Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

The Role of Coronary Physiology in Contemporary Percutaneous Coronary Interventions

Author(s): Federico Marin*, Roberto Scarsini, Dimitrios Terentes-Printzios, Rafail A. Kotronias, Flavio Ribichini, Adrian P. Banning and Giovanni Luigi De Maria

Volume 18, Issue 1, 2022

Published on: 07 December, 2021

Article ID: e080921196264 Pages: 19

DOI: 10.2174/1573403X17666210908114154

Price: $65

Abstract

Invasive assessment of coronary physiology has radically changed the paradigm of myocardial revascularization in patients with coronary artery disease. Despite the prognostic improvement associated with ischemia-driven revascularization strategy, functional assessment of angiographic intermediate epicardial stenosis remains largely underused in clinical practice. Multiple tools have been developed or are under development in order to reduce the invasiveness, cost, and extra procedural time associated with the invasive assessment of coronary physiology. Besides epicardial stenosis, a growing body of evidence highlights the role of coronary microcirculation in regulating coronary flow with consequent pathophysiological and clinical and prognostic implications. Adequate assessment of coronary microcirculation function and integrity has then become another component of the decision-making algorithm for optimal diagnosis and treatment of coronary syndromes.

This review aims at providing a comprehensive description of tools and techniques currently available in the catheterization laboratory to obtain a thorough and complete functional assessment of the entire coronary tree (both for the epicardial and microvascular compartments).

Keywords: Coronary physiology, myocardial revascularization, functional assessment, percutaneous coronary intervention, ischemic heart disease, microvascular dysfunction.

Graphical Abstract

[1]
Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33(1): 87-94.
[http://dx.doi.org/10.1016/0002-9149(74)90743-7] [PMID: 4808557]
[2]
White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310(13): 819-24.
[http://dx.doi.org/10.1056/NEJM198403293101304] [PMID: 6700670]
[3]
Grüntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 1979; 301(2): 61-8.
[http://dx.doi.org/10.1056/NEJM197907123010201] [PMID: 449946]
[4]
Emanuelsson H, Dohnal M, Lamm C, Tenerz L. Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cathet Cardiovasc Diagn 1991; 24(2): 137-43.
[http://dx.doi.org/10.1002/ccd.1810240213] [PMID: 1742783]
[5]
Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87(4): 1354-67.
[http://dx.doi.org/10.1161/01.CIR.87.4.1354] [PMID: 8462157]
[6]
Pijls NH, Van Gelder B, Van der Voort P, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995; 92(11): 3183-93.
[http://dx.doi.org/10.1161/01.CIR.92.11.3183] [PMID: 7586302]
[7]
Toth GG, Johnson NP, Jeremias A, et al. Standardization of Fractional Flow Reserve Measurements. J Am Coll Cardiol 2016; 68(7): 742-53.
[http://dx.doi.org/10.1016/j.jacc.2016.05.067] [PMID: 27515335]
[8]
Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996; 334(26): 1703-8.
[http://dx.doi.org/10.1056/NEJM199606273342604] [PMID: 8637515]
[9]
Zimmermann FM, Ferrara A, Johnson NP, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J 2015; 36(45): 3182-8.
[http://dx.doi.org/10.1093/eurheartj/ehv452] [PMID: 26400825]
[10]
Pijls NH, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007; 49(21): 2105-11.
[http://dx.doi.org/10.1016/j.jacc.2007.01.087] [PMID: 17531660]
[11]
Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 2010; 56(3): 177-84.
[http://dx.doi.org/10.1016/j.jacc.2010.04.012] [PMID: 20537493]
[12]
van Nunen LX, Zimmermann FM, Tonino PA, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015; 386(10006): 1853-60.
[http://dx.doi.org/10.1016/S0140-6736(15)00057-4] [PMID: 26333474]
[13]
Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360(3): 213-24.
[http://dx.doi.org/10.1056/NEJMoa0807611] [PMID: 19144937]
[14]
De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367(11): 991-1001.
[http://dx.doi.org/10.1056/NEJMoa1205361] [PMID: 22924638]
[15]
Fearon WF, Nishi T, De Bruyne B, et al. Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-up of the fame 2 trial (fractional flow reserve versus angiography for multivessel evaluation). Circulation 2018; 137(5): 480-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031907] [PMID: 29097450]
[16]
Xaplanteris P, Fournier S, Pijls NHJ, et al. Five-year outcomes with pci guided by fractional flow reserve. N Engl J Med 2018; 379(3): 250-9.
[http://dx.doi.org/10.1056/NEJMoa1803538] [PMID: 29785878]
[17]
Johnson NP, Tóth GG, Lai D, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 2014; 64(16): 1641-54.
[http://dx.doi.org/10.1016/j.jacc.2014.07.973] [PMID: 25323250]
[18]
Barbato E, Toth GG, Johnson NP, et al. A prospective natural history study of coronary atherosclerosis using fractional flow reserve. J Am Coll Cardiol 2016; 68(21): 2247-55.
[http://dx.doi.org/10.1016/j.jacc.2016.08.055] [PMID: 27884241]
[19]
Ahn JM, Park DW, Shin ES, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective iris-ffr registry (interventional cardiology research incooperation society fractional flow reserve). Circulation 2017; 135(23): 2241-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024433] [PMID: 28356440]
[20]
Nishi T, Piroth Z, De Bruyne B, et al. Fractional flow reserve and quality-of-life improvement after percutaneous coronary intervention in patients with stable coronary artery disease. Circulation 2018; 138(17): 1797-804.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035263] [PMID: 30354650]
[21]
Liu Z, Matsuzawa Y, Herrmann J, et al. Relation between fractional flow reserve value of coronary lesions with deferred revascularization and cardiovascular outcomes in non-diabetic and diabetic patients. Int J Cardiol 2016; 219: 56-62.
[http://dx.doi.org/10.1016/j.ijcard.2016.05.032] [PMID: 27281577]
[22]
Alkhalil M, McCune C, McClenaghan L, et al. Clinical outcomes of deferred revascularisation using fractional flow reserve in diabetic patients. Cardiovasc Revasc Med 2020; 21(7): 897-902.
[http://dx.doi.org/10.1016/j.carrev.2019.12.019] [PMID: 31883978]
[23]
Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003; 41(8): 1387-93.
[http://dx.doi.org/10.1016/S0735-1097(03)00166-9] [PMID: 12706936]
[24]
Van Belle E, Cosenza A, Baptista SB, et al. Usefulness of routine fractional flow reserve for clinical management of coronary artery disease in patients with diabetes. JAMA Cardiol 2020; 5(3): 272-81.
[http://dx.doi.org/10.1001/jamacardio.2019.5097] [PMID: 31913433]
[25]
Alkhalil M, McCune C, McClenaghan L, et al. Comparative analysis of the effect of renal function on the spectrum of coronary artery disease. Am J Med 2020; 133(11): e631-40.
[http://dx.doi.org/10.1016/j.amjmed.2020.03.048] [PMID: 32389657]
[26]
Toth GG, De Bruyne B, Rusinaru D, et al. Impact of right atrial pressure on fractional flow reserve measurements: comparison of fractional flow reserve and myocardial fractional flow reserve in 1,600 coronary stenoses. JACC Cardiovasc Interv 2016; 9(5): 453-9.
[http://dx.doi.org/10.1016/j.jcin.2015.11.021] [PMID: 26896888]
[27]
Di Gioia G, De Bruyne B, Pellicano M, et al. Fractional flow reserve in patients with reduced ejection fraction. Eur Heart J 2020; 41(17): 1665-72.
[http://dx.doi.org/10.1093/eurheartj/ehz571] [PMID: 31419282]
[28]
Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention 2019; 14(14): 1435-534.
[http://dx.doi.org/10.4244/EIJY19M01_01] [PMID: 30667361]
[29]
Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention. a report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. J Am Coll Cardiol 2011; 58(24): e44-e122.
[http://dx.doi.org/10.1016/j.jacc.2011.08.007] [PMID: 22070834]
[30]
Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American college of cardiology foundation/American heart association task force on practice guidelines, and the American college of physicians, American association for thoracic surgery, preventive cardiovascular nurses association, society for cardiovascular angiography and interventions, and society of thoracic surgeons. J Am Coll Cardiol 2012; 60(24): 2564-603.
[http://dx.doi.org/10.1016/j.jacc.2012.07.012] [PMID: 23182124]
[31]
Dudek D, Barbato E, Baumbach A, Windecker S, Haude M. Current trends in structural heart interventions: an overview of the EAPCI registries. EuroIntervention 2017; 13(Z): Z11-3.
[http://dx.doi.org/10.4244/EIJV13IZA3]
[32]
Götberg M, Cook CM, Sen S, Nijjer S, Escaned J, Davies JE. The evolving future of instantaneous wave-free ratio and fractional flow reserve. J Am Coll Cardiol 2017; 70(11): 1379-402.
[http://dx.doi.org/10.1016/j.jacc.2017.07.770] [PMID: 28882237]
[33]
Desai NR, Bradley SM, Parzynski CS, et al. Appropriate use criteria for coronary revascularization and trends in utilization, patient selection, and appropriateness of percutaneous coronary intervention. JAMA 2015; 314(19): 2045-53.
[http://dx.doi.org/10.1001/jama.2015.13764] [PMID: 26551163]
[34]
May AN, Kull A, Gunalingam B, Francis JL, Lau GT. The uptake of coronary fractional flow reserve in Australia in the past decade. Med J Aust 2016; 205(3): 127.
[http://dx.doi.org/10.5694/mja15.01225] [PMID: 27465768]
[35]
Demir OM, Schrieken C, Curio J, Rahman H. Behavioural determinants impacting the adoption rate of coronary physiology. Int J Cardiol 2021; 330: 12-4.
[http://dx.doi.org/10.1016/j.ijcard.2021.02.008] [PMID: 33571564]
[36]
Parikh RV, Liu G, Plomondon ME, et al. Utilization and outcomes of measuring fractional flow reserve in patients with stable ischemic heart disease. J Am Coll Cardiol 2020; 75(4): 409-19.
[http://dx.doi.org/10.1016/j.jacc.2019.10.060] [PMID: 32000953]
[37]
Tebaldi M, Biscaglia S, Fineschi M, et al. Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the nationwide italian sici-gise cross-sectional ERIS study. JACC Cardiovasc Interv 2018; 11(15): 1482-91.
[http://dx.doi.org/10.1016/j.jcin.2018.04.037] [PMID: 29803695]
[38]
Toth GG, Toth B, Johnson NP, et al. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv 2014; 7(6): 751-9.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001608] [PMID: 25336468]
[39]
Sen S, Escaned J, Malik IS, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 2012; 59(15): 1392-402.
[http://dx.doi.org/10.1016/j.jacc.2011.11.003] [PMID: 22154731]
[40]
Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE. The Instantaneous wave-Free Ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med 2015; 16(3): 167-71.
[http://dx.doi.org/10.1016/j.carrev.2015.01.006] [PMID: 25977227]
[41]
Davies JE, Sen S, Dehbi HM, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 2017; 376(19): 1824-34.
[http://dx.doi.org/10.1056/NEJMoa1700445] [PMID: 28317458]
[42]
Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017; 376(19): 1813-23.
[http://dx.doi.org/10.1056/NEJMoa1616540] [PMID: 28317438]
[43]
Escaned J, Ryan N, Mejía-Rentería H, et al. Safety of the deferral of coronary revascularization on the basis of instantaneous wave-free ratio and fractional flow reserve measurements in stable coronary artery disease and acute coronary syndromes. JACC Cardiovasc Interv 2018; 11(15): 1437-49.
[http://dx.doi.org/10.1016/j.jcin.2018.05.029] [PMID: 30093050]
[44]
Dérimay F, Johnson NP, Zimmermann FM, et al. Predictive factors of discordance between the instantaneous wave-free ratio and fractional flow reserve. Catheter Cardiovasc Interv 2019; 94(3): 356-63.
[http://dx.doi.org/10.1002/ccd.28116] [PMID: 30702186]
[45]
De Maria GL, Garcia-Garcia HM, Scarsini R, et al. Novel indices of coronary physiology: do we need alternatives to fractional flow reserve? Circ Cardiovasc Interv 2020; 13(4): e008487.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.119.008487] [PMID: 32295416]
[46]
Van’t Veer M, Pijls NHJ, Hennigan B, et al. Comparison of different diastolic resting indexes to iFR: are they all equal? J Am Coll Cardiol 2017; 70(25): 3088-96.
[http://dx.doi.org/10.1016/j.jacc.2017.10.066] [PMID: 29268922]
[47]
Johnson NP, Johnson DT, Kirkeeide RL, et al. Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics. JACC Cardiovasc Interv 2015; 8(8): 1018-27.
[http://dx.doi.org/10.1016/j.jcin.2015.01.039] [PMID: 26205441]
[48]
Leone AM, Martin-Reyes R, Baptista SB, et al. The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study. EuroIntervention 2016; 12(6): 708-15.
[http://dx.doi.org/10.4244/EIJV12I6A115] [PMID: 27542782]
[49]
Leone AM, Scalone G, De Maria GL, et al. Efficacy of contrast medium induced Pd/Pa ratio in predicting functional significance of intermediate coronary artery stenosis assessed by fractional flow reserve: insights from the RINASCI study. EuroIntervention 2015; 11(4): 421-7.
[http://dx.doi.org/10.4244/EIJY14M07_02] [PMID: 25007836]
[50]
Johnson NP, Jeremias A, Zimmermann FM, et al. Continuum of Vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc Interv 2016; 9(8): 757-67.
[http://dx.doi.org/10.1016/j.jcin.2015.12.273] [PMID: 27101902]
[51]
Leone AM, Arioti M, Cialdella P, Vergallo R, Zimbardo G, Migliaro S, et al. Prognostic impact of FFR/contrast FFR discordance. Int J Cardiol 2020.
[http://dx.doi.org/10.1016/j.ijcard.2020.11.011] [PMID: 33186664]
[52]
Svanerud J, Ahn JM, Jeremias A, et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention 2018; 14(7): 806-14.
[http://dx.doi.org/10.4244/EIJ-D-18-00342] [PMID: 29790478]
[53]
Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv 2016; 9(19): 2024-35.
[http://dx.doi.org/10.1016/j.jcin.2016.07.013] [PMID: 27712739]
[54]
Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan Study. J Am Heart Assoc 2018; 7(14): e009603.
[http://dx.doi.org/10.1161/JAHA.118.009603] [PMID: 29980523]
[55]
Xu B, Tu S, Qiao S, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol 2017; 70(25): 3077-87.
[http://dx.doi.org/10.1016/j.jacc.2017.10.035] [PMID: 29101020]
[56]
Westra J, Tu S, Campo G, et al. Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: An individual patient-data meta-analysis. Catheter Cardiovasc Interv 2019; 94(5): 693-701.
[http://dx.doi.org/10.1002/ccd.28283] [PMID: 30963676]
[57]
Masdjedi K, van Zandvoort LJC, Balbi MM, et al. Validation of a three-dimensional quantitative coronary angiography-based software to calculate fractional flow reserve: the FAST study. EuroIntervention 2020; 16(7): 591-9.
[http://dx.doi.org/10.4244/EIJ-D-19-00466] [PMID: 31085504]
[58]
Daemen J, Masdjedi K, Matthew B, Rutger JN, Laurens vZ, Jurgen L, et al. Extended Validation of Novel 3-Dimensional Quantitative Coronary Angiography (3D-QCA) Based Software to Calculate Vessel Fractional Flow Reserve (vFFR): The Fast Extend Study,. In: JACC: Cardiovascular Interventions. 2019; p. S17.
[59]
Pellicano M, Lavi I, De Bruyne B, et al. Validation study of image-based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv 2017; 10(9): e005259.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.005259] [PMID: 28916602]
[60]
Huang J, Emori H, Ding D, et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions. EuroIntervention 2020; 16(7): 568-76.
[http://dx.doi.org/10.4244/EIJ-D-19-01034] [PMID: 31951207]
[61]
Yu W, Huang J, Jia D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention 2019; 15(2): 189-97.
[http://dx.doi.org/10.4244/EIJ-D-19-00182] [PMID: 31147309]
[62]
Yu W, Tanigaki T, Ding D, et al. Accuracy of intravascular ultrasound-based fractional flow reserve in identifying hemodynamic significance of coronary stenosis. Circ Cardiovasc Interv 2021; 14: e009840.
[63]
Kennedy MW, Fabris E, Ijsselmuiden AJ, et al. Combined optical coherence tomography morphologic and fractional flow reserve hemodynamic assessment of non- culprit lesions to better predict adverse event outcomes in diabetes mellitus patients: COMBINE (OCT-FFR) prospective study. Rationale and design. Cardiovasc Diabetol 2016; 15(1): 144.
[http://dx.doi.org/10.1186/s12933-016-0464-8] [PMID: 27724869]
[64]
Kedhi E, Berta B, Roleder T, Hermanides RS, Fabris E, IJsselmuiden AJJ, et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur Heart J. 2021.
[65]
Erlinge D, Maehara A, Ben-Yehuda O, Bøtker HE, Maeng M, Kjøller-Hansen L, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet. 2021; 397(10278): 985-95.
[66]
Teunissen PF, de Waard GA, Hollander MR, et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv 2015; 8(3): e001786.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001786] [PMID: 25717044]
[67]
Lee BK, Lim HS, Fearon WF, et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation 2015; 131(12): 1054-60.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012636] [PMID: 25712205]
[68]
Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014; 129(24): 2518-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.008507] [PMID: 24787469]
[69]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[70]
Ford TJ, Stanley B, Good R, et al. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J Am Coll Cardiol 2018; 72(23 Pt A): 2841-55.
[http://dx.doi.org/10.1016/j.jacc.2018.09.006] [PMID: 30266608]
[71]
De Maria GL, Cuculi F, Patel N, et al. How does coronary stent implantation impact on the status of the microcirculation during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction? Eur Heart J 2015; 36(45): 3165-77.
[http://dx.doi.org/10.1093/eurheartj/ehv353] [PMID: 26254178]
[72]
De Maria GL, Fahrni G, Alkhalil M, et al. A tool for predicting the outcome of reperfusion in ST-elevation myocardial infarction using age, thrombotic burden and index of microcirculatory resistance (ATI score). EuroIntervention 2016; 12(10): 1223-30.
[http://dx.doi.org/10.4244/EIJV12I10A202] [PMID: 27866132]
[73]
De Maria GL, Alkhalil M, Wolfrum M, et al. The ATI score (age-thrombus burden-index of microcirculatory resistance) determined during primary percutaneous coronary intervention predicts final infarct size in patients with ST-elevation myocardial infarction: a cardiac magnetic resonance validation study. EuroIntervention 2017; 13(8): 935-43.
[http://dx.doi.org/10.4244/EIJ-D-17-00367] [PMID: 28649956]
[74]
De Maria GL, Alkhalil M, Borlotti A, et al. Index of microcirculatory resistance-guided therapy with pressure-controlled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: the Oxford Acute Myocardial Infarction - Pressure-controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study). EuroIntervention 2018; 14(3): e352-9.
[http://dx.doi.org/10.4244/EIJ-D-18-00378] [PMID: 29792403]
[75]
Cole JS, Hartley CJ. The pulsed Doppler coronary artery catheter preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 1977; 56(1): 18-25.
[http://dx.doi.org/10.1161/01.CIR.56.1.18] [PMID: 862168]
[76]
Ishihara M, Sato H, Tateishi H, et al. Time course of impaired coronary flow reserve after reperfusion in patients with acute myocardial infarction. Am J Cardiol 1996; 78(10): 1103-8.
[http://dx.doi.org/10.1016/S0002-9149(96)90060-0] [PMID: 8914871]
[77]
de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 1996; 94(8): 1842-9.
[http://dx.doi.org/10.1161/01.CIR.94.8.1842] [PMID: 8873658]
[78]
Kitabata H, Imanishi T, Kubo T, et al. Coronary microvascular resistance index immediately after primary percutaneous coronary intervention as a predictor of the transmural extent of infarction in patients with ST-segment elevation anterior acute myocardial infarction. JACC Cardiovasc Imaging 2009; 2(3): 263-72.
[http://dx.doi.org/10.1016/j.jcmg.2008.11.013] [PMID: 19356570]
[79]
Kitabata H, Kubo T, Ishibashi K, et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2013; 6(10): 1046-54.
[http://dx.doi.org/10.1016/j.jcin.2013.05.014] [PMID: 24156965]
[80]
de Waard GA, Fahrni G, de Wit D, Kitabata H, Williams R, Patel N, et al. Hyperaemic microvascular resistance predicts clinical outcome and microvascular injury after myocardial infarction. Heart 2017.
[81]
De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation 2001; 104(17): 2003-6.
[http://dx.doi.org/10.1161/hc4201.099223] [PMID: 11673336]
[82]
Pijls NH, De Bruyne B, Smith L, et al. Coronary thermodilution to assess flow reserve: validation in humans. Circulation 2002; 105(21): 2482-6.
[http://dx.doi.org/10.1161/01.CIR.0000017199.09457.3D] [PMID: 12034653]
[83]
Barbato E, Aarnoudse W, Aengevaeren WR, et al. Validation of coronary flow reserve measurements by thermodilution in clinical practice. Eur Heart J 2004; 25(3): 219-23.
[http://dx.doi.org/10.1016/j.ehj.2003.11.009] [PMID: 14972422]
[84]
Everaars H, de Waard GA, Driessen RS, et al. Doppler flow velocity and thermodilution to assess coronary flow reserve: a head-to-head comparison with [15O]H2O PET. JACC Cardiovasc Interv 2018; 11(20): 2044-54.
[http://dx.doi.org/10.1016/j.jcin.2018.07.011] [PMID: 30268877]
[85]
Beleslin B, Ostojic M, Djordjevic-Dikic A, et al. The value of fractional and coronary flow reserve in predicting myocardial recovery in patients with previous myocardial infarction. Eur Heart J 2008; 29(21): 2617-24.
[http://dx.doi.org/10.1093/eurheartj/ehn418] [PMID: 18826987]
[86]
Cuculi F, De Maria GL, Meier P, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014; 64(18): 1894-904.
[http://dx.doi.org/10.1016/j.jacc.2014.07.987] [PMID: 25444143]
[87]
Cuculi F, Dall’Armellina E, Manlhiot C, et al. Early change in invasive measures of microvascular function can predict myocardial recovery following PCI for ST-elevation myocardial infarction. Eur Heart J 2014; 35(29): 1971-80.
[http://dx.doi.org/10.1093/eurheartj/eht434] [PMID: 24135835]
[88]
Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation. Circulation 2003; 107(25): 3129-32.
[http://dx.doi.org/10.1161/01.CIR.0000080700.98607.D1] [PMID: 12821539]
[89]
Yong AS, Layland J, Fearon WF, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv 2013; 6(1): 53-8.
[http://dx.doi.org/10.1016/j.jcin.2012.08.019] [PMID: 23347861]
[90]
Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation 2006; 113(17): 2054-61.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.603522] [PMID: 16636168]
[91]
Fearon WF, Aarnoudse W, Pijls NH, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation 2004; 109(19): 2269-72.
[http://dx.doi.org/10.1161/01.CIR.0000128669.99355.CB] [PMID: 15136503]
[92]
Melikian N, Vercauteren S, Fearon WF, et al. Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis. EuroIntervention 2010; 5(8): 939-45.
[http://dx.doi.org/10.4244/EIJV5I8A158] [PMID: 20542779]
[93]
Luo C, Long M, Hu X, et al. Thermodilution-derived coronary microvascular resistance and flow reserve in patients with cardiac syndrome X. Circ Cardiovasc Interv 2014; 7(1): 43-8.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.000953] [PMID: 24399243]
[94]
De Maria GL, Alkhalil M, Wolfrum M, et al. Index of microcirculatory resistance as a tool to characterize microvascular obstruction and to predict infarct size regression in patients with STEMI undergoing primary PCI. JACC Cardiovasc Imaging 2019; 12(5): 837-48.
[http://dx.doi.org/10.1016/j.jcmg.2018.02.018] [PMID: 29680355]
[95]
Carrick D, Haig C, Ahmed N, et al. Comparative prognostic utility of indexes of microvascular function alone or in combination in patients with an acute ST-segment-elevation myocardial infarction. Circulation 2016; 134(23): 1833-47.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022603] [PMID: 27803036]
[96]
Fahrni G, Wolfrum M, De Maria GL, et al. Index of microcirculatory resistance at the time of primary percutaneous coronary intervention predicts early cardiac complications: insights from the OxAMI (Oxford Study in Acute Myocardial Infarction) Cohort. J Am Heart Assoc 2017; 6(11): e005409.
[http://dx.doi.org/10.1161/JAHA.116.005409] [PMID: 29113999]
[97]
Maznyczka AM, Oldroyd KG, Greenwood JP, et al. Comparative significance of invasive measures of microvascular injury in acute myocardial infarction. Circ Cardiovasc Interv 2020; 13(5): e008505.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.119.008505] [PMID: 32408817]
[98]
Scarsini R, De Maria GL, Borlotti A, et al. Incremental value of coronary microcirculation resistive reserve ratio in predicting the extent of myocardial infarction in patients with STEMI. Insights from the Oxford Acute Myocardial Infarction (OxAMI) study. Cardiovasc Revasc Med 2019; 20(12): 1148-55.
[http://dx.doi.org/10.1016/j.carrev.2019.01.022] [PMID: 30797759]
[99]
Aarnoudse W, Van’t Veer M, Pijls NH, et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol 2007; 50(24): 2294-304.
[http://dx.doi.org/10.1016/j.jacc.2007.08.047] [PMID: 18068038]
[100]
Adjedj J, Toth GG, Johnson NP, et al. Intracoronary adenosine: dose-response relationship with hyperemia. JACC Cardiovasc Interv 2015; 8(11): 1422-30.
[http://dx.doi.org/10.1016/j.jcin.2015.04.028] [PMID: 26404193]
[101]
Adjedj J, Picard F, Collet C, et al. Intracoronary saline-induced hyperemia during coronary thermodilution measurements of absolute coronary blood flow: an animal mechanistic study. J Am Heart Assoc 2020; 9(15): e015793.
[http://dx.doi.org/10.1161/JAHA.120.015793] [PMID: 32689859]
[102]
Gallinoro E, Candreva A, Colaiori I, et al. Thermodilution-derived volumetric resting coronary blood flow measurement in humans. EuroIntervention 2021; EIJ-D-20-01092.
[PMID: 33528358]
[103]
De Bruyne B, Adjedj J, Xaplanteris P, et al. Saline-induced coronary hyperemia: mechanisms and effects on left ventricular function. Circ Cardiovasc Interv 2017; 10(4): e004719.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.004719] [PMID: 28400462]
[104]
Wijnbergen I, van ’t Veer M, Lammers J, Ubachs J, Pijls NH. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase. Cardiovasc Revasc Med 2016; 17(2): 81-7.
[http://dx.doi.org/10.1016/j.carrev.2015.12.013] [PMID: 26905054]
[105]
Fournier S, Keulards DCJ, van ’t Veer M, et al. Normal values of thermodilution-derived absolute coronary blood flow and microvascular resistance in humans. EuroIntervention 2020.
[PMID: 33016881]
[106]
Gutiérrez-Barrios A, Izaga-Torralba E, Rivero Crespo F, et al. Continuous thermodilution method to assess coronary flow reserve. Am J Cardiol 2021; 141: 31-7.
[http://dx.doi.org/10.1016/j.amjcard.2020.11.011] [PMID: 33220317]
[107]
De Maria GL, Scarsini R, Shanmuganathan M, et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int J Cardiovasc Imaging 2020; 36(8): 1395-406.
[http://dx.doi.org/10.1007/s10554-020-01831-7] [PMID: 32409977]
[108]
Tebaldi M, Biscaglia S, Di Girolamo D, et al. Angio-based index of microcirculatory resistance for the assessment of the coronary resistance: a proof of concept study. J Interv Cardiol 2020; 2020: 8887369.
[http://dx.doi.org/10.1155/2020/8887369] [PMID: 33162844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy