Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

New Insights into the Microstructural Analysis of Graphene Oxide

Author(s): Jay Soni, Ayushi Sethiya, Nusrat Sahiba, Mahendra Singh Dhaka and Shikha Agarwal*

Volume 18, Issue 4, 2021

Published on: 13 January, 2021

Page: [388 - 398] Pages: 11

DOI: 10.2174/1570179418666210113162124

Price: $65

Abstract

Aim and Objective: To explore the impact of synthesis conditions (temperature and time) on the properties of developed Graphene Oxide (GO).

Background: A highly promising approach has been used for the synthesis of graphene oxide (GO) from graphite flakes using the modified Hummers method. Concentrated sulfuric acid was used as an intercalating agent and the oxidation was done with the help of potassium permanganate and hydrogen peroxide.

Methods: The present method does not need expensive membranes for the filtration of Carbon and metalcontaining residues. The pre-cooling method is used to eradicate the explosive behavior of intermediate steps. The high quality of synthesized graphene oxides was confirmed by a series of characterization techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, and atomic force microscopy.

Results: The results indicated the presence of Oxygen-containing functional groups, and a rise in the Oxygen content confirmed the synthesis of high-quality graphene oxide.

Conclusion: As per obtained experimental findings and subsequent analysis, the synthesized high-quality graphene oxide could be used in the design of membranes for water treatment applications.

Keywords: Graphene oxide, modified hummers method, graphite flakes, characterization, topographical studies, thermal stability, structural properties.

Graphical Abstract

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[2]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[3]
Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Carbon, 1996, 24, 241-245.
[http://dx.doi.org/10.1016/0008-6223(86)90126-0]
[4]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[http://dx.doi.org/10.1038/nnano.2009.58] [PMID: 19350030]
[5]
Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A Review. Electroanal., 2010, 22, 1027-1036.
[http://dx.doi.org/10.1002/elan.200900571]
[6]
Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: A Review. Crit. Rev. Solid State Mater. Sci., 2010, 35, 52-71.
[http://dx.doi.org/10.1080/10408430903505036]
[7]
Liu, J.Q.; Yang, W.R.; Tao, L.; Li, D.; Boyer, C.; Davis, T.P. Thermosensitive graphene nanocomposites formed using pyrene terminal polymers made by RAFT polymerization. J. Polym. Sci. A Polym. Chem., 2010, 48, 425-433.
[http://dx.doi.org/10.1002/pola.23802]
[8]
Chang, K.; Chen, W.X.; Ma, L.; Li, H.; Huang, F.H.; Xu, Z.D.; Zhang, Q.B.; Lee, J.Y. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem., 2011, 21, 6251-6257.
[http://dx.doi.org/10.1039/c1jm10174a]
[9]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[10]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[11]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[12]
Gao, X.; Li, J.; Xie, Y.; Guan, D.; Yuan, C. A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(15), 7855-7862.
[http://dx.doi.org/10.1021/acsami.5b01230] [PMID: 25826636]
[13]
Wang, M.; Duong, D.; Mai, N.T.; Kim, S.; Kim, Y.; Seo, H.; Kim, Y.C.; Jang, W.; Lee, Y.; Suhr, J.; Nam, J.D. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl. Mater. Interfaces, 2015, 7(2), 1348-1354.
[http://dx.doi.org/10.1021/am507656q] [PMID: 25545033]
[14]
Zhang, L.L.; Zhao, X.; Stoller, M.D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R.S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, 12(4), 1806-1812.
[http://dx.doi.org/10.1021/nl203903z] [PMID: 22372529]
[15]
Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans., 2013, 42(16), 5682-5689.
[http://dx.doi.org/10.1039/c3dt33097d] [PMID: 23443993]
[16]
Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1), 380-386.
[http://dx.doi.org/10.1021/nn901221k] [PMID: 20041631]
[17]
Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA, 2016, 113(49), 13953-13958.
[http://dx.doi.org/10.1073/pnas.1613031113] [PMID: 27872280]
[18]
Goh, P.S. Ismail. A.F.; Hilal. N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination. Desalination, 2016, 380, 100-104.
[http://dx.doi.org/10.1016/j.desal.2015.06.002]
[19]
Sahiba, N. Teli. P.; Prajapat, P.; Agarwal, S. Graphene oxide membrane: recent advancement in waste water treatment and its applications. Curr. Nanomater., 2020, 5(2), 111-157.
[http://dx.doi.org/10.2174/2405461505999200527140938]
[20]
Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev., 2012, 41(6), 2283-2307.
[http://dx.doi.org/10.1039/C1CS15270J] [PMID: 22143223]
[21]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[22]
Sengupta, I.; Bhattacharya, P.; Talukdara, M.; Neogia, S.; Pal, S.K.; Chakrabortya, S. Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid Interfac. Sci. Commun., 2019, 28, 60-68.
[http://dx.doi.org/10.1016/j.colcom.2018.12.001]
[23]
Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7), 2206-2214.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.064] [PMID: 22169821]
[24]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[25]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[26]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[27]
Kinoshita, H.; Nishina, Y.; Alias, A.A.; Fujii, M. Tribological properties of monolayer graphene oxide sheets as water based lubricant additives. Carbon, 2014, 66, 720-723.
[http://dx.doi.org/10.1016/j.carbon.2013.08.045]
[28]
Kumar, A.; Rao, K.M.; Han, S.S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr. Polym., 2018, 193, 228-238.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.004] [PMID: 29773377]
[29]
McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J. HerreraAlonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; Aksay, I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater., 2007, 19, 4396-4404.
[http://dx.doi.org/10.1021/cm0630800]
[30]
Dimiev, A.M.; Ceriotti, G.; Metzger, A.; Kim, N.D.; Tour, J.M. Chemical Mass Production of graphene nanoplatelets in ∼100% yield. ACS Nano, 2016, 10(1), 274-279.
[http://dx.doi.org/10.1021/acsnano.5b06840] [PMID: 26580092]
[31]
Brodie, B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1859, 149, 249-259.
[32]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges., 1898, 3, 1481-1487.
[http://dx.doi.org/10.1002/cber.18980310237]
[33]
Lerf, A.; He, H.; Forster, K.; Klinowski, J. Structure of graphene oxide revisited. J. Phys. Chem. B, 1998, 102, 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[34]
Nakajima, T.; Matsuo, Y. Formation process and structure of graphite oxide. Carbon, 1994, 3, 469-475.
[http://dx.doi.org/10.1016/0008-6223(94)90168-6]
[35]
Beckett, R.J.; Croft, R.C. The structure of graphite oxide. J. Phys. Chem., 1952, 8, 929-935.
[http://dx.doi.org/10.1021/j150500a001]
[36]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[37]
Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High -Yield synthesis and flexibility of the particles. Carbon, 2004, 42, 2929-2937.
[http://dx.doi.org/10.1016/S0008-6223(04)00444-0]
[38]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[39]
Chen, J.; Yao, B.; Li, C.; Shi, G. An improved hummer’s method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.
[http://dx.doi.org/10.1016/j.carbon.2013.07.055]
[40]
Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient Synthesis of graphene oxide based on improved hummers method. Sci. Rep., 2016, 6, 36143.
[http://dx.doi.org/10.1038/srep36143] [PMID: 27808164]
[41]
Ranjan, P.; Agrawal, S.; Sinha, A.; Rao, T.R.; Balakrishnan, J.; Thakur, A.D. A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep., 2018, 8(1), 12007-12019.
[http://dx.doi.org/10.1038/s41598-018-30613-4] [PMID: 30104689]
[42]
Pei, S.; Wei, Q.; Huang, K.; Cheng, H.M.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun., 2018, 9(1), 145.
[http://dx.doi.org/10.1038/s41467-017-02479-z] [PMID: 29321501]
[43]
Najjar, A.; Sabri, S.; Al-Gaashani, R.; Kochkodan, V.; Atieh, M.A. Enhanced fouling resistance and antibacterial properties of novel graphene oxide-Arabic gum polyethersulfone membranes. Appl. Sci. (Basel), 2019, 9, 513-534.
[http://dx.doi.org/10.3390/app9030513]
[44]
Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 2012, 28(33), 12364-12372.
[http://dx.doi.org/10.1021/la3023908] [PMID: 22827339]
[45]
Rajan, M.; Sumathra, M.; Ahmed, B.; Ponnamma, D.; Sadasivuni, K.K. Biomedical applications of hydroxyapatite nano composites, polymer nanocomposites in biomedical engineering; Springer, 2019, pp. 167-204.
[46]
Ramesh, P.; Bhagyalakshmi, S.; Sampath, S. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J. Colloid Interface Sci., 2004, 274(1), 95-102.
[http://dx.doi.org/10.1016/j.jcis.2003.11.030] [PMID: 15120282]
[47]
Loryuenyong, V.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A. Preparation and characterization of reduced graphene oxide sheets via water based exfoliation and reduction methods. Adv. Mater. Sci. Eng., 2013, 1-5.https://doi.org/:10.1155/2013/923403
[http://dx.doi.org/10.1155/2013/923403]
[48]
Meng, H.; Yang, W.; Ding, K.; Feng, L.; Guan, Y. Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 1174-1181.
[http://dx.doi.org/10.1039/C4TA06024E]
[49]
Chandrasekaran, S.; Hur, S.H.; Kim, E.J.; Rajagopalan, B.; Babu, K.F.; Senthilkumar, V.; Kim, Y.S. Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Adv, 2015, 5, 29159-29166.
[http://dx.doi.org/10.1039/C5RA02934A]
[50]
Lambert, T.N.; Chavez, C.A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N.S.; Ambrosini, A.; Friedman, T.; Boyle, T.J.; Wheeler, D.R.; Huber, D.L. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C, 2009, 113, 19812-19823.
[http://dx.doi.org/10.1021/jp905456f]
[51]
Himanshu, P.S.L.; Thakur, A.; Kannan, M.D.; Dhaka, M.S. Analysis of different annealing conditions on physical properties of Bi doped CdTe thin films for potential absorber layer in solar cells. Sol. Energy, 2020, 199, 772-781.
[http://dx.doi.org/10.1016/j.solener.2020.02.066]
[52]
Patel, S.L.; Chander, S. Purohit, Kannan, M.D.; Dhaka, M.S. Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. J. Phys. Chem. Solids, 2018, 123, 216-222.
[http://dx.doi.org/10.1016/j.jpcs.2018.07.021]
[53]
Murphy, S.; Huang, L. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film. J. Phys. Condens. Matter, 2013, 25(14), 144203-144211.
[http://dx.doi.org/10.1088/0953-8984/25/14/144203] [PMID: 23478941]
[54]
Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 1997, 79, 1297-1300.
[http://dx.doi.org/10.1103/PhysRevLett.79.1297]
[55]
Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci., 2011, 56, 1178-1271.
[http://dx.doi.org/10.1016/j.pmatsci.2011.03.003]
[56]
Qian, W.; Hao, R.; Hou, Y.L.; Tian, Y.; Shen, C.M.; Gao, H.J.; Liang, X.L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res., 2009, 2, 706-712.
[http://dx.doi.org/10.1007/s12274-009-9074-z]
[57]
Matsumoto, Y.; Koinuma, M.; Kim, S.Y.; Watanabe, Y.; Taniguchi, T.; Hatakeyama, K.; Tateishi, H.; Ida, S. Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl. Mater. Interfaces, 2010, 2(12), 3461-3466.
[http://dx.doi.org/10.1021/am100900q] [PMID: 21114256]
[58]
Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 2011, 49, 3019-3023.
[http://dx.doi.org/10.1016/j.carbon.2011.02.071]
[59]
Eigler, S.; Dotzer, C.; Hirsch, A.; Enzelberger, M.; Müller, P. Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater., 2012, 7, 1276-1282.
[http://dx.doi.org/10.1021/cm203223z]
[60]
Gupta, A.; Jamatia, R.; Patil, R.A.; Ma, Y.R.; Pal, A.K. Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega, 2018, 3(7), 7288-7299.
[http://dx.doi.org/10.1021/acsomega.8b00334] [PMID: 31458889]
[61]
Mungse, H.P.; Khatri, O.P. Chemically functionalized reduced graphene oxide as a novel material for reduction of friction and wear. J. Phys. Chem. C, 2014, 118, 14394-14402.
[http://dx.doi.org/10.1021/jp5033614]
[62]
Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Skorodumova, N.V. A general view on the reactivity of the oxygen-functionalized graphene basal plane. Phys. Chem. Chem. Phys., 2016, 18(9), 6580-6586.
[http://dx.doi.org/10.1039/C5CP07612A] [PMID: 26866995]
[63]
Narayan, P.S.; Teradal, N.L.; Jaldappagari, S.; Satpati, A.K. Eco-friendly reduced graphene oxide for the determination of mycophenolate mofetil in pharmaceutical formulations. J. Pharm. Anal., 2018, 8(2), 131-137.
[http://dx.doi.org/10.1016/j.jpha.2017.12.001] [PMID: 29736300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy