Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

One-Pot Green Synthesis of Acridine Alkaloid Derivatives and Screening of in vitro Anti-cancer Activity Against Cdc25b and SHP1

Author(s): Hao Li, Buer Song, Mamtimin Mahmut* and Mukhtar Imerhasan*

Volume 18, Issue 4, 2021

Published on: 28 December, 2020

Page: [399 - 405] Pages: 7

DOI: 10.2174/1570179417666201228165500

Price: $65

Abstract

Aim: To develop anti-cancer active pharmaceutical intermediates.

Background: Acridone derivatives possess a wide range of pharmacological activities: 1) they intercalate DNA and 2) form a covalent bond with DNA.

Objective: To screen in vitro anti-cancer activity against Cdc25b and SHP1 of new acridone derivatives and preliminary study on the structure-activity relationship.

Materials and Methods: The synthesis of new acridone derivatives and in vitro evaluation of their anti-cancer activity on Cdc25b and SHP1 was achieved. Natural products that contain acridine structures, such as cystodytin A and acronycine, are isolated from certain marine (tunicates & ascidians, sponges, sea anemones) and plant (bark of Australian scrub ash tree) species. Herein, we report the efficient one-pot green synthesis of twelve novel 3,4-dihydro-1 (2H) acridone derivatives, using montmorillonite K10 as the catalyst and iron/citric acid in water. Also, their inhibitory activity against Cdc25B and SHP1 is examined, in which specific derivatives show enhanced inhibitory activity compared to others.

Results and Discussion: Twelve new acridone derivatives were prepared, starting from 2-nitrobenzaldehyde derivatives and 1, 3-cyclohexanedione derivatives, which exhibited substantial anti-cancer activity against Cdc25b and SHP1 cells.

Conclusion: Preliminary studies on the structure-activity relationship have shown the influence of the structural parameters and, in particular, the nature of the substituent on aromatic ring structure and cyclohexanone.

Other: Further study on the structure-activity relationship is required.

Keywords: One-pot synthesis, in vitro anti-cancer activity, natural product analogs, acridone, alkaloid derivatives, Cdc25b, SHP1.

Graphical Abstract

[1]
Ghahsare, A.G.; Nazifi, Z.S.; Nazifi, S.M.R. Structure-bioactivity relationship study of xanthene derivatives: A brief review. Curr. Org. Synth., 2019, 16(8), 1071-1077.
[http://dx.doi.org/10.2174/1570179416666191017094908] [PMID: 31984917]
[2]
Nadaraj, V.; Selvi, S.T.; Mohan, S. Microwave-induced synthesis and anti-microbial activities of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Eur. J. Med. Chem., 2009, 44(3), 976-980.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.004] [PMID: 18718695]
[3]
Kocisko, D.A.; Caughey, B. Mefloquine, an antimalaria drug with antiprion activity in vitro, lacks activity in vivo. J. Virol., 2006, 80(2), 1044-1046.
[http://dx.doi.org/10.1128/JVI.80.2.1044-1046.2006] [PMID: 16379006]
[4]
Dodean, R.A.; Kancharla, P.; Li, Y.; Melendez, V.; Read, L.; Bane, C.E.; Vesely, B.; Kreishman-Deitrick, M.; Black, C.; Li, Q.; Sciotti, R.J.; Olmeda, R.; Luong, T.L.; Gaona, H.; Potter, B.; Sousa, J.; Marcsisin, S.; Caridha, D.; Xie, L.; Vuong, C.; Zeng, Q.; Zhang, J.; Zhang, P.; Lin, H.; Butler, K.; Roncal, N.; Gaynor-Ohnstad, L.; Leed, S.E.; Nolan, C.; Huezo, S.J.; Rasmussen, S.A.; Stephens, M.T.; Tan, J.C.; Cooper, R.A.; Smilkstein, M.J.; Pou, S.; Winter, R.W.; Riscoe, M.K.; Kelly, J.X. Discovery and structural optimization of acridones as broad-spectrum antimalarials. J. Med. Chem., 2019, 62(7), 3475-3502.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01961] [PMID: 30852885]
[5]
Dzierzbicka, K.; Kołodziejczyk, A.M. Synthesis and antitumor activity of conjugates of muramyldipeptide or normuramyldipeptide with hydroxyacridine/acridone derivatives. J. Med. Chem., 2003, 46(1), 183-189.
[http://dx.doi.org/10.1021/jm020991m] [PMID: 12502372]
[6]
Agili, F.A. Synthesis, antioxidant and antitumor activity of some substituted 9-anilinoacridine and 4-anilinoquinolines derivatives. Curr. Org. Synth., 2018, 15, 846-852.
[http://dx.doi.org/10.2174/1570179415666180521120531]
[7]
Montalvo-Quirós, S.; Taladriz-Sender, A.; Kaiser, M.; Dardonville, C. Antiprotozoal activity and DNA binding of dicationic acridones. J. Med. Chem., 2015, 58(4), 1940-1949.
[http://dx.doi.org/10.1021/jm5018303] [PMID: 25642604]
[8]
Velingker, V.S.; Dandekar, V.D. Design, Synthesis and evaluation of substituted N-(3-arylpropyl)-9,10-dihydro-9-oxoacridine-4-carboxamides as potent MDR reversal agents in cancer. Chin. J. Chem., 2011, 29, 504-510.
[http://dx.doi.org/10.1002/cjoc.201190113]
[9]
Rono, C.K.; Darkwa, J.; Meyer, D.; Makhubela, B.C.E. A Novel Series of N-aryltriazole and N-acridinyltriazole hybrids as potential anticancer agents. Curr. Org. Synth., 2019, 16(6), 900-912.
[http://dx.doi.org/10.2174/1570179416666190704112904] [PMID: 31984911]
[10]
Haydar, G.; Imerhasan, M.K.A.; Eshbakova, A.E.K. Synthesis and in vitro anticancer activity of natural product analogs on the based on the acridine skeleton 1,2,4-oxadiazoline and pyrazoline derivatives against Cdc25b. J. Pharm. Biol. Sci., 2016, 4, 41-45.
[11]
Ferreira, R.; Aviñó, A.; Mazzini, S.; Eritja, R. Synthesis, DNA-binding and antiproliferative properties of acridine and 5-methylacridine derivatives. Molecules, 2012, 17(6), 7067-7082.
[http://dx.doi.org/10.3390/molecules17067067] [PMID: 22683895]
[12]
Orozco, D.; Kouznetsov, V.V.; Bermúdez, A.; Mendez, L.Y.V.; Salgado, A.R.M.; Gómez, C.M.M. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Advances, 2020, 10, 4876-4898.
[http://dx.doi.org/10.1039/C9RA09905K]
[13]
Fotie, J.; Kemami Wangun, H.V.; Fronczek, F.R.; Massawe, N.; Bhattarai, B.T.; Rhodus, J.L.; Singleton, T.A.; Bohle, D.S. Unexpected 5,6,7,8,9,10-hexahydro-6,6-pentamethylenephenanthridines and 2,3,4,5-tetrahydro-4,4-tetramethylene-1H-cyclopenta[c]quinolines from skraup-doebner-von miller quinoline synthesis and their implications for the mechanism of that reaction. J. Org. Chem., 2012, 77(6), 2784-2790.
[http://dx.doi.org/10.1021/jo202681r] [PMID: 22335838]
[14]
Shao, Y.D.; Dong, M.M.; Wang, Y.A.; Cheng, P.M.; Wang, T.; Cheng, D.J. Organocatalytic atroposelective friedländer quinoline heteroannulation. Org. Lett., 2019, 21(12), 4831-4836.
[http://dx.doi.org/10.1021/acs.orglett.9b01731] [PMID: 31180222]
[15]
Yuan, S.; Zhang, K.; Xia, J. Microwave-assisted synthesis of 2-methyl-4-quinolinones via combes synthesis catalyzed by acidic resin under solvent-free condition. Asian J. Chem., 2013, 25, 5535-5538.
[http://dx.doi.org/10.14233/ajchem.2013.OH9]
[16]
Roopan, S.M.; Palaniraja, J.; Elango, G.; Arunachalam, P.; Sudhakaran, R. Catalytic application of non-toxic Persia americana metabolite entrapped SnO2 nanoparticles towards the synthesis of 3,4-dihydroacridin-1(2H)-ones. RSC Advances, 2016, 6, 21072-21075.
[http://dx.doi.org/10.1039/C5RA25975D]
[17]
Gawande, M.B.; Rathi, A.K.; Nogueira, I.D.; Varma, R.S.; Branco, P.S. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chem., 2013, 15, 1895-1899.
[http://dx.doi.org/10.1039/c3gc40457a]
[18]
Palimkar, S.S.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid-promoted regiospecific Friedlander annulation: Novel synthesis of quinolines and fused polycyclic quinolines. J. Org. Chem., 2003, 68(24), 9371-9378.
[http://dx.doi.org/10.1021/jo035153u] [PMID: 14629159]
[19]
Liu, Y.X.; Zhao, H.P.; Wang, Z.W.; Li, Y.H.; Song, H.B.; Riches, H.; Beattie, D.; Gu, Y.C.; Wang, Q.M. The discovery of 3-(1-aminoethylidene)quinoline-2, 4(1H,3H)-dione derivatives as novel PSII electron transport inhibitors. Mol. Divers., 2013, 17(4), 701-710.
[http://dx.doi.org/10.1007/s11030-013-9466-6] [PMID: 23943353]
[20]
Kaewmee, B.; Rukachaisirikul, V.; Kaeobamrung, J. Synthesis of quinolines via copper-catalyzed domino reactions of enaminones. Org. Biomol. Chem., 2017, 15(35), 7387-7395.
[http://dx.doi.org/10.1039/C7OB01867C] [PMID: 28849848]
[21]
Zou, L-H.; Zhu, H.; Zhu, S.; Shi, K.; Yan, C.; Li, P-G. Copper-catalyzed ring-opening/reconstruction of anthranils with oxo-compounds: Synthesis of quinoline derivatives. J. Org. Chem., 2019, 84(19), 12301-12313.
[http://dx.doi.org/10.1021/acs.joc.9b01577] [PMID: 31482711]
[22]
Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F.B.; Tabrizian, E. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions. New J. Chem., 2016, 47, 770-780.
[http://dx.doi.org/10.1039/C5NJ02430G]
[23]
Gopi, P.; Sarveswari, S. Effective water mediated green synthesis of polysubstituted quinolines without energy expenditure. Monatsh. Chem., 2016, 148, 1043-1049.
[http://dx.doi.org/10.1007/s00706-016-1826-3]
[24]
Ton, N.N.H.; Dang, H.V.; Phan, N.T.S.; Nguyen, T.T. Aerobic, metal-free synthesis of 6H-chromeno[4,3-b]quinolin-6-ones. RSC Advances, 2019, 9, 16215-16222.
[http://dx.doi.org/10.1039/C9RA02267H]
[25]
Gao, H.; Yang, X.; Tang, X.; Yin, P.; Mao, Z. A Brief Synthesis of 2,2′-Arylmethylene Bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1- one) Catalyzed by TEAOH in Various Solvents. Curr. Org. Synth., 2019, 16(7), 1032-1039.
[http://dx.doi.org/10.2174/1570179416666190723122816] [PMID: 31984884]
[26]
Shen, Q.; Wang, L.; Yu, J.; Liu, M.; Qiu, J.; Fang, L.; Guo, F.; Tang, J. Synthesis of quinolines via friedländer reaction in water and under catalyst-free conditions. Synth., 2012, 44, 389-392.
[http://dx.doi.org/10.1055/s-0031-1289657]
[27]
Rajawinslin, R.R.; Gawande, S.D.; Kavala, V.; Huang, Y.; Kuo, C.; Kuo, T.; Chen, M.; He, C.; Yao, C. Iron/acetic acid mediated intermolecular tandem C–C and C–N bond formation: An easy access to acridinone and quinoline derivatives. RSC Advances, 2014, 4, 37806-37811.
[http://dx.doi.org/10.1039/C4RA06410K]
[28]
(a)Chan, G.K-L.; Head-Gordon, M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys., 2002, 116, 4462-4476.
[http://dx.doi.org/10.1063/1.1449459]
(b)Chan, G.K-L. An algorithm for large scale density matrix renormalization group calculations. J. Chem. Phys., 2004, 120(7), 3172-3178.
[http://dx.doi.org/10.1063/1.1638734] [PMID: 15268469]
(c)Ghosh, D.; Hachmann, J.; Yanai, T.; Chan, G.K-L. Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene. J. Chem. Phys., 2008, 128(14)144117, -.
[http://dx.doi.org/10.1063/1.2883976] [PMID: 18412433]
(d)Sharma, S.; Chan, G.K-L. Spin-adapted density matrix renormalization group algorithms for quantum chemistry. J. Chem. Phys., 2012, 136(12)124121
[http://dx.doi.org/10.1063/1.3695642] [PMID: 22462849]
(e)Chan, G.K-L.; Sharma, S. The Density Matrix Renormalization Group in Quantum Chemistry. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem., 2011, 62, 465-481.
[http://dx.doi.org/10.1146/annurev-physchem-032210-103338] [PMID: 21219144]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy