Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Microwave Irradiated Solid Phase and Catalyst-free Hantzsch 1,4-dihydropyridine Synthesis: Spectral Characterization, Fluorescence Study, and Molecular Crystal Structure

Author(s): Minaxi S. Maru*, Dongwon Kim, Jagriti Behal and Ok-sang Jung

Volume 2, Issue 2, 2022

Published on: 06 May, 2021

Article ID: e060521193211 Pages: 12

DOI: 10.2174/2666001601666210506151517

Price: $65

Abstract

Background: Solvent- and catalyst-free synthesis of 1,4-dihydropyridines (1,4-DHPs) under microwave radiation is directly dealt with the concept of green chemistry. They are the class of pharmacological agents and drugs used as Ca2+ channel blockers, and they behave as photoelectronic functional materials to exhibit fluorescence activity because of the electrondonating and withdrawing groups present in them.

Objective: An efficient and rapid microwave-assisted synthesis of 4-(3-bromo-4-hydroxy-5- methoxyphenyl)-3,5-dicarbmethoxy-2,6-dimethyl-1,4-dihydropyridine (4) has been achieved under solvent- and catalyst-free conditions using three components 3-bromo-4-hydroxy-5-methoxy benzaldehyde, 3-oxobutanoic acid methyl ester, and ammonium carbonate in 25 minutes, which was then subjected to spectroscopic characterization, single-crystal X-ray, and fluorescence study.

Methods: The characterization methods were 1H and 13C NMR, FT-IR, LC-MS, and elemental analysis. The single crystal structure was developed using a mixture of Methanol: Tetrahydrofuran and was determined by the single-crystal X-ray diffraction method. The fluorescence study was accomplished in a spectrofluorometer by taking cresyl violet as a reference with two organic solvents, methanol and chloroform.

Results: The crystal structure is monoclinic, space group P21/n with a = 11.0557(3) Å, b = 7.3544(2) Å, c = 22.4852(7) Å and β = 104.107(2)°. The used single-crystal size is 0.200 × 0.200 × 0.200 mm3. The NH⋅⋅⋅⋅O type intermolecular hydrogen bond is observed between N(1) and O(2) atoms. The absorption and fluorescence spectra were found to depend on the chemical nature of the substituents available on C(4), C(2), and C(3) atoms of the 1,4-DHP ring and solvent properties.

Conclusion: The X-ray study shows flattened boat conformation of the 1,4-DHP ring and the presence of intermolecular hydrogen bonding, a major cause of the Ca2+ channel antagonist. More fluorescence has been shown in methanol than chloroform, and the fluorescence nature of the compound (4) may find potential application in the field of biology and chemical sensor.

Keywords: Green chemistry approach, solid-phase catalyst-free Hantzsch synthesis, 1, 4-dihydropyridine, single-crystal structure, fluorescence activity, spectrofluorometer.

Graphical Abstract

[1]
(a)Striessnig, J.; Grabner, M.; Mitterdorfer, J.; Hering, S.; Sinnegger, M.J.; Glossmann, H. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol. Sci., 1998, 19(3), 108-115.
[http://dx.doi.org/10.1016/S0165-6147(98)01171-7] [PMID: 9584627]
(b)Stout, D.M.; Meyers, A.I. Recent advances in the chemistry of dihydropyridines. Chem. Rev., 1982, 82, 223-243.
[http://dx.doi.org/10.1021/cr00048a004]
[2]
(a)Nakayama, H.; Kasoaka, Y. Chemical identification of binding sites for calcium channel antagonists. Heterocycles, 1996, 42, 901-909.
[http://dx.doi.org/10.3987/REV-95-SR4]
(b)Janis, R.A.; Triggle, D.J. New developments in Ca2+ channel antagonists. J. Med. Chem., 1983, 26(6), 775-785.
[http://dx.doi.org/10.1021/jm00360a001] [PMID: 6304312]
[3]
(a)Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today, 2009, 14(21-22), 1058-1066.
[http://dx.doi.org/10.1016/j.drudis.2009.08.004] [PMID: 19729074]
(b)Singh, K.; Arora, D.; Singh, K.; Singh, S. Genesis of dihydropyrimidinone(psi) calcium channel blockers: Recent progress in structure-activity relationships and other effects. Mini Rev. Med. Chem., 2009, 9(1), 95-106.
[http://dx.doi.org/10.2174/138955709787001686] [PMID: 19149663]
(c)Cosconati, S.; Marinelli, L.; Lavecchia, A.; Novellino, E. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. J. Med. Chem., 2007, 50(7), 1504-1513.
[http://dx.doi.org/10.1021/jm061245a] [PMID: 17335186]
(d)Baranda, A.B.; Mueller, C.A.; Alonso, R.M.; Jiménez, R.M.; Weinmann, W. Quantitative determination of the calcium channel antagonists amlodipine, lercanidipine, nitrendipine, felodipine, and lacidipine in human plasma using liquid chromatography-tandem mass spectrometry. Ther. Drug Monit., 2005, 27(1), 44-52.
[http://dx.doi.org/10.1097/00007691-200502000-00010] [PMID: 15665746]
(e)Pontremoli, R.; Leoncini, G.; Parodi, A. Use of nifedipine in the treatment of hypertension. Expert Rev. Cardiovasc. Ther., 2005, 3(1), 43-50.
[http://dx.doi.org/10.1586/14779072.3.1.43] [PMID: 15723574]
(f)Gilpin, P.K.; Pachla, L.A. Pharmaceuticals and related drugs. Anal. Chem., 1999, 71, 217-233.
[http://dx.doi.org/10.1021/a1990008k]
(g)Testa, R.; Leonardi, A.; Tajana, A.; Riscassi, E.; Magliocca, R.; Sartani, A. Lercanidipine (Rec 15/2375): a novel 1,4-dihydropyridine calcium antagonist for hypertension. Cardiovasc. Drug Rev., 1997, 15, 187-219.
[http://dx.doi.org/10.1111/j.1527-3466.1997.tb00331.x]
(h)Bossert, F.; Meyer, H.; Wehinger, E. 4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem. Int. Ed. Engl., 1981, 20, 762-769.
[http://dx.doi.org/10.1002/anie.198107621]
(i)Love, B.; Goodman, M.; Snader, K.M.; Tedeschi, R.; Macko, E. Hantzsch-type dihydropyridine hypotensive agents. J. Med. Chem., 1974, 17, 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[4]
(a)Zhou, X.F.; Zhang, L.; Tseng, E.; Scott-Ramsay, E.; Schentag, J.J.; Coburn, R.A.; Morris, M.E. New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug Metab. Dispos., 2005, 33(3), 321-328.
[http://dx.doi.org/10.1124/dmd.104.002089] [PMID: 15585608]
(b)Peri, R.; Padmanabhan, S.; Rutledge, A.; Singh, S.; Triggle, D.J. Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl(omega-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate iodide, calcium channel antagonists. J. Med. Chem., 2000, 43(15), 2906-2914.
[http://dx.doi.org/10.1021/jm000028l] [PMID: 10956198]
(c)Krauze, A.; Germane, S.; Eberlins, O.; Sturms, I.; Klusa, V.; Duburs, G. Derivatives of 3-cyano-6-phenyl-4-(3`-pyridyl)-pyridine-2(1H)-thione and their neurotropic activity. Eur. J. Med. Chem., 1999, 34, 301-310.
[http://dx.doi.org/10.1016/S0223-5234(99)80081-6]
(d)Vo, D.; Matowe, W.C.; Ramesh, M.; Iqbal, N.; Wolowyk, M.W.; Howlett, S.E.; Knaus, E.E. Synthesis, calcium channel agonist-antagonist modulation activities, and voltage-clamp studies of isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-pyridinylpyridine-5-carboxylate racemates and enantiomers. J. Med. Chem., 1995, 38(15), 2851-2859.
[http://dx.doi.org/10.1021/jm00015a007] [PMID: 7543577]
(e)Malaise, W.J.; Mathias, P.C.F. Stimulation of insulin release by an organic calcium agonist. Diabetologia, 1985, 28, 153-156.
[PMID: 3888757]
(f)Chapman, R.W.; Danko, G.; Siegel, M.I. Effect of extra- and intracellular calcium blockers on histamine and antigen-induced bronchospasms in guinea pigs and rats. Pharmacology, 1984, 29(5), 282-291.
[http://dx.doi.org/10.1159/000138024] [PMID: 6494237]
(g)Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res., 1983, 43(6), 2905-2910.
[PMID: 6850602]
[5]
(a)Wei, X.Y.; Rutledge, A.; Triggle, D.J. Pharmacologic and radioligand binding analysis of the actions of 1,4-dihydropyridine activator-antagonist pairs in smooth muscle. J. Mol. Pharmacol., 1989, 35, 541-552.
(b)Stout, D.M.; Meyers, A.I. Recent advances in the chemistry of dihydropyridines. Chem. Rev., 1982, 82, 223.
[http://dx.doi.org/10.1021/cr00048a004]
(c)Kill, R.J.; Widdowson, D.A. Reaction of N-benzyl-1, 4-dihydronicotinamide with geminal bromo-nitro compounds. J. Chem. Soc. Chem. Commun., 1978, 19, 755-756.
[6]
(a)Henrikson, J.C.; Ellis, T.K.; King, J.B.; Cichewicz, R.H. Reappraising the structures and distribution of metabolites from black aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems. J. Nat. Prod., 2011, 74(9), 1959-1964.
[http://dx.doi.org/10.1021/np200454z] [PMID: 21854017]
(b)Ye, Y.H.; Zhu, H.L.; Song, Y.C.; Liu, J.Y.; Tan, R.X. Structural revision of aspernigrin A, reisolated from Cladosporium herbarum IFB-E002. J. Nat. Prod., 2005, 68(7), 1106-1108.
[http://dx.doi.org/10.1021/np050059p] [PMID: 16038560]
(c)Hiort, J.; Maksimenka, K.; Reichert, M.; Perovic´-Ottstadt, S.; Lin, W.H.; Wray, V.; Steube, K.; Schaumann, K.; Weber, H.; Proksch, P.; Ebel, R.; Müller, W.E.G.; Bringmann, G.J. New natural products from the sponge-derived fungus Aspergillus niger. Nat. Prod., 2004, 67, 1532-1543.
[http://dx.doi.org/10.1021/np030551d]
(d)Maatooqa, G.T.; Hoffmann, J.J.Z. Pyridine alkaloids from A parthenium hybrid. Naturforsch. C, 2002, 57, 211-215.
[http://dx.doi.org/10.1515/znc-2002-3-402] [PMID: 12064715]
[7]
Mahmoudian, M.; Richards, W.G. QSAR of binding of dihydropyridine-type calcium antagonists to their receptor on ileal smooth muscle preparations. J. Pharm. Pharmacol., 1986, 38(4), 272-276.
[http://dx.doi.org/10.1111/j.2042-7158.1986.tb04565.x] [PMID: 2872290]
[8]
Seidel, W.; Meyer, H.; Born, L.; Kazda, S.; Domport, W. Proceedings of the 5th Eur. Symp. On QSAR, Bad Segeberg, 1984, p. 366.
[9]
Triggle, A.M.; Shefter, E.; Triggle, D.J. Crystal structures of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-[2-nitro-, 3-cyano-, 4-(dimethylamino)-, and 2,3,4,5,6-pentafluorophenyl]-1,4-dihydropyridine. J. Med. Chem., 1980, 23(12), 1442-1445.
[http://dx.doi.org/10.1021/jm00186a029] [PMID: 6256552]
[10]
Rodenkirchen, R.; Bayer, R.; Steiner, R.; Bossert, F.; Meyer, H.; Möller, E. Structure-activity studies on nifedipine in isolated cardiac muscle. Naunyn Schmiedebergs Arch. Pharmacol., 1979, 310(1), 69-78.
[http://dx.doi.org/10.1007/BF00499876] [PMID: 530314]
[11]
Love, B.; Goodman, M.M.; Snader, K.M.; Tedeschi, R.; Macko, E. Hantzsch-type dihydropyridine hypotensive agents. J. Med. Chem., 1974, 17, 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[12]
Challa, C.; John, M.; Lankalapalli, R.S. Cascade synthesis of 1,2-dihydropyridine from dienaminodioate and an imine: a three-component approach. Tetrahedron Lett., 2013, 54, 3810-3812.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.037]
[13]
Sueki, S.; Takei, R.; Zaitsu, Y.; Abe, J.; Fukuda, A.; Seto, K.; Furukawa, Y.; Shimizu, I. Synthesis of 1,4-dihydropyridines and their fluorescence properties. Eur. J. Org. Chem., 2014, 2014, 5281-5301.
[http://dx.doi.org/10.1002/ejoc.201402426]
[14]
Affeldt, R.F.; Iglesias, R.S.; Rodembusch, F.S.; Russowsky, D. Photophysical properties of a series of 4-aryl substituted 1,4-dihydropyridines. J. Phys. Org. Chem., 2012, 25, 769-777.
[http://dx.doi.org/10.1002/poc.2916]
[15]
Lakowicz, J.R. Principles of fluorescence spectroscopy; Springer Science + Business Media, LLC: Baltimore, 2006.
[16]
Jimenez, A.J.; Fagnoni, M.; Mella, M.; Albini, A. Photoinduced electron and energy transfer in aryldihydropyridines. J. Org. Chem., 2009, 74(17), 6615-6622.
[http://dx.doi.org/10.1021/jo9010816] [PMID: 19642692]
[17]
(a)Fasani, E.; Albini, A.; Mella, M. Photochemistry of Hantzsch 1,4-dihydropyridines and pyridines. Tetrahedron, 2008, 64, 3190.
[http://dx.doi.org/10.1016/j.tet.2008.01.104]
(b)Pizarro, N.; Gunther, G.; Nunez-Vergara, L.J. Photophysical and photochemical behavior of nimodipine and felodipine. J. Photochem. Photobiol. Chem., 2007, 189, 23-29.
[http://dx.doi.org/10.1016/j.jphotochem.2007.01.003]
(c)Fasani, E.; Dondi, D.; Ricci, A.; Albini, A. Photochemistry of 4-(2-nitrophenyl)-1,4-dihydropyridines. Evidence for electron transfer and formation of an intermediate. Photochem. Photobiol., 2006, 82(1), 225-230.
[http://dx.doi.org/10.1562/2005-06-01-RA-561] [PMID: 16038581]
(d)Fasani, E.; Fagnoni, M.; Dondi, D.; Albini, A. Intramolecular electron transfer in the photochemistry of some nitrophenyl dihydropyridines. J. Org. Chem., 2006, 71(5), 2037-2045.
[http://dx.doi.org/10.1021/jo052463z] [PMID: 16496991]
[18]
(a)Hantzsch, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
(b)Hantzsch, A. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Chem. Ber., 1881, 14, 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[19]
(a)Sharma, M.G.; Vala, R.M.; Patel, D.M.; Lagunes, I.; Fernandes, M.X.; Padrón, J.M.; Ramkumar, V.; Gardas, R.L.; Patel, H.M. Anti-proliferative 1,4-dihydropyridine and pyridine derivatives synthesized through a catalyst-free, one-pot multi-component reaction. ChemistrySelect, 2018, 3, 12163-12168.
[http://dx.doi.org/10.1002/slct.201802537]
(b)Pham, D.D.; Le, N.T.; Vo-Thanh, G. Fast and efficient Hantzsch synthesis using acid-activated and cation-exchanged montmorillonite catalysts under solvent-free microwave irradiation conditions. ChemistrySelect, 2017, 2, 12041-12045.
[http://dx.doi.org/10.1002/slct.201702681]
[20]
Sharma, M.G.; Rajani, D.P.; Patel, H.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction. R. Soc. Open Sci., 2017, 4(6), 170006.
[http://dx.doi.org/10.1098/rsos.170006] [PMID: 28680664]
[21]
Shockravi, A.; Kamali, M.; Sharifi, N.; Nategholeslam, M.; Moghanlo, S.P. One-pot and solvent-free synthesis of 1,4-dihydropyridines and 3,4-dihydropyrimidine-2-ones using new synthetic recyclable catalyst via Biginelli and Hantzsch reactions. Synth. Commun., 2013, 43, 1477-1483.
[http://dx.doi.org/10.1080/00397911.2011.642923]
[22]
Datta, B.; Pasha, M.A. Silica sulfuric acid: an efficient heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild and solvent-free conditions. Chin. J. Catal., 2011, 32, 1180-1184.
[http://dx.doi.org/10.1016/S1872-2067(10)60252-5]
[23]
Li, J.; Liu, Q.; Xing, R.G.; Shen, X.X.; Liu, Z.G.; Bo, Z. Microwave-assisted one-pot synthesis of 3-substituted-3,4-dihydrocoumarins via tendem Konevenagel and Hantzsch reactions. Chin. Chem. Lett., 2009, 20, 25-28.
[http://dx.doi.org/10.1016/j.cclet.2008.10.007]
[24]
Chhillar, A.K.; Arya, P.; Mukherjee, C.; Kumar, P.; Yadav, Y.; Sharma, A.K.; Yadav, V.; Gupta, J.; Dabur, R.; Jha, H.N.; Watterson, A.C.; Parmar, V.S.; Prasad, A.K.; Sharma, G.L. Microwave-assisted synthesis of antimicrobial dihydropyridines and tetrahydropyrimidin-2-ones: Novel compounds against aspergillosis. Bioorg. Med. Chem., 2006, 14(4), 973-981.
[http://dx.doi.org/10.1016/j.bmc.2005.09.014] [PMID: 16214352]
[25]
Breitenbucher, J.G.; Figliozzi, G. Solid-phase synthesis of 4-aryl-1,4-dihydropyridines via the Hantzsch three component condensation. Tetrahedron Lett., 2000, 41, 4311-4315.
[http://dx.doi.org/10.1016/S0040-4039(00)00660-2]
[26]
(a)Wang, L.M.; Sheng, J.; Zhang, L.; Han, J.W.; Fan, Z.Y.; Tian, H.; Qian, C.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61, 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
(b)Moreau, J.; Duboc, A.; Hubert, C.; Hurvoisa, J.P.; Renaud, J.L. Metal-free Brønsted acids catalyzed synthesis of functional 1,4-dihydropyridines. Tetrahedron Lett., 2007, 48, 8647-8650.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.040]
(c)Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C.F. Molecular iodinecatalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett., 2005, 46, 5771-5774.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.148]
(d)Sabitha, G.; Reddy, G.S.K.K.; Reddy, C.S.; Yadav, J.S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett., 2003, 44, 4129-4131.
[http://dx.doi.org/10.1016/S0040-4039(03)00813-X]
(e)Sridhar, R.; Perumal, P.T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1Hpyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron, 2005, 61, 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
(f)Tewari, N.; Dwivedi, N.; Tripathi, R.P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett., 2004, 45, 9011-9014.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.057]
(g)Lee, J.H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett., 2005, 46, 7329-7330.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.137]
(h)Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62, 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
(i)Khadikar, B.M.; Gaikar, V.G.; Chitnavis, A.A. Aqueous hydrotrope solution as a safer medium for microwave enhanced hantzsch dihydropyridine ester synthesis. Tetrahedron Lett., 1995, 36, 8083-8086.
[http://dx.doi.org/10.1016/0040-4039(95)01680-G]
(j)Agarwal, A.; Chauhan, P.M.S. Solid supported synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidines using microwave irradiation. Tetrahedron Lett., 2005, 46, 1345-1348.
[http://dx.doi.org/10.1016/j.tetlet.2004.12.109]
(k)Sapkal, S.B.; Shelke, K.F.B.; Shingate, B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1754-1756.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.140]
(l)Mirela, F.L.; Mladen, L.; Vladimir, V. An efficient, metal-free, room temperature aromatization of Hantzsch-1,4-dihydropyridines with urea–hydrogen peroxide adduct, catalyzed by molecular iodine. Tetrahedron, 2008, 64, 5649-5656.
[http://dx.doi.org/10.1016/j.tet.2008.04.040]
[27]
(a)Kumar, A.; Maurya, R.A. Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett, 2008, 6, 883-885.
[http://dx.doi.org/10.1055/s-2008-1042908]
(b)Ohberg, L.; Westman, J. An efficient and fast procedure for the hantzsch dihydropyridine synthesis under microwave conditions. Synlett, 2001, 1296-1298.
[http://dx.doi.org/10.1055/s-2001-16043]
(c)Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett, 2008, 509-512.
[http://dx.doi.org/10.1055/s-2008-1032093]
(d)Brunner, B.; Stogaitis, N.; Lautens, M. Synthesis of 1,2-dihydropyridines using vinyloxiranes as masked dienolates in imino-aldol reactions. Org. Lett., 2006, 8(16), 3473-3476.
[http://dx.doi.org/10.1021/ol061086p] [PMID: 16869638]
(e)Vohra, R.K.; Bruneau, C.; Renaud, J.L. Lewis acid-catalyzed sequential transformations: straightforward preparation of functional dihydropyridines. Adv. Synth. Catal., 2006, 348, 2571-2574.
[http://dx.doi.org/10.1002/adsc.200600343]
(f)Singh, L.; Ishar, M.P.S.; Elango, M.; Subramanian, V.; Gupta, V.; Kanwal, P. Synthesis of unsymmetrical substituted 1,4-dihydropyridines through thermal and microwave assisted [4+2] cycloadditions of 1-azadienes and allenic esters. J. Org. Chem., 2008, 73(6), 2224-2233.
[http://dx.doi.org/10.1021/jo702548b] [PMID: 18269292]
(g)Motamed, M.; Bunnelle, E.M.; Singaram, S.W.; Sarpong, R. Pt(II)-catalyzed synthesis of 1,2-dihydropyridines from aziridinyl propargylic esters. Org. Lett., 2007, 9(11), 2167-2170.
[http://dx.doi.org/10.1021/ol070658i] [PMID: 17451249]
(h)Bridgwood, K.L.; Veitch, G.E.; Ley, S.V. Magnesium nitride as a convenient source of ammonia: preparation of dihydropyridines. Org. Lett., 2008, 10(16), 3627-3629.
[http://dx.doi.org/10.1021/ol801399w] [PMID: 18642824]
(i)Colby, D.A.; Bergman, R.G.; Ellman, J.A. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation. J. Am. Chem. Soc., 2008, 130(11), 3645-3651.
[http://dx.doi.org/10.1021/ja7104784] [PMID: 18302381]
(j)Manning, J.R.; Davies, H.M.L. One-pot synthesis of highly functionalized pyridines via a rhodium carbenoid induced ring expansion of isoxazoles. J. Am. Chem. Soc., 2008, 130(27), 8602-8603.
[http://dx.doi.org/10.1021/ja803139k] [PMID: 18549206]
[28]
Correa, W.H.; Scott, J.L. Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines. Green Chem., 2001, 3(6), 296-301.
[http://dx.doi.org/10.1039/b106397a]
[29]
Evdokimov, N.M.; Magedov, I.V.; Kireev, A.S.; Kornienko, A. One-step, three-component synthesis of pyridines and 1,4-dihydropyridines with manifold medicinal utility. Org. Lett., 2006, 8(5), 899-902.
[http://dx.doi.org/10.1021/ol052994+] [PMID: 16494469]
[30]
Sridharan, V.; Perumal, P.T.; Avendaňo, C.; Menéndez, J.C. A new three-component domino synthesis of 1,4-dihydropyridines. Tetrahedron, 2007, 63, 4407-4413.
[http://dx.doi.org/10.1016/j.tet.2007.03.092]
[31]
Shashi, R.; Prasad, N.L.; Begum, N.S. One-pot synthesis of 1,4-dihydropyridine derivatives and their X-ray crystal structures: role of fluorine in weak interactions. J. Struct. Chem., 2020, 61(6), 938-947.
[http://dx.doi.org/10.1134/S0022476620060141]
[32]
Peng, J.; Liu, Y.; Wang, M.; Huang, S.; Liu, M.; Zhou, Y.; Gao, W.; Huang, X.; Wu, H. Synthesis, crystal structures, and mechanochromic properties of bulky trialkylsilylacetylene-substituted aggregation-induced-emission-active 1,4-dihydropyridine derivatives. Dyes Pigm., 2020, 174, 108094.
[http://dx.doi.org/10.1016/j.dyepig.2019.108094]
[33]
Maru, M.S.; Antharjanam, P.K.S.; Khan, N.H. Catalyst-free solid phase microwave-assisted synthesis of 1,4-dihydropyridine derivatives and their single crystal structure determination. ChemistrySelect, 2019, 4, 774-782.
[http://dx.doi.org/10.1002/slct.201803559]
[34]
(a)Maru, M.S. Microwave assisted solid phase catalyst-free Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-one and 3,4-dihydropyrimidin-2(1H)-thione: A green approach, characterization and molecular crystal structures. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 641, 53-62.
[http://dx.doi.org/10.1080/15421406.2016.1235928]
(b)Maru, M.S.; Shah, M.K. A novel 4-(4,5-dimethoxy-2-nitrophenyl)-2,6-dimethyl-3,5-dicarbethoxy-1,4-dihydropyridine (C21H26N2O8): microwave-irradiated Hantzsch ester synthesis, characterization and molecular crystal. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2015, 623, 217-225.
[http://dx.doi.org/10.1080/15421406.2015.1010907]
(c)Maru, M.S.; Shah, M.K. Synthesis and molecular crystal structure of 4-(4,5-Dimethoxy-2-nitrophenyl)-2,6-dimethyl-3,5-dicarbmethoxy-1,4-dihydropyridine (C19H22N2O8). Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2013, 574, 117-128.
[http://dx.doi.org/10.1080/15421406.2012.752308]
[35]
Nonius, B. APES, SAINT and XPREP; Bruker AXS INC, 2013.
[36]
(a)Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst., 2015, 48, 3-10.
[http://dx.doi.org/10.1107/S1600576714022985]
(b)Blatov, V.A. IUCr CompComm Newsletter, 2006.
[37]
(a)Sheldrick, G.M. A short history of SHELX. Acta Crystallogr., 2008, A64, 112-122.
[http://dx.doi.org/10.1107/S0108767307043930]
(b)Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr., 1990, A46, 467-473.
[http://dx.doi.org/10.1107/S0108767390000277]
[38]
(a)Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., 2015, C71, 3-8.
Sheldrick, G.M. SHELXL-2014/7: A program for structure refinement; University of Göttingen: Göttingen, Germany, 2014.
Spek, A.L. PLATON: A multipurpose crystallographic tool; Utrecht University: Utrecht, The Netherlands, 2003.
Sheldrick, G.M. SHELXL-1997, program for refinement of crystal structures; University of Gottingen: Germany, 1997.
[39]
Zsolnai, L. ZORTEP- Molecular Graphics Program; University of Heidelberg, 1997.
[40]
Suarez, M. Synthesis and structural study of new highly lipophilic 1,4-dihydropyridines. New J. Chem., 2005, 29, 1567-1576.
[http://dx.doi.org/10.1039/b506018d]
[41]
(a)Triggle, D.J.; Langs, D.A.; Janis, R.A. Ca2+ channel ligands: Structure-function relationships of the 1,4-dihydropyridines. Med. Res. Rev., 1989, 9(2), 123-180.
[http://dx.doi.org/10.1002/med.2610090203] [PMID: 2654521]
(b)Mahmoudian, M.; Richards, W.C. 1986.
(c)Fossheim, R. Crystal structure of the dihydropyridine Ca2+ antagonist felodipine. Dihydropyridine binding prerequisites assessed from crystallographic data. J. Med. Chem., 1986, 29(2), 305-307.
[http://dx.doi.org/10.1021/jm00152a023] [PMID: 3005572]
(d)Fossheim, R. X-ray analysis of Ca2+ antagonists: 3,5-bis-(methoxycarbonyl)-2,6-dimethyl-4-(2-aminophenyl)-1,4 -dihydropyridine hydrate. Acta Chem. Scand. Sen., 1986, B41, 581.
[42]
Khoshneviszadeh, M.; Edraki, N.; Javidnia, K.; Alborzi, A.; Pourabbas, B.; Mardaneh, J.; Miri, R. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents. Bioorg. Med. Chem., 2009, 17(4), 1579-1586.
[http://dx.doi.org/10.1016/j.bmc.2008.12.070] [PMID: 19162489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy