PMID: 32655582]
[40]
Tong M, Jiang Y, Xia D, et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J Infect Dis 2020; 222(6): 894-8.
[http://dx.doi.org/10.1093/infdis/jiaa349] [PMID: 32582936]
[41]
Shaath H, Vishnubalaji R, Elkord E, Alajez NM. Single-cell transcriptome analysis highlights a role for neutrophils and inflammatory macrophages in the pathogenesis of severe COVID-19. Cells 2020; 9(11): E2374.
[http://dx.doi.org/10.3390/cells9112374] [PMID: 33138195]
[42]
Appelberg S, Gupta S, Svensson Akusjärvi S, et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020; 9(1): 1748-60.
[http://dx.doi.org/10.1080/22221751.2020.1799723] [PMID: 32691695]
[43]
Sohn KM, Lee SG, Kim HJ, et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci 2020; 35(38): e343.
[http://dx.doi.org/10.3346/jkms.2020.35.e343] [PMID: 32989935]
[44]
Shibabaw T. Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy. J Inflamm Res 2020; 13: 673-80.
[http://dx.doi.org/10.2147/JIR.S278335] [PMID: 33116747]
[45]
Luo W, Li YX, Jiang LJ, Chen Q, Wang T, Ye DW. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol Sci 2020; 41(8): 531-43.
[http://dx.doi.org/10.1016/j.tips.2020.06.007] [PMID: 32580895]
[46]
Li S, Wu B, Ling Y, et al. Epigenetic landscapes of single-cell chromatin accessibility and transcriptomic immune profiles of T cells in COVID-19 patients. Front Immunol 2021; 12: 625881.
[http://dx.doi.org/10.3389/fimmu.2021.625881] [PMID: 33717140]
[47]
Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 2021; 29(1): 91-100.
[http://dx.doi.org/10.1007/s10787-020-00773-9] [PMID: 33159646]
[48]
De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 2020; 11(1): 3434.
[http://dx.doi.org/10.1038/s41467-020-17292-4] [PMID: 32632085]
[49]
Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020; 369(6508): 1210-20.
[http://dx.doi.org/10.1126/science.abc6261] [PMID: 32788292]
[50]
Song JW, Zhang C, Fan X, et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun 2020; 11(1): 3410.
[http://dx.doi.org/10.1038/s41467-020-17240-2] [PMID: 32641700]
[51]
Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol 2021; 191(1): 4-17.
[http://dx.doi.org/10.1016/j.ajpath.2020.08.009] [PMID: 32919977]
[52]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[53]
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102-8.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[54]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[55]
Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020; 80(6): 639-45.
[http://dx.doi.org/10.1016/j.jinf.2020.03.019] [PMID: 32240670]
[56]
Wang R, Wang S, Xie C, et al. Pharmacology and clinics of chinese materia medica 2020; 36(01): 13-8.
[http://dx.doi.org/10.1155/2020/3821248] [PMID: 3821248 ]
[57]
Chugh H, Awasthi A, Agarwal Y, Gaur RK, Dhawan G, Chandra R. A comprehensive review on potential therapeutics interventions for COVID-19. Eur J Pharmacol 2021; 890: 173741.
[http://dx.doi.org/10.1016/j.ejphar.2020.173741] [PMID: 33227287]
[58]
Leitzke M, Stefanovic D, Meyer JJ, Schimpf S, Schönknecht P. Autonomic balance determines the severity of COVID-19 courses. Bioelectron Med 2020; 6(1): 22.
[http://dx.doi.org/10.1186/s42234-020-00058-0] [PMID: 33292846]
[59]
Poppe M, Wittig S, Jurida L, et al. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 2017; 13(3): e1006286.
[http://dx.doi.org/10.1371/journal.ppat.1006286] [PMID: 28355270]
[60]
Zhao J, Tian S, Yang J, Liu J, Zhang W. Investigating the mechanism of Qing-Fei-Pai-Du-Tang for the treatment of Novel Coronavirus Pneumonia by network pharmacology. Chin Tradit Herbal Drugs 2020; 4(51): 829-35.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2020.04.001]
[61]
Du H, Wang P, Ma Q, et al. Preliminary study on the effective components and mechanism of huoxiang zhengqi decoction in inhibiting the replication of novel coronavirus. Modern Tradit Chin Med Mater Med World Sci Technol 2020; 22(3): 645-51.
[http://dx.doi.org/10.1016/j.phrs.2020.104939]
[62]
Du H, Wang P, Ma Q, et al. Preliminary study on the effective components and mechanism of huoxiang zhengqi decoction in inhibiting the replication of novel coronavirus. J World Sci Technol-Modern Trad Chin Med 2020; 22(3): 580-6.
[http://dx.doi.org/10.1016/j.phrs.2020.104939]
[63]
Huang YF, Bai C, He F, Xie Y, Zhou H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacol Res 2020; 158: 104939.
[http://dx.doi.org/10.1016/j.phrs.2020.104939] [PMID: 32445956]
[64]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[65]
Yan H, Ma L, Wang H, et al. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med 2019; 73(3): 487-96.
[http://dx.doi.org/10.1007/s11418-019-01287-7] [PMID: 30758716]
[66]
Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res 2016; 220: 112-6.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[67]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[68]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[69]
Koshak DAE, Koshak PEA. Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Curr Ther Res Clin Exp 2020; 93: 100602.
[http://dx.doi.org/10.1016/j.curtheres.2020.100602] [PMID: 32863400]
[70]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[71]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[72]
Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 2020; 34(7): 1726-9.
[http://dx.doi.org/10.1038/s41375-020-0887-9] [PMID: 32483300]
[73]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[74]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[75]
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5(1): 84.
[http://dx.doi.org/10.1038/s41392-020-0191-1] [PMID: 32467561]
[76]
Palomino DC, Marti LC. Chemokines and immunity. Einstein (Sao Paulo) 2015; 13(3): 469-73.
[http://dx.doi.org/10.1590/S1679-45082015RB3438] [PMID: 26466066]
[77]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[78]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[79]
Cheng L, Zhu Z, Wang C, Wang P, He YO, Zhang X. COVID-19 induces lower levels of IL-8, IL-10, and MCP-1 than other acute CRS-inducing diseases. Proc Natl Acad Sci USA 2021; 118(21): e2102960118.
[http://dx.doi.org/10.1073/pnas.2102960118] [PMID: 33972411]
[80]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[81]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[82]
Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020; 5(13): 139834.
[http://dx.doi.org/10.1172/jci.insight.139834] [PMID: 32501293]
[83]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[84]
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27(6): 992-1000.e3.
[http://dx.doi.org/10.1016/j.chom.2020.04.009] [PMID: 32320677]
[85]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[86]
Yang R, Liu H, Bai C, et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol Res 2020; 157: 104820.
[http://dx.doi.org/10.1016/j.phrs.2020.104820] [PMID: 32360484]
[87]
Kong Y, Wu H, Chen Y, Lai S, Yang Z, Chen J. Mechanism of Tanreqing Injection on treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. Chin Tradit Herbal Drugs 2020; 51(7): 1785-94. Article ID: covidwho-378897
[88]
Ma YK, Chen YB, Li P. Quercetin inhibits NTHi-triggered CXCR4 activation through suppressing IKKα/NF-κB and MAPK signaling pathways in otitis media. Int J Mol Med 2018; 42(1): 248-58.
[http://dx.doi.org/10.3892/ijmm.2018.3577] [PMID: 29568908]
[89]
Wu LC, Lu IW, Chung CF, Wu HY, Liu YT. Antiproliferative mechanisms of quercetin in rat activated hepatic stellate cells. Food Funct 2011; 2(3-4): 204-12.
[http://dx.doi.org/10.1039/c0fo00158a] [PMID: 21779580]
[90]
Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 2020; 28: 231-43.
[http://dx.doi.org/10.1016/j.jare.2020.07.007] [PMID: 33364059]
[91]
Chuammitri P, Srikok S, Saipinta D, Boonyayatra S. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Vet World 2017; 10(4): 403-10.
[http://dx.doi.org/10.14202/vetworld.2017.403-410] [PMID: 28507412]
[92]
Cheng SC, Huang WCS, Pang JH, Wu YH, Cheng CY. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci 2019; 20(12): E2957.
[http://dx.doi.org/10.3390/ijms20122957] [PMID: 31212975]
[93]
Du H, Zhang M, Yao K, Hu Z. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat. Biomed Pharmacother 2017; 89: 617-22.
[http://dx.doi.org/10.1016/j.biopha.2017.01.179] [PMID: 28262614]
[94]
Liu X, Wei Y, Bai X, et al. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm Sin B 2020; 10(5): 812-24.
[http://dx.doi.org/10.1016/j.apsb.2020.02.003] [PMID: 32528829]
[95]
Hashemzaei M, Rezaee R. A review on pain-relieving activity of berberine. Phytother Res 2020.
[PMID: 33340158]
[96]
Taracanova A, Tsilioni I, Conti P, Norwitz ER, Leeman SE, Theoharides TC. Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci USA 2018; 115(40): E9381-90.
[http://dx.doi.org/10.1073/pnas.1810133115] [PMID: 30232261]
[97]
Taracanova A, Alevizos M, Karagkouni A, et al. SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc Natl Acad Sci USA 2017; 114(20): E4002-9.
[http://dx.doi.org/10.1073/pnas.1524845114] [PMID: 28461492]
[98]
Bawazeer MA, Theoharides TC. IL-33 stimulates human mast cell release of CCL5 and CCL2 via MAPK and NF-κB, inhibited by methoxyluteolin. Eur J Pharmacol 2019; 865: 172760.
[http://dx.doi.org/10.1016/j.ejphar.2019.172760] [PMID: 31669588]
[99]
Gendrisch F, Esser PR, Schempp CM, Wolfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2020.
[PMID: 33368702]
[100]
Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9(1): 1123-30.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[101]
Neidleman J, Luo X, George AF, et al. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID- 19. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.22.21250054]
[102]
Yuan Y, Wang QP, Sun D, et al. Differences in Immune Responses between Children and Adults with COVID-19. Curr Med Sci 2021; 41(1): 58-61.
[http://dx.doi.org/10.1007/s11596-021-2318-1] [PMID: 33582906]
[103]
Zhao J, Tian S-s, Yang J, Liu J, Zhang W. Investigating mechanism of Qing-Fei-Pai-Du-Tang for treatment of COVID-19 by network pharmacology. Chin Tradit Herbal Drugs 2020; 51(4): 829-35.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2020.04.001]
[104]
Iddir M, Brito A, Dingeo G, et al. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12(6): E1562.
[http://dx.doi.org/10.3390/nu12061562] [PMID: 32471251]
[105]
Cuadrado A, Pajares M, Benito C, et al. Can activation of NRF2 be a strategy against COVID-19? Trends Pharmacol Sci 2020; 41(9): 598-610.
[http://dx.doi.org/10.1016/j.tips.2020.07.003] [PMID: 32711925]
[106]
Anhê FF, Varin TV, Le Barz M, et al. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep 2015; 4(4): 389-400.
[http://dx.doi.org/10.1007/s13679-015-0172-9] [PMID: 26343880]
[107]
Rungsung S, Singh TU, Rabha DJ, et al. Luteolin attenuates acute lung injury in experimental mouse model of sepsis. Cytokine 2018; 110: 333-43.
[http://dx.doi.org/10.1016/j.cyto.2018.03.042] [PMID: 29655568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy